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Abstract

Diabetic retinopathy (DR) is a serious retinal disease and is considered as a leading cause

of blindness in the world. Ophthalmologists use optical coherence tomography (OCT) and

fundus photography for the purpose of assessing the retinal thickness, and structure, in

addition to detecting edema, hemorrhage, and scars. Deep learning models are mainly

used to analyze OCT or fundus images, extract unique features for each stage of DR and

therefore classify images and stage the disease. Throughout this paper, a deep Convolu-

tional Neural Network (CNN) with 18 convolutional layers and 3 fully connected layers is pro-

posed to analyze fundus images and automatically distinguish between controls (i.e. no

DR), moderate DR (i.e. a combination of mild and moderate Non Proliferative DR (NPDR))

and severe DR (i.e. a group of severe NPDR, and Proliferative DR (PDR)) with a validation

accuracy of 88%-89%, a sensitivity of 87%-89%, a specificity of 94%-95%, and a Quadratic

Weighted Kappa Score of 0.91–0.92 when both 5-fold, and 10-fold cross validation methods

were used respectively. A prior pre-processing stage was deployed where image resizing

and a class-specific data augmentation were used. The proposed approach is considerably

accurate in objectively diagnosing and grading diabetic retinopathy, which obviates the

need for a retina specialist and expands access to retinal care. This technology enables

both early diagnosis and objective tracking of disease progression which may help optimize

medical therapy to minimize vision loss.

I. Introduction

Convolutional neural networks (CNNs) have been recently utilized for diagnosing diabetic ret-

inopathy (DR) through analyzing fundus images and have proven their superiority in detec-

tion and classification tasks [1] [2]. For diabetes, DR is a major complication that may

eventually result in vision loss as well as blindness. It is caused by the damage occurring to the

retina blood vessels as increased levels of blood sugar block minute blood vessels that supply

blood to the retina. Almost 171 million individuals worldwide were diagnosed with diabetes in

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0233514 June 22, 2020 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shaban M, Ogur Z, Mahmoud A, Switala

A, Shalaby A, Abu Khalifeh H, et al. (2020) A

convolutional neural network for the screening and

staging of diabetic retinopathy. PLoS ONE 15(6):

e0233514. https://doi.org/10.1371/journal.

pone.0233514

Editor: Ulas Bagci, University of Central Florida

(UCF), UNITED STATES

Received: December 2, 2019

Accepted: May 6, 2020

Published: June 22, 2020

Copyright: © 2020 Shaban et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We have trained our

proposed model on the public Kaggle dataset with

a large size of 3,648 images. This dataset was

considered in the Asia Pacific Tele-Ophthalmology

Society (APTOS) 2019 blindness detection

competition (https://www.kaggle.com/c/

aptos2019-blindness-detection). The provided link

is related to a general page for APTOS 2019

competition which the dataset belongs to. Readers

are advised to create an account on Kaggle and

then access the "Data" tab (https://www.kaggle.

com/c/aptos2019-blindness-detection/data). The

http://orcid.org/0000-0002-7144-611X
http://orcid.org/0000-0001-7264-1323
https://doi.org/10.1371/journal.pone.0233514
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0233514&domain=pdf&date_stamp=2020-06-22
https://doi.org/10.1371/journal.pone.0233514
https://doi.org/10.1371/journal.pone.0233514
http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection/data
https://www.kaggle.com/c/aptos2019-blindness-detection/data


2000, and it is expected that this number will rise to 366 million by 2030 [3]. DR may have dif-

ferent abnormal effects on the retina e.g., microaneurysms, hard and soft exudates, hemor-

rhages, neovascularization and macular edema. Furthermore, DR can be classified into five

stages, which are mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, prolifer-

ative DR (PDR) and macular edema (ME) [3]. Mild NPDR is the disease earliest stage that

may advance to proliferative diabetic retinopathy where the vision loss occurs and the eye is

filled with interstitial fluids. At earlier stages, patients are often asymptotic. However, with the

disease progression, symptoms can include blurred vision, blind spots, distorted central vision,

large floaters and sometimes sudden loss of vision. Hence, it is critical to detect the disease at

earlier stages and provide an accurate diagnosis and staging in order to possibly reduce the dis-

ease complications and the risk of the vision loss.

