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Abstract

Bayesian inference is the process of narrowing down the hypotheses (causes) to the one

that best explains the observational data (effects). To accurately estimate a cause, a consid-

erable amount of data is required to be observed for as long as possible. However, the

object of inference is not always constant. In this case, a method such as exponential mov-

ing average (EMA) with a discounting rate is used to improve the ability to respond to a sud-

den change; it is also necessary to increase the discounting rate. That is, a trade-off is

established in which the followability is improved by increasing the discounting rate, but the

accuracy is reduced. Here, we propose an extended Bayesian inference (EBI), wherein

human-like causal inference is incorporated. We show that both the learning and forgetting

effects are introduced into Bayesian inference by incorporating the causal inference. We

evaluate the estimation performance of the EBI through the learning task of a dynamically

changing Gaussian mixture model. In the evaluation, the EBI performance is compared with

those of the EMA and a sequential discounting expectation-maximization algorithm. The

EBI was shown to modify the trade-off observed in the EMA.

Introduction

The aim of Bayesian inference is to deduce the hidden cause behind observed data by retro-

spectively applying statistical inferences. The relationship between Bayesian inference and

brain function has attracted significant attention in recent years in the field of neuroscience

[1,2]. In Bayesian inference, the degree of confidence for each hypothesis is updated based on

a predefined model for each hypothesis by incorporating the current observational data. In

other words, Bayesian inference is a process of narrowing down hypotheses (causal candidates)

to one that best explains the observational data (the effects).

As an example, consider a situation in which one attempts to read another’s emotions.

Because one cannot directly view another’s emotions, they can only be inferred from external

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233559 May 22, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shinohara S, Manome N, Suzuki K,

Chung U-i, Takahashi T, Okamoto H, et al. (2020) A

new method of Bayesian causal inference in non-

stationary environments. PLoS ONE 15(5):

e0233559. https://doi.org/10.1371/journal.

pone.0233559

Editor: Enrico Scalas, University of Sussex,

UNITED KINGDOM

Received: December 11, 2019

Accepted: May 7, 2020

Published: May 22, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0233559

Copyright: © 2020 Shinohara et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available from the Dryad database (https://

datadryad.org/stash/share/

http://orcid.org/0000-0001-8442-836X
http://orcid.org/0000-0002-1188-6025
https://doi.org/10.1371/journal.pone.0233559
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233559&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1371/journal.pone.0233559
https://doi.org/10.1371/journal.pone.0233559
https://doi.org/10.1371/journal.pone.0233559
http://creativecommons.org/licenses/by/4.0/
https://datadryad.org/stash/share/X4r1OvPYvzE7Uc1drn5p-W6KMqDNzqrx8OJrHbITUvQ
https://datadryad.org/stash/share/X4r1OvPYvzE7Uc1drn5p-W6KMqDNzqrx8OJrHbITUvQ


cues (observation data), such as facial expressions and voice tones. The unknown emotions

correspond to the hypotheses in Bayesian inference; i.e., it is the inferred target. In addition, a

probability distribution representing what type of facial expression appears in what proportion

when the other has a specified emotion corresponds to a model for each hypothesis. For exam-

ple, if one has a model that “If a person is pleased, the person will smile, with an 80% chance,”

and if one observes that person to smile frequently, they will be more confident in the hypothe-

sis that “the person is pleased.” That is, by observing the data, the “effect” of a “smile,” the emo-

tion of “joy” is presumed as the cause of the “smile.”

Attention should be paid to the following two points. First, to infer someone’s emotions

more accurately, it is better to have as much observation data as possible, but only if it is

ensured that the emotion will not change during the estimation. Emotions change from

moment to moment. In such an unsteady situation, it is necessary to consider whether the

observation data are derived from the same emotion throughout the period being observed for

the estimation. This may be a problem with online clustering of non-stationary data. The sec-

ond point is that because a model for a stranger cannot be given in advance, it is necessary to

learn and construct it from observed data. If this model is wrong, one cannot obtain the cor-

rect results from observations to determine the emotion of the person.

Regarding the second point, there are methods such as the expectation-maximization (EM)

algorithm and the K-means algorithm that perform inference and learning simultaneously.

The EM algorithm is a method for obtaining the maximum likelihood estimate in a hidden-

variable model [3] and it is often used for mixture models or latent-topic models, such as latent

Dirichlet allocation [4]. K-means is the non-stochastic version of the EM algorithm [3].

In the previous example, hidden variables correspond to emotions such as joy or anger

because they are not observable directly. By using the EM algorithm, a person’s emotions can

be estimated from the observed data while creating a model of emotion, based on the observed

data. However, in the EM algorithm, it is necessary to provide all the observational data at one

time. In practice, there are cases where data processing must be performed sequentially after

each time the data are observed.

Various online algorithms have been proposed to deal with this situation [5–13]. For exam-

ple, Yamanishi et al. [7] proposed a sequential discounting expectation-maximization (SDEM)

algorithm that introduced the effect of forgetting to deal with unsteady situations where the

inferred target changed. The algorithm is used in the fields of anomaly detection and change

point detection. We also proposed EBI, incorporating causal reasoning into Bayesian infer-

ence, like an algorithm that performs inference and learning simultaneously [14].

In the field of cognitive psychology, experiments on causal induction have been performed

to identify how humans evaluate the strength of causal relations between two events [15–19].

In a regular conditional statement of the form “if p then q,” the degree of confidence is consid-

ered to be proportional to the conditional probability P(q|p), which is the probability of occur-

rence of q given the existence of p [20]. In contrast, in the case of a causal relation, it has been

experimentally demonstrated that humans have a strong sense of causal relation between a

cause c and an effect e when P(c|e) is high, as well as when P(e|c) is high. Specifically, the causal

intensity that people feel between c and e can be approximated by the geometric mean of P(e|c)
and P(c|e). This is called the “dual-factor heuristics” (DFH) model [19]. If the causal intensity

between c and e is denoted as DFH(e|c), then DFHðejcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðejcÞPðcjeÞ

p
6¼ PðejcÞ. Here, note

that DFH(c|e) = DFH(e|c) is valid. Such inference is called “symmetry inference.”

