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Abstract

Introduction

Allergic rhino-conjunctivitis (ARC) is an IgE-mediated disease that occurs after exposure to

indoor or outdoor allergens, or to non-specific triggers. Effective treatment options for sea-

sonal ARC are available, but the economic aspects and burden of these therapies are not of

secondary importance, also considered that the prevalence of ARC has been estimated at

23% in Europe. For these reasons, we propose a novel flexible cost-effectiveness analysis

(CEA) model, intended to provide healthcare professionals and policymakers with useful

information aimed at cost-effective interventions for grass-pollen induced allergic rhino-con-

junctivitis (ARC).

Methods

Treatments compared are: 1. no AIT, first-line symptomatic drug-therapy with no allergoid

immunotherapy (AIT). 2. SCIT, subcutaneous immunotherapy. 3. SLIT, sublingual immu-

notherapy. The proposed model is a non-stationary Markovian model, that is flexible enough

to reflect those treatment-related problems often encountered in real-life and clinical prac-

tice, but that cannot be adequately represented in randomized clinical trials (RCTs). At the

same time, we described in detail all the structural elements of the model as well as its input

parameters, in order to minimize any issue of transparency and facilitate the reproducibility

and circulation of the results among researchers.

Results

Using the no AIT strategy as a comparator, and the Incremental Cost Effectiveness Ratio

(ICER) as a statistic to summarize the cost-effectiveness of a health care intervention, we

could conclude that:

• SCIT systematically outperforms SLIT, except when a full societal perspective is consid-

ered. For example, for T = 9 and a pollen season of 60 days, we have ICER = €16,729 for

SCIT vs. ICER = €15,116 for SLIT (in the full societal perspective).
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• For longer pollen seasons or longer follow-up duration the ICER decreases, because each

patient experiences a greater clinical benefit over a larger time span, and Quality-adjusted

Life Year (QALYs) gained per cycle increase accordingly.

• Assuming that no clinical benefit is achieved after premature discontinuation, and that at

least three years of immunotherapy are required to improve clinical manifestations and per-

ceiving a better quality of life, ICERs become far greater than €30,000.

• If the immunotherapy is effective only at the peak of the pollen season, the relative ICERs

rise sharply. For example, in the scenario where no clinical benefit is present after premature

discontinuation of immunotherapy, we have ICER = €74,770 for SCIT vs. ICER = €152,110

for SLIT.

• The distance between SCIT and SLIT strongly depends on under which model the inter-

ventions are meta-analyzed.

Conclusions

Even though there is a considerable evidence that SCIT outperforms SLIT, we could not

state that both SCIT and SLIT (or only one of these two) can be considered cost-effective

for ARC, as a reliable threshold value for cost-effectiveness set by national regulatory agen-

cies for pharmaceutical products is missing. Moreover, the impact of model input parame-

ters uncertainty on the reliability of our conclusions needs to be investigated further.

Introduction

Allergic rhino-conjunctivitis (ARC) is an IgE-mediated disease that occurs after exposure to

indoor or outdoor allergens, or to non-specific triggers such as smoke and viral infections [1,

2]. Symptoms include rhinorrhea, nasal obstruction, itchy nose, and repetitive sneezing,

accompanied by ocular symptoms, such as itchy, red, watery, and swollen eyes [3]. Symptoms

of ARC are also classified as seasonal or perennial on the basis of their temporal pattern. Sea-

sonal allergies result from exposure to airborne substances that appear only during certain

times of the year, with grass pollen being by far the most common cause of disease [4].

Depending on whether the symptoms last less or more than 4 days per week or 4 weeks per

year, ARC frequency can be divided respectively into intermittent and mild. ARC severity

instead, can be classified as mild or more severe respectively when symptoms are present but

they do or do not interfere with overall quality of life, exacerbate co-existing asthma, induce

sleep disturbances or impair daily activities and school/work performances [5]. Furthermore,

ARC and asthma are frequently co-occurring conditions, and rhinitis typically precedes the

onset of asthma [6]. Indeed, it has been estimated that between 19% and 38% of patients with

allergic rhinitis suffer from concomitant asthma worldwide [7].