Diagnosis of DR is most commonly done by dilated eye examination that is performed by

ophthalmologists. Other methods of disease diagnosis include fluorescein angiography, optical

coherence tomography (OCT) or fundus photography. For fluorescein angiography, the blood

flow and vascular abnormalities are photographed upon the intravenous injection of contrast

dye. In OCT, the retinal structure, thickness, and edema (i.e. retinal swelling) are evaluated.

Currently, diagnosis of DR is subjective and needs to be performed by a retina specialist that

passed a specialized training for diagnosis and grading as the visual assessment and manual

measurements of changes in retinal vasculature and layers are deemed very complex tasks.

Unfortunately, a lot of diabetic patients attempt to visit a retina specialist only with symptom-

atic vision loss, when their pathology gets advanced and mostly irreversible, due to inadequate

access to trained eye-care professionals and tertiary eye-care services. Based on this, there is a

clinically significant motivation to have an objective and non-invasive diagnostic system that

is capable of not only accurately detecting DR at an early stage but also grading it.

Machine learning techniques have been used in DR detection and classification [4–14].

Acharya et al. introduced an automated diagnosis method using SVM classifier to identify nor-

mal, mild DR, moderate DR, severe DR, and prolific DR [4]. The proposed method was

trained on 300 subjects of different disease stages and achieved an accuracy of 82%, sensitivity

of 82%, and specificity of 88%. The authors proposed another system where hemorrhages,

micro-aneurysms, exudates, and blood vessels were extracted from raw images of 331 subjects

and fed to SVM for classification [5]. The system provided a classification accuracy of 85.9%, a

sensitivity of 82%, and a specificity of 86%.

Nayak et al. developed a CNN model to identify non-DR, NPDR, and PDR [6]. Morpholog-

ical processing techniques and texture analysis methods were applied on fundus images of 140

subjects to detect features such as hard exudates and blood vessels. A classification accuracy of

93%, a sensitivity of 90%, and a specificity of 100% were achieved. Pratt et al. proposed a CNN

and data augmentation that can identify features such as hemorrhages, micro-aneurysms, and

exudates on the retina, and therefore differentiate between the five stages of the disease [7].

The network was trained on a Kaggle dataset of 80,000 fundus images using a graphical pro-

cessing unit (GPU). The proposed CNN achieved an accuracy, a sensitivity, and a specificity of

75%, 30%, and 95%, respectively. Furthermore, Shaban et al. introduced a CNN trained on 101

fundus images that can accurately identify the four stages of the disease (i.e. non-DR, NPDR,

severe NPDR and PDR) [8]. A leave-one-out approach was used for testing. The proposed

method attained an accuracy of 80.2%, a sensitivity of 78.7%, and a specificity of 84.6%. More-

over, Dekhil et al. introduced a fine-tuned VGG-16 trained on the public Kaggle dataset [17]

classifying subjects with an accuracy of 77% and quadratic weighted kappa score of 78% [9].

Gao et al. created a dataset of DR fundus images and trained a modified version of the

Inception v.3 network with the aid of data processing and data augmentation stages. The pro-

posed network achieved an accuracy of 88.72% for classifying the severity of DR into one of

PLOS ONE A CNN for the screening and staging of DR

PLOS ONE | https://doi.org/10.1371/journal.pone.0233514 June 22, 2020 2 / 13

dataset folder can be downloaded by clicking on

"Download All" button inside the "Data" webpage.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0233514


four grades [10]. Furthermore, Hu et al. introduced a deep neural network architecture to clas-

sify Retinopathy of Prematurity (ROP) disease based on the existence and severity of the dis-

ease [11]. The proposed network consists of two subnetworks where the first subnetwork

extracts high level features from fundus images, which are fused by an aggregate operator and

fed into the second subnetwork for predicting the stage of the disease. The proposed method

yielded an improved testing accuracy when the Inception v.2 network was used compared to

other standard networks such as VGG-16 and ResNet-50.