In this paper, we first describe the EBI, which replaces conditional inference in Bayesian

inference with causal inference. Second, we show that the learning effect and forgetting effect

are introduced into Bayesian inference by this replacement. Third, we evaluate the estimation
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performance of the EBI through the learning task of a dynamically changing Gaussian mixture

model. In the evaluation, the performance is compared with SDEM, an online EM algorithm.

Methods

Bayesian inference

In Bayesian inference, several hypotheses hk are first defined and models (probability distribu-

tions of data d for the hypotheses) are prepared in the form of conditional probabilities P(d|
hk). This conditional probability is called “likelihood” in the case that the data are fixed, and

this probability is considered to be a function of the hypothesis. In addition, the confidence P
(hk) for each hypothesis is prepared as a prior probability. That is, one must have some prior

estimate of the probability that hk is true.

Assuming that the confidence for hypothesis hk at time t is represented as Pt(hk) and data dt

were observed, the posterior probability is calculated as follows using Bayes’ theorem.

Ptðhkjd
tÞ ¼

PtðhkÞPðdtjhkÞ
PtðdtÞ

ð1Þ

where Pt(dt) is the marginal probability of dt at time t and is defined as follows.

PtðdtÞ ¼
X

k
PtðhkÞPðd

tjhkÞ ð2Þ

Next, the posterior probability that resulted from the analysis becomes the new prior esti-

mate in the update.

Ptþ1ðhkÞ  P
tðhkjd

tÞ ð3Þ

By combining formulas (1) and (3), we can get formula (4).

Ptþ1ðhkÞ  
PtðhkÞPðdtjhkÞ
PtðdtÞ

ð4Þ

Each time the data are observed, the inference progresses by updating the confidence for

each hypothesis using formula (4). Note that in this process, the confidence Pt(hk) for each

hypothesis changes over time, but the model P(d|hk) for each hypothesis does not change.

If we focus on the recursiveness of Pt(hk), formula (4) can be rewritten as

Ptþ1ðhkÞ  P
1ðhkÞ

Yt

i¼1

PðdijhkÞ
PiðdiÞ

ð5Þ

Here, the denominator Pi(di) is common to all hypotheses and can be considered as a con-

stant. Therefore, if normalization processing is omitted, formula (5) can be written as follows.

Ptþ1ðhkÞ  P
1ðhkÞ

Yt

i¼1

PðdijhkÞ ð6Þ

That is, the current confidence for a hypothesis is proportional to the prior probability mul-

tiplied by the likelihood of the data observed so far.

Extended Bayesian inference

We proposed the incorporation of such causal induction factor into Bayesian inference in the

EBI [14]. In the EBI, first, we defined C(e|c) as a new index representing the strength of the

PLOS ONE A new method of Bayesian causal inference in non-stationary environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0233559 May 22, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0233559


connection between two events c and e as follows.

CðejcÞ ¼ ½ð1 � aÞPðejcÞm þ aPðcjeÞm�1=m ð7Þ

Similarly, we defined C(c|e) as follows.

CðcjeÞ ¼ ½ð1 � aÞPðcjeÞm þ aPðejcÞm�1=m ð8Þ

These formulas represent the generalized weighted averages of P(e|c) and P(c|e). The gener-

alized weighted average of variables x and y is expressed by the following formula using param-

eters α andm.

mðx; yja;mÞ ¼ ½ð1 � aÞxm þ aym�1=m ð9Þ

Here, α takes values in the range 0�α�1 and denotes weighting the values of x and y, while

m takes values in the range −1�m�1 and denotes the manner of taking the mean. For

example, suppose α = 0.5 andm = 1, then μ(x,y|0.5,1) = 0.5x+0.5y, which represents the arith-

metic mean. Suppose α = 0.5 andm = -1, then μ(x,y|0.5,−1) = 2xy/(x+y) represents the har-

monic mean.

Suppose thatm = 0, then formula (9) is undefinable. If X�0, the approximation of exp(X)�

1+X is established by the Maclaurin expansion. When x is finite andm�0, the approximation

mlog(x)�0 holds true; thus, the approximation xm = exp(log(xm)) = exp(mlog(x))�1+mlog(x)
is derived. Similarly, when y is finite andm�0, ym�1+mlog(y) is derived. Therefore, formula

(9) can be rewritten as follows.

mðx; yja;mÞ ¼ ½ð1 � aÞxm þ aym�1=m

� ½ð1 � aÞð1þmlogxÞ þ að1þmlogyÞ�1=m

¼ ½1þmlogx1� a þmlogya�1=m

¼ ½1þmlogx1� aya�1=m

¼ ½1þ logðx1� ayaÞm�1=m

� ½expðlogðx1� ayaÞmÞ�1=m

¼ expðlogðx1� ayaÞÞ

¼ x1� aya

ð10Þ

Therefore, if we define the mean value μ(x,y|α,0) as the limit ofm!0, we get μ(x,y|α,0) =

x1−αyα, where if α = 0.5, it denotes the geometric mean mðx; yj0:5; 0Þ ¼ ffiffiffiffiffixyp . That is, ifm = 0

and α = 0.5, CðejcÞ ¼ DFHðejcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðejcÞPðcjeÞ

p
. In contrast, if α = 0, C(e|c) = P(e|c), irre-

spective of the value ofm. In other words, by introducing parametersm and α, the conditional

reasoning P(e|c) and causal reasoning DFH(e|c) can be seamlessly connected.