Treatment options for seasonal ARC include environmental control of allergens, pharma-

cological therapies for symptom control, and allergen immunotherapy [4]. For the initial treat-

ment of moderate to severe seasonal ARC in persons aged 12 years or older, a combination of

an intranasal corticosteroid plus an oral/intranasal antihistamine is recommended [8, 9]. Aller-

gen immunotherapy (AIT) should be considered for patients suffering from moderate or

severe persistent symptoms which interfere with usual daily activities or sleep, despite
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compliant and appropriate drug therapies, or in patients experiencing unacceptable side-

effects associated with symptomatic first-line treatments [2, 5]. AIT may also be considered in

less severe ARC where a patient wishes to take advantage of its potential for preventing disease

progression towards asthma [1]. There is a growing body of evidence supporting that AIT

induces favorable immunological changes, defined as the persistence of clinical benefits for at

least 1-year after treatment discontinuation [10]. Another possible role of the latter treatment

in children is reducing the risk of new allergen sensitization [11], although the evidence still

remain poor [12, 13].

With regard to AIT, subcutaneous injection (SCIT) has been the predominant method of

administration. However, over the last two decades sublingual application of allergens (SLIT)

has increased, and it is now the dominant approach in several European countries [14, 15].

The SCIT regimen comprises an initial loading phase, consisting of a weekly administration of

allergen extracts for 1-3 months, followed by monthly maintenance injections [16, 17]. On the

contrary, in SLIT regimen the build-up period is not needed and patients receive a once-daily

fixed-dose, which is administered continuously throughout the year or pre/co-seasonally,

depending on the allergen that triggers the symptoms [18]. Maintenance doses for both SCIT

and SLIT have traditionally been recommended to be continued for at least 3 years [19, 20].

A benefit from both SCIT and SLIT compared with placebo has been consistently demon-

strated in randomized controlled trials (RCTs), but the extent of this effectiveness in terms of

clinical benefit is still unclear [21–23]. Indirect comparisons of SCIT with SLIT were suggestive

of SCIT being more beneficial, but no statistically significant difference was found between

these two interventions using a combined symptom-medication score [22]. Moreover, discrep-

ancies between the clinical settings of RCTs and those of real clinical practice make the

assumptions of these modeling studies uncertain and limit the validity of their conclusions.

In addition, the economic aspects and burden of these therapies are not of secondary

importance. The prevalence of ARC has been estimated at 23% in Europe [24, 25], and its cost

for the national health services has followed an exponential growth. For example, using data

from the National Medical Expenditure Survey it was estimated by [26] that total cost of the

ARC condition in the USA, in 1994 Dollars, was $1.23 billion (95% confidence interval, $846

million to $1.62 billion), with direct medical expenses accounting for 94% of total costs. Less

outdated evidence was reported in [27], a study based on a probabilistic prevalence-based cost

of illness model, where it was estimated that the total economic burden in Italy associated with

respiratory allergies and their main co-morbidities was €7.33 billion in 2015 Euros (95% CI:

€5.99 − €8.82), with €5.32 billion for direct medical costs). In the same study, the authors esti-

mated that the annual average direct cost for symptomatic ARC therapy per patient were €129

(Min: €89 − Max: €168) versus €320 (Min: €258 − Max: €381) and €365 (Min: €303 − Max:

€427) for SLIT and SCIT, respectively.

Hence, these data suggest that it would be inappropriate to ignore the weight of the eco-

nomic burden deriving from the use of allergoid immunotherapy for seasonal ARC. Cost-

effectiveness analysis (CEA) summarizes the problem of valuing health related outcomes by

estimating an incremental cost due to treatment per unit change in outcome [28, 29]. The lat-

ter combines information about morbidity and quality of life, in order to generate a quality-

adjusted life year (QALY) value. A year in perfect health is associated with 1 QALY and death

with 0 QALY, whereas other possible states are ranked between these two extremes [30].

The CEA studies reviewed in [23] found both SCIT and SLIT being more beneficial than

symptomatic treatments in terms of incremental cost-effectiveness ratios (ICERs). From their

results, an additional expense of about €22,000 was necessary for a unit increment in QALY

over the patients follow-up window. However, [23] pointed out there were issues around

transparency and robustness of input parameters for most studies. Moreover, none of the
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cost–utility analyses were conducted by independent researchers. Similarly, [31] claimed that

the quality of most previously conducted studies is poor, due to the general lack of attention in

characterizing uncertainty and handling real-life situations.

For all of the above reasons, we developed a non-stationary Markovian model for CEA of

allergoid immunotherapy. This model was flexible enough to reflect those treatment-related

problems often encountered in real-life, but that cannot be adequately represented in RCTs

[32]. At the same time, we described in detail all the structural elements of the model as well as

its input parameters, in order to minimize any issue of transparency and facilitate the repro-

ducibility and the circulation of the results. Our model is intended to provide healthcare pro-

fessionals and policymakers with useful information for cost-effective interventions, which

might inform decision-making on selecting the option with the best value.