Mizutani et al. introduced a computer aided diagnosis (CAD) method to detect micro-

aneurysms on retinal fundus images [12]. Jaafar et al. presented an automatic approach for

detecting soft and hard exudates considered as the early signs of DR [13]. Morphological oper-

ations, filters and thresholds were used to detect macular abnormalities on fundus images for

DR diagnosis while the thickness of the retinal nerve fiber layer was determined on OCT

images for the diagnosis of glaucoma by Pachiyappan et al. [14]. Tan et al. proposed an algo-

rithm to extract retinal vasculature to obtain and detect blood vessels [15]. However, all these

prior methods require image processing and data augmentation, which increases their com-

plexity and complicates adaptation to a clinical setting.

In this paper, we propose a novel deep CNN architecture that can classify subjects with

high accuracy into controls (i.e. no DR), moderate DR that includes patients with mild or

moderate NPDR, and severe DR, which represents patients in the late stages with either severe

NPDR or PDR. The proposed architecture was trained and tested on 4,600 fundus images gen-

erated from a public Kaggle dataset of 3,661 images [17]. Five-fold and 10-fold cross-validation

methods were used to measure the performance of the proposed architecture including valida-

tion accuracy, Quadratic Weighted Kappa Score, sensitivity, specificity, Receiver Operating

Characteristic Curve (ROC), and the Area Under Curve (AUC). Confusion matrices were also

provided to offer an understanding of the classifier behavior and performance. We have also

compared our proposed architecture with the latest state-of-the-art architectures used in DR

diagnosis and staging.

II. Proposed CNN model

A. Dataset description

Fundus images used in this study are publicly available from Kaggle [17]. Images were pro-

vided by the Asia Pacific Tele-Ophthalmology Society (APTOS) as part of the 2019 blindness

detection competition. Almost 3,648 high resolution fundus images were selected from the

Kaggle dataset of 3,661 images taken by different models and types of cameras in multiple clin-

ics over an extended period of time. Further, images may contain artifacts, be out of focus,

underexposed, or overexposed.

Images were scored on a scale of 0 to 4. Table 1 shows the class labels or score, the corre-

sponding DR stage, and class size for the dataset. From Table 1, the dataset is unbalanced with

most of the images belong to the first and third classes. In order to induce a more balanced

dataset, and to accurately classify images using CNN, we have split the dataset into three cate-

gories such that both labels ‘1’ and ‘2’ represent the moderate version of the disease while both

‘3’ and ‘4’ describe the severe DR category. The category labels and sizes are indicated in

Table 1 as well.

Examples of the fundus images belonging to the dataset are shown in Fig 1. The leftmost

column of images belongs to control subjects. The middle column corresponds to mild and

moderate NPDR subjects, respectively. The rightmost column belongs to severe NPDR and

PDR subjects, respectively.
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B. Proposed model description

CNN is an artificial neural network architecture that aims at learning low and high level fea-

tures of medical images in an automated manner which helps in the detection, classification,

and staging of medical diseases [1] [2]. CNN usually consists of several layers including convo-

lutions, pooling, and fully connected layers. The output of each layer is called an activation or

a feature map, which can be an input to another layer. A set of linear filters is applied to the

input image or the activation map in the convolutional layer to extract a number of different

low or high level features such as edges, curves, blood vessels, etc. The output of a 3×3 convolu-

tion is defined as follows:

yðl;m; nÞ ¼
X3

k¼1

X3

i¼1

X3

j¼1

wðl; i; j; kÞxðiþm � 1; jþ n � 1; kÞ þ bðlÞ ð1Þ

where x(i,j,k) ithe image gray level value, and w(l,i,j,k) and b(l) represent the weights and

biases, respectively, of the convolutional layer. The pooling layer is usually used to reduce the

number of parameters (i.e. weights and biases) of the network by subsampling the activation

maps, as well as improve the robustness of the extracted features. The pooling layer can be real-

ized either using a set of linear filters that computes the average of the pixel values included

within a masked area in the image (i.e. average pooling) or using a set of non-linear filters that

sorts the pixel values within some area in the image and obtains the maximum (i.e. max pool-

ing). A 2×2 max pooling layer generates robust low dimensional features z (l,m,n) defined as

Table 1. APTOS 2019 Kaggle dataset classes description.