Here, we discuss the meaning ofm. For simplicity, let α = 0.5,x+y = 1 (0�x�1).

mðxj0:5;mÞ ¼ ½0:5xm þ 0:5ð1 � xÞm�1=m ð11Þ

Whenm = 1, μ(x|0.5,1) = 0.5, irrespective of the value of x. Whenm>1, μ(x|0.5,m) is a con-

vex function and the values at both ends, μ(0|0.5,m) and μ(1|0.5,m), approach 1 asm increases.

However, when .0<m<1., μ(x|0.5,m) becomes a concave function and asm approaches 0,

the values μ(0|0.5,m) and μ(1|0.5,m) at both ends approach 0.
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Whenm<0, the values at both ends cannot be defined, but as x approaches 0 or 1, μ(x|0.5,

m) approaches 0. In other words, in the range ofm�0, if either x or y approaches 0, their mean

also approaches 0.

Next, using Bayes’ theorem, formulas (7) and (8) can be transformed as follows [14]:

CðejcÞ ¼ ½ð1 � aÞPðejcÞm þ aPðcjeÞm�1=m

¼ ð1 � aÞ
PðcÞPðejcÞ
PðcÞ

� �m

þ a
PðeÞPðcjeÞ
PðeÞ

� �m� �1=m

¼ ð1 � aÞ
1

PðcÞ

� �m

þ a
1

PðeÞ

� �m� �1=m

PðcÞPðejcÞ

¼ ½ð1 � aÞPðcÞ� m þ aPðeÞ� m�1=mPðcÞPðejcÞ

¼
PðcÞPðejcÞ

½ð1 � aÞðPðcÞÞ� m þ aðPðeÞÞ� m�� 1=m

ð12Þ

CðcjeÞ ¼ ½ð1 � aÞPðcjeÞm þ aPðejcÞm�1=m

¼
PðcÞPðejcÞ

½ð1 � aÞPðeÞ� m þ aPðcÞ� m�� 1=m

ð13Þ

Note that P(c)P(e|c) = P(e)P(c|e) = P(c,e).
Here, if we describe formulas (12) and (13) recursively, and replace c and e with hk and dt,

respectively, we can get the next formulas.

Ctþ1ðdtjhkÞ  
CtðhkÞCtðdtjhkÞ

½ð1 � aÞCtðhkÞ
� m
þ aCtðdtÞ� m�� 1=m ð14Þ

Ctþ1ðhkjd
tÞ  

CtðhkÞCtðdtjhkÞ
½ð1 � aÞCtðdtÞ� m þ aCtðhkÞ

� m
�
� 1=m ð15Þ

CtðdtÞ ¼
X

k
CtðhkÞC

tðdtjhkÞ ð16Þ

Formula (15) can be rewritten as follows by using a Bayesian update.

Ctþ1ðhkÞ  
CtðhkÞCtðdtjhkÞ

½ð1 � aÞCtðdtÞ� m þ aCtðhkÞ
� m
�
� 1=m ð17Þ

In formula (17), a description of the normalization process for setting the confidence as a

probability is omitted.

Assuming α = 0 in formula (17), the same form as formula (4) for Bayesian inference is

obtained.

Ctþ1ðhkÞ  
CtðhkÞCtðdtjhkÞ
CtðdtÞ

ð18Þ

If α = 0, Ct(dt|hk) does not change by formula (14), as shown below.

Ctþ1ðdtjhkÞ  C
tðdtjhkÞ ð19Þ

In other words, if α = 0, then formula (14) substantially disappears and the EBI becomes

the same as Bayesian inference. In contrast, in the case of α> 0, the likelihood is modified by
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formula (14). In this study, we only update the likelihood of the hypothesis with the highest

confidence at that time instead of updating the likelihood of all hypotheses. That is, the follow-

ing formula is used instead of formula (14).

Ctþ1ðdtjhkÞ  
CtðhkÞCtðdtjhkÞ

½ð1 � aÞCtðhkÞ
� m
þ aCtðdtÞ� m�� 1=m if hk ¼ arg maxhiC

tðhiÞ

CtðdtjhkÞ otherwise
ð20Þ

8
><

>:

Hereafter, the hypothesis with the highest confidence at time t is denoted by htmax. If there

are multiple hypotheses with the highest confidence, one of them is selected at random.

In the following, let us analyze the case ofm = 0, that is, the geometric mean case. In the

case ofm = 0, formula (17) can be transformed as follows.

Ctþ1ðhkÞ  
CtðhkÞCtðdtjhkÞ
CtðdtÞ1� aCtðhkÞ

a
¼
CtðhkÞ
CtðdtÞ

� �1� a

CtðdtjhkÞ ð21Þ

If we focus on the recursiveness of Ct(hk), formula (21) can be rewritten as follows.

Ctþ1ðhkÞ  ½C
1ðhkÞ�

ð1� aÞt
Yt

i¼1

½CiðdijhkÞ�
ð1� aÞt� i

½CiðdiÞ�ð1� aÞ
tþ1� i ð22Þ

Here, the denominator Ci(di) is common to all hypotheses and can be considered as a con-

stant. Therefore, if the normalization processing is omitted, formula (20) can be written as fol-

lows.

Ctþ1ðhkÞ  ½C
1ðhkÞ�

ð1� aÞt
Yt

i¼1

½CiðdijhkÞ�
ð1� aÞt� i

ð23Þ

This can be understood as indication that the current confidence for a hypothesis is propor-

tional to its prior probability multiplied by the likelihood designed to weaken the weight of the

distant past. In the case of α = 0, that is, Bayesian inference, Ct+1(hk) C1(hk)C1(d1|hk)C2(d2|

hk)� � �Ct(dt|hk). This means that the current likelihood and the past likelihood are weighted

equally.