The emphasis of the paper will be to focus on the simulation of selected scenarios, each

based on a specification representing alternative assumptions in order to match relevant clini-

cal situations. In the final section of this manuscript we explored further techniques to quantify

parameter estimates uncertainty such as probabilistic sensitivity analysis (PSA), a Monte Carlo

method to simulate the sampling distribution of the joint mean cost and efficacy.

Materials and methods

From the description above we can define three strategies for each treatment option for sea-

sonal ARC. Each strategy comprises a certain number of health states:

1. no AIT, in which symptomatic drug therapy is administered, comprising the three follow-

ing states:

• No Asthma (NA1), including patients with ARC without asthma.

• Asthma (A1), including patients with ARC and asthma.

• Death (D1).

2. SCIT, comprising five health states:

• AIT + No Asthma (ANA2), including patients with ARC treated with SCIT.

• AIT + Asthma (AA2), including patients with ARC treated with SCIT, who develop

or have developed co-existing asthma.

• No AIT + no Asthma (NANA2), including patients that prematurely abandoned

SCIT or have completed the 3-year course of treatment.

• No AIT + Asthma (NAA2), including patients that prematurely abandoned SCIT or

have completed the 3-year course of treatment, who develop or have developed co-existing

asthma.

• Death (D2).

3. SLIT, comprising five health states

• AIT + No Asthma (ANA3), similar to ANA2 once the necessary changes have been

made.

• AIT + Asthma (AA3), as above.

• No AIT + no Asthma (NANA3), as above.
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• No AIT + Asthma (NAA3), as above.

• Death (D3).

For each strategy, we simulate the evolution of a cohort of N = 1000 individuals in discrete

time. The number of individuals in a given health state at the end of Markov cycle t is denoted

as nt(s), with s 2 Si, where Si is the set of health states of strategy i 2 {1, 2, 3} (for example

nt(AA3)), with the constraint that:

N ¼
X

s2Si

ntðsÞ

The vector giving the probability of being in a given state at the end of Markov cycle t will be

denoted as πi,t (for strategy i). In particular, πi,0 is the vector of being in a given state at the end

of the first period t = 0. If not otherwise stated, t indicates the end of the t-th Markov cycle.

Patient population

Similarly to the stationary Markov model developed by Verheggen et al. [33], patients included

in the simulated cohort had the following characteristics (common to all three strategies):

• Suffered from moderate-to-severe grass-pollen seasonal acute ARC. At entry, none of the

patients suffered from co-existing chronic asthma. However, mild-to-moderate allergic

asthma can develop as the simulation runs.

• Positive grass allergen-specific skin prick test and/or elevated serum grass pollen specific

IgE.

• Average age of 35.9 years at entry, reflecting the median of the mean age of patients in the

adult studies included in the meta-analysis by [23].

Model structure

A Markov model was considered to simulate, for each strategy, the probability distribution of

being in each health state over a discrete sequence of time periods. We assumed the duration

of each time period (or Markovian cycle) to be of one year. The beginning of therapy was in

t = 0, with a follow-up of T years, with T = 9 in our base case. Although this is not mandatory,

a longer follow-up might be clinically justifiable. Subsequent periods were numbered 1, 2,

. . .,9, for a total of 10 years. For each of the three strategies, the relationships of the patients of

the cohort with the available treatments were the following:

• no AIT: symptomatic drug treatment including antihistamine (desloratadine 5mg/die) and

nasal corticosteroid (budesonide nasal spray 200 mcg/die; two 50 mcg puffs twice a day).

Symptomatic medications were taken daily during grass pollen season from the first year

and were continued over the entire follow-up. None of the patients had co-existing asthma

at entry and, for simplicity, we assumed that asthmatic disease could not complicate ARC

already from the first year.

• SCIT: the therapy is administered for a maximum of three years, in combination with

symptomatic therapy. After a maximum of three Markov cycles (i.e. t = 0, 1, 2), the immuno-

logic treatment is stopped, and patients continue symptomatic drug therapy alone. AIT dis-

continuation can occur already from the first Markovian cycle (t = 0). Also in this case,
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patients continue symptomatic therapy over the entire follow-up. As in the case of the no
AIT strategy, asthma cannot complicate ARC already from the first year.

• SLIT: the assumptions for the SCIT strategy shall apply once the necessary changes have

been made.

Transition matrices

Transition probabilities between states can be described by a square jSij � jSij stochastic

matrix T (whose rows sum to 1).

The evolution of the no AIT strategy is governed by an homogeneous Markov chain

(time-invariant), having the state transition diagram shown in Fig 1 (valid for the whole time

horizon considered for the simulation) corresponding to the transition matrix denoted with

T1.