Class Label DR Stage Class Size Category Label Category Size

0 No DR 1,796 0 1,796

1 Mild NPDR 369 1 1,364

2 Moderate NPDR 995

3 Severe NPDR 193 2 488

4 PDR 295

https://doi.org/10.1371/journal.pone.0233514.t001

Fig 1. Fundus images for the five stages of DR.

https://doi.org/10.1371/journal.pone.0233514.g001
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follows:

zðl;mþ 1; nþ 1Þ ¼

Max
yðl; 2mþ 1; 2nþ 1Þ yðl; 2mþ 1; 2nþ 2Þ

yðl; 2mþ 2; 2nþ 1Þ yðl; 2mþ 2; 2nþ 2Þ

2

4

3

5
ð2Þ

A fully connected layer consists of a set of neurons that are connected with all the activation

maps of the neurons of previous layers. The outputs of both convolutional and early fully con-

nected layers are usually processed using a Rectified Linear Unit (ReLU) defined as follows:

ai ¼
bi bi > 0

0 bi < 0
ð3Þ

(

where bi is an input to the ReLU and ai is the corresponding activation generated by the ReLU.

However, the soft max activation function is deployed at the end of the network to compute

the probability distribution of each of the final fully connected layer outputs as follows:

ai ¼
e� ci

XL

j¼0

e� cj
ð4Þ

where ci is the ith output of the last fully connected layer, L is the number of classes and ai is the

corresponding SoftMax activation.

The cross entropy loss e, which describes the deviation of the predicted outputs of the Soft-

Max from the expected desired outputs, is defined as follows:

e ¼ �
XL

j¼0

a_j logðajÞ ð5Þ

where a_j is the actual probability (i.e. expected desired probability for a certain fundus image

belonging to a certain class at the last fully connected layer jth output). The cross entropy loss

is then minimized using the Stochastic Gradient Descent (SGD) in order to update the model

parameters that will allow the successful classification of images. The aforementioned optimi-

zation approach is known as the backpropagation algorithm. The Max pooling layer parame-

ters such as the number of filters, filter size, and stride are usually set in advance and,

therefore, do not require training.

In this paper, a CNN was introduced to successfully classify DR subjects into non-DR,

moderate DR, and severe DR and hence stage the disease in an automated fashion. First, a pre-

processor was used to resize fundus images to maintain the same standard size of 224×224×3.

Further, a class-specific data augmentation approach was adopted to expand the size of the

smallest category with category label “2” in order to improve the performance of the proposed

architecture when being applied on the unbalanced dataset. About 480 images were extracted

from the smallest category and augmented by 90o and 180o rotation of the images, generating

an expanded set of 1440 images that is similar to other categories with respect to size.

Secondly, fundus images were provided to a set of five consecutive stages of convolutional

layers with a single 2×2 max pooling layer in between as shown in Fig 2. Each of the first two

stages consists of two consecutive convolutional layers while each of the middle two stages

consists of five consecutive convolutional layers. The last stage includes four consecutive con-

volutional layers. A convolutional layer used in this architecture consists of a number of filters
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Fig 2. Proposed CNN architecture.

https://doi.org/10.1371/journal.pone.0233514.g002
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(i.e. 64, 128, 256, 512, and 512 for each of the five stages respectively) where each filter has a

size of 3×3×3. The output of the five stages of convolutional layers was then fed to a set of two

consecutive, fully connected layers with 4096 neurons each. The last fully connected layer has

3 neurons for non-linear classification. A dropout layer was also applied to the outputs of the

first two fully connected layers where 50% of the outputs were dropped to further minimize

overfitting and improve the robustness of the architecture.