However, in the case of α = 1, Ct+1(hk) Ct(dt|hk). It means that the confidence is calculated

using only the current likelihood. Thus, it can be said that the EBI introduces the effect of for-

getting into Bayesian inference when considering past history.

In the case ofm = 0, with respect to htmax, formula (20) can be written as follows.

Ctþ1ðdtjhtmaxÞ  
CtðhtmaxÞC

tðdtjhtmaxÞ

CtðhtmaxÞ
1� aCtðdtÞa

¼
CtðhtmaxÞ

CtðdtÞ

� �a

CtðdtjhtmaxÞ ð24Þ

In the case of CtðhtmaxÞ > C
tðdtÞ, the likelihood becomes larger, and in the case of

CtðhtmaxÞ < C
tðdtÞ, the likelihood becomes smaller. This means that the model is corrected

based on the observed data. Thus, it can be said that the EBI introduces the effect of learning

into the Bayesian inference.

Testing a normal distribution model

Mean value estimation using normal distribution. In this study, we deal with one-

dimensional continuous probability distribution, such as one-dimensional normal distribution

as a concrete model for the hypothesis. The model of hypothesis k at time t is denoted by

FðdjytkÞ. Here, y
t
k represents the parameter of the model. In the case of normal distribution,
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FðdjytkÞ ¼ Nðdjy
t
kÞ; y

t
k ¼ ðm

t
k;S

t
kÞ, where μ and S represent the mean and variance, respec-

tively. This section describes the mean value estimation. The variance estimation will be

described in the next section. When a normal distribution is used as a model, Ct(d|hk) and

Ct(d) are probability densities, while Ct(hk) is a probability because the number of hypotheses

is discrete and finite. Thus, when calculating formulas (23) and (24), a positive number Δ is

introduced and approximately calculated as follows.

Ctþ1ðhkÞ  ½C
tðhkÞ�

1� a
DFðdtjytkÞ ð25Þ

Ctþ1ðdtjhtmaxÞ  
1

D

CtðhtmaxÞX

k
CtðhkÞDFðd

tjy
t
kÞ

" #a

DFðdtjytmaxÞ

¼
1

D
a

CtðhtmaxÞX

k
CtðhkÞFðd

tjy
t
kÞ

" #a

FðdtjytmaxÞ

ð26Þ

Here, y
t
max represents the parameter of the distribution that is the model for htmax.

In formula (25), the term Δ is common to all hypotheses and can be canceled by normaliza-

tion. Thus, if normalization processing is omitted, it can be expressed as follows.

Ctþ1ðhkÞ  ½C
tðhkÞ�

1� aFðdtjytkÞ ð27Þ

In formula (27), if the confidence for a hypothesis becomes zero once, it remains zero there-

after. To prevent this, normalization processing (smoothing) is performed by adding a small

positive constant ε to the confidence of each hypothesis obtained by formula (27).

Ctþ1ðhkÞ  
Ctþ1ðhkÞ þ ε

XK

j¼1
½Ctþ1ðhjÞ þ ε�

¼
Ctþ1ðhkÞ þ ε

Kεþ
XK

j¼1
Ctþ1ðhjÞ

ð28Þ

Here, K represents the total number of hypotheses. In this study, we set ε = 10−10.

Having observed the data dt, the likelihood is changed to Ctþ1ðdtjhtmaxÞ by formula (26).

Concomitantly, the parameter of the model for the hypothesis is modified from y
t
max to y

tþ1

max so

that the following equation is satisfied.

Ctþ1ðdtjhtmaxÞ ¼ Fðd
tjy
tþ1

maxÞ ð29Þ

If F is a normal distribution, Eq (29) can be described as follows.

Ctþ1ðdtjhtmaxÞ ¼ Fðd
tjy
tþ1

maxÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pStþ1

max

q exp �
ðdt � mtþ1

maxÞ
2

2Stþ1

max

� �

ð30Þ

Updating the variance from Stmax to Stþ1

max is described in the next section.

Solving formula (30) for mtþ1
max leads to the following two solutions.

m1 ¼ dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2St log½Ctþ1ðdtjhtmaxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pStþ1

max

q

�

r

m2 ¼ dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2St log½Ctþ1ðdtjhtmaxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pStþ1

max

q

�

r ð31Þ

mtmax reflects the past observed data. We determine mtþ1
max as the one closer to mtmax, among the
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two solutions μ1 and μ2 to account for the past data as much as possible.

mtþ1

max ¼
m1 if jm1 � m

t
maxj � jm2 � m

t
maxj

m2 otherwise
ð32Þ

(

However, to solve formula (29), Ctþ1ðdtjhtmaxÞ needs to be within the range of

0 < Ctþ1ðdtjhtmaxÞ �
1ffiffiffiffiffiffiffiffiffiffi

2pStþ1
max

p . Thus, we set the following restrictions after calculating

Ctþ1ðdtjhtmaxÞ using formula (26).

Ctþ1ðdtjhtmaxÞ  min maxðCtþ1ðdtjhtmaxÞ; εÞ;
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pStþ1

max

q

0

B
@

1

C
A ð33Þ

where max(x,y) represents the larger of x and y. Conversely, min(x,y) represents the smaller of

x and y. We set ε = 10−10.

If K = 1, there is no other hypothesis. Therefore, the only hypothesis always becomes htmax

and the value of confidence is always 1. Consider the situation CtðhtmaxÞ � 1, including the case

of K = 1. In this case, the confidence of hypotheses other than htmax becomes almost 0 by the

constraint
X

k
CtðhkÞ ¼ 1; thus, CtðdtÞ ¼

X

k
CtðhkÞC

tðdtjhkÞ � CtðdtjhtmaxÞ is derived from

formula (16). Therefore, formula (26) can be transformed as follows.