Fig 1. Transition diagram (no AIT). State transition diagram for the no AIT strategy, based on symptomatic drug therapy.

https://doi.org/10.1371/journal.pone.0232753.g001
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For the no AIT strategy, the probability of being in a given health state at the end of Mar-

kov cycle t is given by:

p1;t ¼ p1;0T
t
1

ð1Þ

where π1,t is an jS1j-dimensional row vector. Consequently, the cohort is distributed among

possible states according to the following vector:

Np1;t ð2Þ

Both SCIT and SLIT strategies (or AIT for brevity’s sake, when it is not relevant to distin-

guish between them) evolve according to a non-homogeneous Markov chain, following the

same health state transitions in both cases. Transition probabilities are different between the

two strategies, and the corresponding transition matrices will be denoted as T2,t (SCIT) and

T3,t SLIT, respectively. The transition diagram is shown below in Fig 2.

Up to t = 2, among state transitions at time t = 1 given the state at t = 0 and at time t = 2

given the state at t = 1, the following changes correspond to therapy discontinuation:

• AIT + No Asthma! No AIT + No Asthma

• AIT + Asthma! No AIT + Asthma

As already highlighted before, at the end of the third cycle (year), all patients complete their

immunological treatment. Therefore, any state transition at time t = 3 given the state at t = 2

must consider the fact that the probability of being in any state where the immunotherapy is

administered must be set to zero. For subsequent cycles, the two states AIT + No Asthma
and AIT + Asthma are no longer reachable, and thus become isolated. The underlying Mar-

kov chain becomes observationally equivalent to that defined for the no AIT strategy. More-

over, it is worth noting that the probability distribution of states in t = 3 is not equal to the

initial distribution π1,0 of the no AIT strategy, but reflects the distribution between asthmatic

and non-asthmatic patients that has been reached through the state transitions that occurred

in the previous cycles.

Fig 2. Transition diagrams (AIT). State transition diagrams for SCIT and SLIT strategies, both referred to as AIT for brevity.

https://doi.org/10.1371/journal.pone.0232753.g002
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For both SCIT and SLIT (i = 2, 3), the probability of being in a given health state at the

end of Markov cycle t is given by [32]:

pi;t ¼ pi;0

Yt

k¼1

Ti;k ð3Þ

where Ti,k contains the transition probabilities for cycle t = k (given the state at t = k − 1).

Transition probabilities

In order to obtain transition probabilities, a literature review was performed to determine sen-

sible model input parameters. Uncertainty originating from model specification and from

uncertainty around the true value of input parameters will be discussed further in the Results

and Discussion sections (see also [28] for a good introduction of the topic).

• no AIT. The input parameters of this strategy are not specific, and they will be used for

both SCIT and SLIT as well. In particular:

• The calculation of 1-year probability of asthma onset was based on the data reported by [34],

where the frequency of asthma was studied in 6461 participants, aged 20–44 years, without

asthma at baseline. In particular (page 1052) it is reported that: “The probability of having
asthma at the end of follow-up (mean 8.8 years) was 4.0% in patients with allergic rhinitis”.

For this sub-population of 1217 patents at risk with ARC, the average age was 33.4 years. In

this way, both the length of the follow-up and the average age were consistent with our set-

ting. If pa = 0.040 is the probability that patients without asthma at baseline have asthma at

8.8-year, the 1-year probability can be easily computed assuming that the incidence rate is

constant over each time period [35]. Under this assumption, the annual incidence rate is:

r
að1yrÞ ¼ �

logð1 � p
a
Þ

t

and, finally, the time-frame was changed obtaining the 1-year incidence probability in the

following way:

p
að1yrÞ ¼ 1 � expð� r

að1yrÞÞ � 0:00463

• The probability of death within 1 year for all causes was obtained from the Italian National

Institute of Statistics (ISTAT) mortality tables for general mortality [36]. The average age

(35.9 years) of the patients included in the meta-analysis by [21] was used as reference. Con-

sidering that the studies included in the meta-analysis were published between 1999 and

2014, covering a total of 16 years, we used the probability of death within one year for all

causes at age 36 in 2010 irrespective of gender, that is pd(1yr) = 0.00061

• The mortality among asthmatic patients was adjusted on the ground of data published by

[37], who reported that mortality from all causes on a population of Finnish adults was

increased among asthmatics, with an age-adjusted hazard ratio equal to RRd(a) = 1:49

The initial state vector, representing the distribution of the cohort at the end of the first

cycle, was given by (4). As by assumption none of the patients had co-existing asthma at entry,
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and asthmatic disease cannot complicate ARC already from the first year.