Obviously, the proposed CNN architecture can be seen as a modified version of the VGG-

19 where two convolutional and rectified linear units were added to the middle two stages

while the last fully connected layer with 1000 neurons was replaced with a three-neuron layer.

The parameters of the proposed architecture were initialized using the pretrained weights and

biases of the original VGG-19 architecture, which had been previously and successfully trained

and tested on the ImageNet dataset [18]. In addition, the initial parameters of the additional

proposed convolutional and final fully connected layers were set to the identity operation. The

full architecture was further trained and validated for DR classification, and staging, where the

parameters of the whole model were fine-tuned and updated on the Kaggle dataset [17].

C. Evaluation metrics

In this sub-section, evaluation metrics used to validate and measure the performance of the

proposed network are described. In this study, both 5-fold and 10-fold cross validation meth-

ods were considered. In 5-fold cross validation, the dataset was split into 5 groups of 920

images while, in 10-fold cross validation, 10 groups of 460 images were considered. Validation

accuracy is then defined as follows:

Accuracy ¼
TP þ TN

TP þ FPþ TN þ FN
ð6Þ

where TP and FP of a specific category C are the true positive (i.e. when an image belonging to

C was correctly classified as C) and false positive (i.e. when an image not belonging to C was

falsely classified as C), respectively. Also, TN and FN are the true negative (i.e. when an image

not belonging to C was not classified as C) and false negative (i.e. when an image belonging to

C was classified as non C), respectively. Further, sensitivity and specificity are defined as fol-

lows:

Sensitivity ¼
TP

TP þ FN
ð7Þ

Specificity ¼
TN

TN þ FP
ð8Þ

The overall classifier sensitivity and specificity can be estimated by averaging individual

sensitivities and specificities for each class respectively. Moreover, final sensitivity and specific-

ity were averaged over the 5 folds and 10 folds. Confusion matrix was used to describe the per-

formance of the proposed classifier. A confusion matrix is represented by a table with each

row containing the counts of images with certain predicted labels and each column including

the counts of images with certain actual labels. Entries of this table can be defined as the num-

ber of images that share a specific predicated as well as actual labels. Further, the receiver oper-

ating characteristic (ROC) curve was plotted to determine the ability of the classifier to

successfully distinguish between various categories. It describes the relationship between the

true positive rate (sensitivity) and the false positive rate (1 –specificity) at various threshold set-

tings with the area under the ROC curve (AUC) measuring the separability of the classifier.
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The higher the AUC, the more capable the classifier to differentiate between different classes

of the disease.

Although the validation accuracy is considered an acceptable performance measure, it may

not be fully describing the performance of the proposed architecture since the model was

trained on a dataset with unequal category sizes. Quadratic weighted Kappa score is an another

approach that evaluates the performance of the classifier and measure the agreement between

two raters; predicted labels, and ground truth labels [19]. The score ranges from -1 which rep-

resents a total disagreement between predictions and ground truth to 1 which represents a

complete agreement between both labels. The score can also be 0 if the agreement between

labels took place by chance. The quadratic weighted Kappa score can then be calculated in five

steps as follows:

1. Calculate and then normalize the confusion matrix (C).

2. Create the weights matrix W where more weight is assigned to the predictions of higher

deviation from actual labels. Weights are given using the following formula:

wði; jÞ ¼
ði � jÞ2

ðL � 1Þ
2

ð9Þ

3. Create and then normalize the histogram of both actual labels vector and predicted labels

vector.

4. Calculate and normalize the outer product (P) of the two histograms.

5. Calculate the quadratic weighted Kappa (K) as follows:

K ¼ 1 �

XL

i¼0

XL

j¼0

wði; jÞcði; jÞ

XL

i¼0

XL

j¼0

wði; jÞpði; jÞ
ð10Þ

III. Experimental results

The proposed model described in the previous section was trained on the Kaggle dataset [17]

for 15 epochs. The learning rate was set at 10−3. Prior to training the model, the dataset was

divided into 5 folds and 10 folds in order to validate the model using 5-fold and 10-fold cross

validation methods respectively. Each fold was further split into batches of 57 fundus images

in order to reduce the computational complexity of the training process by deploying the SGD

rather than a gradient descent over the entire training set. Training accuracies were found to

be 91% (respectively, 92%) for 5-fold (respectively, 10-fold) cross-validation of the model.