Ctþ1ðdtjhtmaxÞ  
1

D
a

CtðhtmaxÞX

k
CtðhkÞNðd

tjmtk;S
t
kÞ

" #a

Nðdtjmtmax;S
t
maxÞ

�
1

D

� �a

½CtðdtjhtmaxÞ�
1� a

ð34Þ

If formula (34) is denoted by xtþ1 ¼ f ðxtÞ ¼ 1

D

� �a
ðxtÞ1� a, f(xt) becomes a concave function.

Solving xt = f(xt) results in xt ¼ 0; 1

D
. The fixed point ðxt; f ðxtÞÞ ¼ 1

D
; 1

D

� �
is a stable point

because xt�f(xt) when xt > 1

D
and xt�f(xt) when xt < 1

D
. In this study, we set D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pStmax

p
. In

this case, Ctþ1ðdtjhtmaxÞ approaches the vertex of the normal distribution whenever data dt are

observed.

As shown in formula (29), mtþ1
max is determined to satisfy the condition

Ctþ1ðdtjhtmaxÞ ¼ Nðd
tjmtþ1

max;S
tþ1

maxÞ. This means that mtþ1
max approaches the observation data dt.

Through the processing described above, the confidences for each hypothesis and the model

for the hypothesis with maximum confidence are corrected whenever the data are observed.

We will hereinafter refer to the latter process of modifying the model for htmax as inverse

Bayesian inference [21–24]. If the former process of updating the confidences for hypotheses

is referred to as inference, inverse Bayesian inference can be called “learning” because it forms

a model for a hypothetical instead of an inference. Thus, although the two α s in formulas (26)

and (27) are denoted by the same α, they can be called the “learning rate” and “forgetting rate,”

respectively. We can also set the “learning rate” and “forgetting rate” as two independent

parameters. However, when dealing with temporal alteration, like in this study, good perfor-

mance is achieved when the two parameters have almost identical values. On the contrary, it is

preferable to set the parameters separately in spatial clustering.

Variance estimation using gamma distribution. Consider a random variable D that is

the sum of n squares of data sampled from a normal distribution N(0,S) with mean 0 and
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variance S.

di � Nð0;SÞ; D ¼
Xn

i¼1

ðdiÞ2 ð35Þ

In this case, D follows the gamma distribution with shape parameter S = n/2 and scale

parameter λ = 1/(2S), as shown below.

f ðDjl; SÞ ¼
l
S

GðSÞ
DS� 1expð� lDÞ ¼

1

Gðn=2Þð2SÞ
n=2
Dn=2� 1expð� D=2SÞ ð36Þ

The mean of this distribution is S/λ = nS. We set n = 20, that is S = 10. We use the gamma

distribution as a model for estimating variance from observed data dt.
First, the following Dtk is calculated using the mean estimated value mtk obtained in the previ-

ous section. This is used as input data for variance estimation instead of the observation data

dt.

Tkðnk%nþ 1Þ ¼ t; nk  nk þ 1; if htk ¼ h
t
max

Dtk ¼
Xn

i¼1

ðdTkðiÞ � mTkðiÞk Þ
2 ð37Þ

Here, nk represents the number of times that hypothesis k has been the hypothesis with the

highest confidence. The initial value of nk is 0. x% y represents the remainder when integer x
is divided by integer y.

The model of hypothesis k at time t is FðDjytkÞ ¼ f ðDjy
t
kÞ; y

t
k ¼ ðl

t
k; SÞ. In this case, for-

mula (29) is rewritten as

Ctþ1ðDtmaxjh
t
maxÞ ¼ FðD

t
maxjy

tþ1

maxÞ ¼ f ðD
t
maxjl

tþ1

max; SÞ ¼
ðl
tþ1

maxÞ
S

GðSÞ
ðDtmaxÞ

S� 1expð� ltþ1

maxD
t
maxÞ ð38Þ

With Y
tþ1

max ¼ � l
tþ1

maxD
t
max=S; Z

tþ1 ¼ � ðDtmaxC
tþ1ðDtmaxjh

t
maxÞGðSÞÞ

1=S
=S, this equation can be

rewritten as

Ztþ1 ¼ Y
tþ1

max expðY
tþ1

maxÞ ð39Þ

For this equation to have a solution with respect toY
tþ1

max in the range ofY
tþ1

max < 0, −1/e�Zt+1<0

must be satisfied. Therefore, the following restrictions are provided.

Ztþ1  maxðminðZtþ1; � εÞ; � 1=eÞ ð40Þ

We set ε = 10−10.

When formula (39) is solved forY
tþ1

max, the following two solutions are obtained.

Y1 ¼W� 1ðZtþ1Þ

Y2 ¼W0ðZtþ1Þ
ð41Þ

Here,W−1 andW0 are two Lambert W functions that satisfy Z = xex,x =W(Z).

Similar to the case of estimating the mean value, Y
tþ1

max is determined as

Y
tþ1

max ¼
Y1 if jY1 � Y

t
maxj � jY2 � Y

t
maxj

Y2 otherwise
ð42Þ

(
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Because Y
tþ1

max ¼ � l
tþ1

maxD
t
max=S, the scale parameter l

tþ1

max can be calculated as

l
tþ1

max ¼ �
SYtþ1

max

Dtmax

ð43Þ

Further, because l
tþ1

max ¼ 1=ð2Stþ1

maxÞ, the variance estimate Stþ1

max is calculated as

Stþ1

max ¼
1

2l
tþ1

max

ð44Þ

We use Stþ1

max as the variance estimate for the next time in generation distribution. That is,

y
tþ1

max ¼ ðm
tþ1
max;S

tþ1

maxÞ.

Regarding the value of Δ, we consider the gamma distribution in which the current input

value Dtmax is the mean value S/λ, and define the output value for the input value Dtmax as 1/Δ,

based on the same arguments as in the case of normal distribution.

D ¼
1

f ðDtmaxjS=Dtmax; SÞ
¼
GðSÞDtmaxexpðSÞ

SS
ð45Þ

The group of processes described in this section and the previous section is summarized as

an algorithm below.

1. Set values for parameters α,m, ε, K.

2. Establish initial values for y
1

k ¼ ðm
1
k;S

1

kÞ;C
1ðhkÞ ðk ¼ 1; 2; � � �KÞ.

3. Repeat the following whenever data dt are observed.

• Update the confidence Ct+1(hk) of each hypothesis using formulas (27) and (28).

• Find the hypothesis htmax with the maximum confidence.

• Create the input data Dtmax for variance calculation using formula (37).

• Update the likelihood Ctþ1ðDtmaxjh
t
maxÞ of the hypothesis htmax for the input data Dtmax using

formula (26).

• Correct the variance Stþ1

max of the model for the hypothesis htmax using formulas (41), (42),

(43), and (44) to match the new likelihood Ctþ1ðDtmaxjh
t
maxÞ.

• Update the likelihood Ctþ1ðdtjhtmaxÞ of the hypothesis htmax for the observed data dt using

formula (26).

• Correct the mean mtþ1
max of the model for the hypothesis htmax using formulas (31) and (32) to

match the new likelihood Ctþ1ðdtjhtmaxÞ.

• y
tþ1

max ¼ ðm
tþ1
max;S

tþ1

maxÞ is set as the new parameter of the model for the hypothesis htmax.

Sequential Discounting Expectation-Maximization Algorithm (SDEM)

This section describes SDEM, an online EM algorithm proposed by Yamanishi et al. [7]. In

SDEM, the E and M steps are executed once for each data observed sequentially. First, in step

E, the responsibility is calculated. The responsibility for the normal distribution k of the data dt
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is calculated as follows.

qtk ¼
ptkNðd

tjmtk;S
t
kÞXK

j¼1
ptjNðd

tjmtj ;S
t
jÞ

ð46Þ

Here,
XK

k¼1
ptk ¼ 1 is assumed. πk is called the “mixing weights” and represents the weight

of each normal distribution.

Next, in the M step, the mixing weights, means, and variances of each normal distribution

are updated. However, weighting is performed to weaken the influence of older observation

data by introducing the discounting rate β(0<β<1).

~ptþ1

k  ð1 � bÞ~p
t
k þ bq

t
k ¼ b

Xt

i¼1

ð1 � bÞ
t� iqik ð47Þ

~mtþ1

k  ð1 � bÞ~m
t
k þ bq

t
kd
t ¼ b

Xt

i¼1

ð1 � bÞ
t� iqtkd

i ð48Þ

~Stþ1

k  ð1 � bÞ
~Stk þ bq

t
kðd

t � mtkÞðd
t � mtkÞ ¼ b

Xt

i¼1

ð1 � bÞ
t� iqtkðd

i � mtkÞðd
i � mtkÞ ð49Þ

mtþ1

k  
~mtþ1
k

~ptþ1
k

ð50Þ

Stþ1

k  
~Stþ1
k

~ptþ1
k

ð51Þ

Regarding ~ptþ1
k , smoothing is performed to prevent it from becoming 0 and normalize, sim-

ilar to the EBI.

ptþ1

k  
~ptþ1
k þ g

Kgþ
XK

j¼1
~ptþ1

j

ð52Þ

We set γ = 0.001 for optimal performance.

In the case of K = 1, qt
1

and ~pt
1

are always 1. At this time, formula (50) shows that the new

estimated value is obtained as a convex combination of the current estimated value and the

current observed data.

mtþ1

k  ð1 � bÞm
t
k þ bd

t ð53Þ

This represents the EMA.

By setting ptþ1
k ¼ P

tþ1ðhkÞ; qik ¼ P
iðhkjdiÞ in formulas (47) and (52), Pt+1(hk) can be

described approximately as follows.

Ptþ1ðhkÞ  b
Xt

i¼1

ð1 � bÞ
t� iPiðhkjd

iÞ /
Xt

i¼1

ð1 � bÞ
t� iPiðhkjd

iÞ ð54Þ

Taking the logarithm of both sides of formula (23) in the EBI, the following transformation
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can be made.

logðCtþ1ðhkÞÞ  
Xt

i¼1

ð1 � aÞ
t� i logðCiðdijhkÞÞ þ ð1 � aÞ

t logðC1ðhkÞÞ ð55Þ

Comparing formula (55) with formula (54), the EBI differs in that it takes a logarithm and

uses likelihood instead of posterior probability.

The group of processes described above is summarized as an algorithm below.

1. Set values for parameters β, γ, K.

2. Establish initial values for the variables y
1

k ¼ ðm
1
k;S

1

kÞ; p
1
k ðk ¼ 1; 2; � � �KÞ.

3. Repeat the following whenever data dt are observed.

• E step: Calculate the responsibility qtk for each normal distribution k of the observed data dt

using formula (46).

• M step: Update the mixing weights ptþ1
k using formulas (47) and (52).

• M step: Correct the mean mtþ1
k and variance Stþ1

k of the normal distribution using formulas

(48), (49), (50), and (51).

• y
tþ1

k ¼ ðm
tþ1
k ;Stþ1

k Þ is set as the new parameter of the model for each hypothesis htk.