Table 2. Confusion matrix for the proposed model (5-fold cross validation).

No DR Moderate DR Severe DR

No DR 351 9 0

Moderate DR 10 234 7

Severe DR 0 78 231

https://doi.org/10.1371/journal.pone.0233514.t002
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Tables 2 and 3 show the confusion matrix when a 5-fold, and 10-fold cross validation were

deployed, respectively. From both tables, we noticed that confusion matrix values at the top

right and bottom left corners are very low which may indicate the ability of the classifier to dis-

criminate between subjects belonging to classes with greater differences in label.

Table 4 shows the validation accuracy, sensitivity and specificity of the proposed architec-

ture, and related work [4] [5] [7] [9]. It is quite obvious that proposed architecture outper-

forms the related work in terms of the validation accuracy with almost 14% enhancement over

[7] [9], 7% and 3% increase with respect to [4] and [5], respectively when a 10-fold cross vali-

dation was considered. Further, the sensitivity as well as the specificity of the proposed model

is elevated compared with [4] [5] [7].

Fig 3 shows the ROC curve for the proposed model when both 5-fold and 10-fold cross vali-

dation were used at a specific threshold setting. It is clear that at 0.1 false positive rate, a high

true positive rate of almost 0.9 was achieved. Further, AUC of 0.95, and 0.91 were calculated

when 5-fold and 10-fold cross validation were deployed, respectively, indicating a promising

use for the proposed classifier to separate between DR stages based on fundus images.

To account for the bias of the model towards relatively large-sized category (i.e. non DR)

where the model is more sensitive towards the aforementioned category as compared to the

moderate and severe DR categories, the quadratic weighted Kappa score was calculated for

both the 5-fold and 10-fold cross validation of the model, since this score will give partial credit

to misclassification with less deviation from the ground truth. Shown in Table 5, the quadratic

weighted Kappa score of the proposed model was found to be almost 0.92 when a 10-fold cross

validation was used surpassing the performance of the model introduced by [9].

We have also provided examples of the worst case predictions where images were misclassi-

fied by the proposed classifier. Fig 4 shows the aforementioned examples. As shown in Fig 4,

we may probably attribute the inability of the proposed model to classify the images to lighting

effects in the captured images and poor contrast levels.

IV. Discussion

In this paper, the feasibility of a deep convolutional neural network to accurately diagnose and

classify DR using fundus images was demonstrated. The proposed approach resulted in a

higher diagnostic accuracy, sensitivity, and specificity when compared to other CNN-based

and SVM-based techniques published in literature [4] [5] [7] [9]. Significantly, the proposed

method can also grade DR with a high degree of accuracy in addition to its high diagnostic

accuracy.

Automated grading of DR solves two major problems in clinical ophthalmology. First, it

can be applied to instant grading of telemedicine fundus images. Many patients in rural areas

in the developed world and throughout the developing world do not have easy access to sub-

specialty ophthalmic care. Remotely based fundus cameras have been the key tool in ophthal-

mic telemedicine, taking fundus photographs of diabetics and then sending these digitally to

ophthalmologists located elsewhere. However, these images must still be interpreted by an

expert and the final diagnosis communicated in a delayed fashion to the patient. Our system

Table 3. Confusion matrix for the proposed model (10-fold cross validation).

No DR Moderate DR Severe DR

No DR 174 8 3

Moderate DR 1 122 6

Severe DR 0 27 119

https://doi.org/10.1371/journal.pone.0233514.t003
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can in theory be applied at the time of photography, providing the patient and local healthcare

provider with an instant diagnosis. This is a substantial labor- and time-saving tool.

Second, grading of DR made in the clinic by the examining physician are not always accu-

rate. Inter-observer variability for grading DR varies from 0.62–0.87 in different studies [20,

21]. This system provides a highly accurate and consistent diagnosis and grading of DR, a sig-

nificant improvement over the human error and variability inherent in human diagnosis. The

proposed approach eliminates these limitations, and enables both diagnosis and quantification

of the degree of DR, expanding care and access. Further, disease progression or the effective-

ness of treatment can be objectively compared from one visit to another, which can enable

physicians to optimize medical therapy.

The limitations of the proposed approach are: (1) it can only classify the diabetic retinopa-

thy into three categories where both mild and moderate NPDR are represented by one group,

and severe NPDR and PDR are combined in another group; (2) neural network models in gen-

eral are considered as black boxes which make it difficult to interpret the results or the features

extracted while SVM methods [4] [5] extract handcrafted features which can be helpful for

medical specialists to identify the biomarkers of DR; and (3) deep learning techniques includ-

ing CNN are susceptible to overfitting. Overfitting arises when the model is trained using a

limited dataset and fails when the trained model is applied on a new data set. A limited dataset

for training will not allow the model to extract the appropriate features that help the model for

successfully classifying new data. To minimize overfitting and to provide an unbiased evalua-

tion on the available limited dataset, class-specific data augmentation as well as 5-fold and

Table 4. Validation accuracies, sensitivities and specificities of the proposed CNN and related work.

Proposed CNN Architecture Pratt et al. [7] Dekhil et al. [9] Acharya et al. [4] Acharya et al. [5]

5-Fold Cross Validation 10-Fold Cross Validation

Accuracy 88% 89% 75% 75% 82% 85.9%

Sensitivity 87% 89% 30% N/A 82% 82%

Specificity 94% 95% 95% N/A 88% 86%

https://doi.org/10.1371/journal.pone.0233514.t004

Fig 3. ROC curve for the proposed model in case of (a) 5-fold cross validation (b) 10-fold cross validation.

https://doi.org/10.1371/journal.pone.0233514.g003
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Table 5. Area Under the Curve (AUC) and quadratic weighted Kappa score when 5-fold and 10-fold cross valida-

tion is used.

5-Fold Cross Validation 10-Fold Cross Validation

AUC 0.95 0.91

Quadratic Weighted Kappa Score 0.91 0.92

https://doi.org/10.1371/journal.pone.0233514.t005

Fig 4. Examples of misclassified fundus images by the proposed architecture. (a) Ground Truth “0” Predicted “1”. (b) Ground Truth “1”

Predicted “2” (c) Ground Truth “1” Predicted “0” (d) Ground Truth “2” Predicted “1”.

https://doi.org/10.1371/journal.pone.0233514.g004
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10-fold cross validation were used. To further improve the accuracy of the proposed approach,

we will train images of different modalities using the proposed CNN model in the future. Fur-

thermore, we will further deploy capsule networks, recently introduced by Geoffrey Hinton, to

classify fundus images [16]. Capsule networks provide further details on the presence and the

pose of features using primary and routing capsules (i.e. a group of neurons whose task is to

extract a specific feature) with less training data. It has proven its superiority over traditional

CNN when used to classify the popular MNIST handwritten digit images database.

V. Conclusion

In the current study, a deep CNN architecture composed of 18 convolutional layers and 3 fully

connected layers was introduced to classify and stage DR, where the subjects were classified

into no DR, moderate DR, and severe DR. Overall, 4,600 fundus images were generated from

the original Kaggle dataset [17] using a class-specific data augmentation technique, and used

to train and test the proposed network using 5-fold and 10-fold cross validation.

A quadratic weighted Kappa score of 0.92 and a validation accuracy of 89% were achieved,

providing an improvement over the results obtained by deep CNN architectures [7] [9] by

almost 14% as well as SVM Based classifiers [4] [5] with an accuracy improvement of 7% and

3% respectively when a 10-fold cross validation was used. Further, the proposed model sur-

passed all the-state-of-the-art architectures [4] [5] [7] [9] with respect to sensitivity and speci-

ficity. With our proposed approach, ophthalmologists may accurately and objectively detect

and stage DR in a timely manner and possibly monitor its progression without the need for

the traditional subjective physical assessment that may lack sensitivity or precision.
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