Simulation

To investigate the behavior of EBI, a simulation was performed. In the simulation, one random

number dt is generated at each time from a certain normal distribution (the “generation distri-

bution”). Then, the EBI estimates the generation distribution by observing dt.
In this study, we deal with a task in which the mean and variance of the generation distribu-

tion fluctuate randomly at each regular interval. Specifically, every 1000 steps, a random num-

ber from a uniform distribution of the range [0, 5] is generated, and the number is set as a new

mean of distribution. Similarly, a random number from a uniform distribution of the range [0,

0.1] is generated, and the number is set as a new variance of the distribution.

mtþ1

correct ¼
5� rndt if t%1000 ¼ 0

mtcorrect otherwise
ð56Þ

(

Stþ1

correct ¼
0:1� rndt if t%1000 ¼ 0

Stcorrect otherwise
ð57Þ

(

Here, mtcorrect and Stcorrect represent the mean and variance of the normal distribution used as

the generation distribution at time t, that is, the correct values in this task.

rndt represents a random number generated from a continuous uniform distribution of the

range [0, 1] at time t. Fig 1 shows an example of time evolution of observation data dt in this

task.

In the simulation, estimations were performed via the EBI, SDEM, and EMA for compari-

son. The parameter estimated by the EBI at time t is that of the model for htmax, that is

y
t
max ¼ ðm

t
max;S

t
maxÞ. The parameter estimated by SDEM is that of the distribution for which the
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observed data dt have the highest responsibility among the normal distributions included in

the Gaussian mixture distribution, that is, y
t
mt ¼ ðm

t
mt ;S

t
mtÞ; m

t ¼ arg maxkqtk.
The mean mtEMA and variance StEMA for the EMA are updated as follows.

mtþ1

EMA  ð1 � bÞm
t
EMA þ bd

t ð58Þ

Stþ1

EMA  ð1 � bÞS
t
EMA þ bðd

t � mtEMAÞðd
t � mtEMAÞ ð59Þ

Here, β (0<β<1) represents a discount rate.

Results

Fig 2(A) shows an example of the result by EBI. In this simulation, the initial values of the

mean and variance of the model for each hypothesis were set to m1
k ¼ 2:5 and S1

k ¼ 0:05,

respectively.

Fig 2(A) shows the time evolution of the correct value mtcorrect and that of the estimated result

by the EBI, set to K = 10. Fig 2(B) shows the result obtained by the EBI set to K = 1 (i.e., the

result for inverse Bayesian inference). Fig 2(C) shows the estimation results obtained by three

types of EMA with different discounting rates β. It is evident that for larger discounting rates,

the responses to sudden changes are quicker, as expected, but the fluctuations are increased

during the stable period.

In the case of EBI, initially, it takes time to follow up when the correct value suddenly

changes. However, there are cases where changes can be handled instantly over time. In con-

trast, in the cases of inverse Bayesian inference and EMA, the follow-up performances are not

improved over time at all.

Fig 3(A) shows the time evolution of the means mtk of the models for ten hypotheses used in

the simulation of Fig 2(A). Fig 3(B) shows the time evolution of the hypothesis htmax with the

maximum confidence. Initially, all hypothesis models are the same, but various hypothesis

models are formed by learning over time. Additionally, it is evident that it is possible to follow

quickly by appropriately switching the hypotheses. When the EBI is set to K = 1 and EMA,

because the hypotheses cannot be switched, such quick tracking cannot be achieved.

Fig 1. Time progress of observed values.

https://doi.org/10.1371/journal.pone.0233559.g001
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Fig 2. Time progress of the estimated values for the mean of Gaussian. The figures include the correct mean. (a) Estimated values by EBI. (α,m,K) = (0.018, 0.0, 10).

(b) Estimated values by inverse Bayesian inference. (α,m,K) = (0.018, 0.0, 1). (c) Estimated values by EMA. β = 0.009, 0.012, 0.15.

https://doi.org/10.1371/journal.pone.0233559.g002
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To evaluate the estimation performance of each method, the root-mean-square error

(RMSE) between the estimated value and correct value is calculated as follows.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTþj� 1

t¼j
ðm̂t � mtcorrectÞ

2

T

v
u
u
t

ð60Þ

Here, m̂t and mtcorrect represent the estimated value and correct value at time t, respectively. T
represents a period for evaluation.

Each interval of 1000 steps, from a change in the generation distribution to the next change,

is divided into two halves. We use the RMSE of the first half as a measure of the inability to fol-

low rapid changes and that of the second half as a measure of the inaccuracy of the estimation

in the stable period.

Fig 3. Internal state of extended Bayesian inference. (a) Time progress of the mean of normal distribution for each hypothesis. (b) Time progress of the hypothesis

with the greatest degree of confidence.

https://doi.org/10.1371/journal.pone.0233559.g003
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Fig 4 shows the relationship between the followability errors and estimation accuracy errors

for each method. Note that the x-axis and y-axis in this figure indicate the RMSE; therefore,

the closer to the origin, the higher the estimation performance. In Fig 4(A) and 4(B), the simu-

lations for each method were performed in the cases of K = 1, K = 2, K = 5, and K = 10. Each

figure also shows the EMA results as a baseline. The simulations were performed by changing

the discounting rate of each method from 0.009 to 0.15 in increments of 0.003. These values

are obtained by dividing the interval from time 0 to 10000 into intervals of every 1000 steps,

calculating the followability errors and accuracy errors in each interval, and averaging them.

The values shown in the figure are the average values of 100 trials with different random

seeds. This also applies to Fig 5. The initial values m1
k of the center of each component (normal

distribution) were set to random numbers generated from a uniform distribution of the range

[0, 5] in both methods. Similarly, the initial values S1

k of the variance of each normal distribu-

tion were set to random numbers generated from a uniform distribution of the range [0, 0.1]

in both methods.

For the EMA, it is evident that there is a trade-off, i.e., the accuracy decreases as followabil-

ity increases. The EBI can modify the trade-off observed in the EMA. In the case of K = 1, that

is, even if only the inverse Bayesian inference is used, the trade-off can be improved, but the

performance is improved as the number of components is increased. SDEM can also modify

the trade-off but there is no noticeable difference depending on the number of components.

Fig 5 shows the time evolution of the mean estimated value of each method where the num-

ber of components and discounting rate are selected to achieve the best performance. The cor-

rect value is also shown in the figure.

Fig 6 shows the time evolution of the estimated value of variance for each method. The fig-

ure also shows the correct value. In the EMA and SDEM, the bursts of estimates at the points

where the variances change can be observed.

Fig 4. Relationship between the followability errors and estimation accuracy errors. (a) EBI. (b) SDEM.

https://doi.org/10.1371/journal.pone.0233559.g004
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In the results shown above, the EBI simulations were performed for onlym = 0. The results

of EBI whenm is changed are shown below. The values of α andm were shifted, with incre-

ments of 0.05 and 0.1 in the interval [0.05, 0.5] and [–2, 2], respectively, and simulations were

Fig 5. Time progress of the estimated values for the mean of Gaussian. The figure includes the correct mean. (a) Estimated values by EBI. (α,m,K) = (0.03,0.0,10). (b)

Estimated values by EMA. β = 0.03. (c) Estimated values by SDEM. (β,K) = (0.03,10).

https://doi.org/10.1371/journal.pone.0233559.g005
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Fig 6. Time progress for the estimated values of the variance of the Gaussian. The figure includes the correct variance. (a) Estimated values by EBI. (α,m,K) =

(0.03,0.0,10). (b) Estimated values by EMA. β = 0.03. (c) Estimated values by SDEM. (β,K) = (0.03,10).

https://doi.org/10.1371/journal.pone.0233559.g006
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performed to obtain the total RMSE calculated from the entire interval for each pair of param-

eters. Fig 7 shows the total RMSE for each pair of parameter values. In most α regions, the

RMSE is low whenm� 0. Whenm exceeds 0, the RMSE increases.

Discussion and conclusions

In general, if a method such as the EMA with the discounting rate is used to improve the fol-

lowability to a sudden change, it is necessary to increase the discounting rate. This means that

in the estimation, the recent data are weighted more extensively. That is, as long as a constant

discount rate is used, a trade-off exists; the followability is improved by when the discounting

rate is high, but the accuracy is reduced.

In this study, we simulated the task of estimating the distributions for data generation in a

non-stationary situation wherein the distributions change suddenly. Consequently, the EBI

proposed in this study successfully modified the trade-off observed in the EMA.

In addition, we compared the estimation performance of EBI with that of SDEM. The EBI

showed higher estimation performance.

However, as shown in Fig 7,mmust be 0 or less to achieve high performance. In the litera-

ture [14], we derived α andm that best fit the causal strength felt by humans from formula (7)

and the eight types of experimental data shown in the literature [15–19]. Accordingly, the val-

ues of α were in the range of 0.25 to 0.6. In other words, they were far from α = 0, which

implies conditional probability. In contrast, the values ofm were interestingly in the range of

-2.0 to -0.25, that is, were negative in all eight experiments [14]. We did not determine the

cause of these negative values in this study. This is a question for further study.

As shown in Fig 6, some bursts were observed in the variance estimates by the EMA and

SDEM. The changes in the mean and variance occurred simultaneously in this simulation.

Therefore, the delay in following the changes in the mean may cause confusions between the

changes in the mean and those in the variance.

In the EBI, various models for the hypotheses are formed by inverse Bayesian inference,

even if appropriate models are not given beforehand. After some models are accumulated,

rough inference is performed by switching them and fine adjustment is performed by inverse

Bayesian inference, thereby achieving both followability and accuracy. The situations where

both learning and inference are performed also exist in daily life. For example, in estimating

the emotions of others, one cannot have a complete model for someone else’s emotions

because “you” are not “them.” Assume that someone’s facial expression suddenly changed

when you estimated that the person feels happy based on your currently incomplete model.

Further, assume that it was the first facial expression you saw. At this time, it is possible to

think that the person’s emotion has changed from joy to another emotion. However, it is also

possible to consider that it is a new facial expression representing joy.

It is more difficult to detect a sign of change immediately at a time when a change is occur-

ring than to detect a change point by looking back at the past after a change has occurred and

persisted. This is because while detecting a change, the decision must be made in a situation

where there is no model regarding the new stage after the change. That is, in the example

above, when the next facial expression model is not completely created. Under such circum-

stances, while efficiently learning a model from the observed data, there is a need for a tech-

nique for making an appropriate decision using the model. In the future, such techniques can

be expected to be applied for, for example, the detection of the signs of a disease.

The EBI can be regarded as introducing the effects of forgetting and learning into the

Bayesian inference due to the action of exponential smoothing using α. With the introduction

of discounting rate α, the influence of much older data is weakened. Simultaneously, α
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Fig 7. RMSE for each pair of parameter values. (a) In all cases. (b) In the case of α = 0.25.

https://doi.org/10.1371/journal.pone.0233559.g007
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represents the learning rate and the learning process modifies the model for the hypothesis

based on the observed data. In this framework, even with the same hypothesis, the content

(model) changes over time; therefore, it is not possible to simply accumulate experiences from

the past. For this reason, it is reasonable to include the effect of forgetting.

The EBI framework is very similar to the SDEM framework proposed by Yamanishi et al

[7]. However, there are some differences. For example, when the history is considered for

updating the weight of the Gaussian mixture distribution, there is a difference between the

consideration of posterior probability or likelihood, and whether they are accumulated as

addition or multiplication. In the future, we would like to clarify the difference in effectiveness

due to these differences through the simulation of various tasks.

As limitations, in this simulation, only one-dimensional distribution was handled. In future

work, we will extend our model to multidimensional distribution.
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