NA1 A1 D1

Np1;0 ¼ ð1000 0 0Þ
ð4Þ

Once the input parameters were suitably combined into the transition matrix, we obtained

the following parametric specification. The specific values of transition probabilities were

superimposed on the transition diagram shown below in Fig 3:

T1 =

0
@

NA1 A1 D1
NA1 1¡ (²) pa(1yr) pd(1yr)
A1 0 1¡ (²) RRd(a)pd(1yr)
D1 0 0 1

1
A ð5Þ

• SCIT. Both clinical trials and real-life settings have demonstrated that AIT course is fre-

quently problematic due to poor treatment adherence, hence jeopardizing the immunological

effects that underlie the clinical outcome [38–41]. In light of this, input parameters must keep

adherence into account due to its relevant effect. On the other hand, there is an accumulating

body of evidence that a well-conducted immunological treatment can reduce the development

of asthma [42, 43]. Consequently:

• For calculating the probability of discontinuing SCIT, we used the data from [40], Table 3,

considering the following setting: pollen-preseasonal, age� 18 (adults), N = 38576. Based on

the number of patients who completed the first year of therapy but discontinued during the

second year, and those who completed two years of therapy but discontinued during the

third, we obtained the following discontinuation probabilities for each of the 3 years of treat-

ment: pd(1yr) = 0, p
drð2yrsÞ

¼ 0:53, p
drð3yrsÞ

¼ 0:45. According to these data, the adherence

to SCIT is maximum during the first year of therapy (i.e. the probability of discontinuation

is zero).

• According to [33, 44, 45], the relative risk of developing asthma (AIT vs. symptomatic treat-

ment) was set as RRa(AIT) = 0.505. This input parameter is not specific to SCIT; it is valid

for SLIT as well.

As for no AIT strategy, the initial state vector is given by:

Np2;0 ¼

ANA2 AA2 NANA2 NAA2 D2

ð1000 0 0 0 0Þ

ð6Þ

In modeling the dynamics of S-valued time-inhomogeneous Markov chains, we need to

specify the sequence of (one-step) transition matrices. Transition probabilities at time t = 1
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given the state occupied at t = 0 are collected in the T2,1 matrix:

T2;1 =

0
BBBB@

ANA2 AA2 NANA2 NAA2 D2
ANA2 1¡ (²) RRa(AIT)pa(1yr) pdr(2yrs) pdr(2yrs)(RRa(AIT)pa(1yr)) pd(1yr)
AA2 0 1¡ (²) 0 pdr(2yrs) RRd(a)pd(1yr)
NANA2 0 0 1¡ (²) pa(1yr) pd(1yr)
NAA2 0 0 0 1¡ (²) RRd(a)pd(1yr)
D2 0 0 0 0 1

1
CCCCA
ð7Þ

The transition probability in cell (1, 4) deserves further explanation. Such probability

describes the case where a discontinuation of therapy and a newly onset asthmatic disease

Fig 3. Transition probabilities. State transition diagram for the no AIT strategy with superimposed transition probabilities,

calculated according to transition matrix 5.

https://doi.org/10.1371/journal.pone.0232753.g003
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occur together. A causal relationship between these two events is likely. But in the absence of

data strongly supporting this hypothesis, we can treat the two events as conditionally indepen-

dent. Therefore, we can write down the following approximation:

prðANA2 ! NAA2Þ ¼ prðAIT þ No Asthma! No AIT þ AsthmaÞ ¼ ð8Þ

¼ prðNo AIT þ Asthma j AIT þ No AsthmaÞ ¼ ð9Þ

¼ prðNo AIT j AIT þ No AsthmaÞ� ð10Þ

� prðAsthma j AIT þ No AsthmaÞ ¼ ð11Þ

¼ p
drð2yrsÞ

� ðRR
aðAITÞpað1yrÞÞ ð12Þ

It should be also highlighted that we are assuming that the protective effect of the immunologic

treatment on asthma is active only after one year of therapy. After three years of treatment, the

protective effect becomes permanent for the whole horizon of the simulation; on the other

hand, those who prematurely interrupt the immunologic therapy lose the protective effect, and

the 1-year asthma probability almost doubled from RRa(AIT) pa(1yr) to pa(1yr).

Transition probabilities at t = 2 given the state occupied at t = 1 have a similar structure,

once the necessary changes have been made:

T2,2 =

0
BBBB@

ANA2 AA2 NANA2 NAA2 D2
ANA2 1¡ (²) RRa(AIT)pa(1yr) pdr(3yrs) pdr(3yrs)(RRa(AIT)pa(1yr)) pd(1yr)
AA2 0 1¡ (²) 0 pdr(3yrs) RRd(a)pd(1yr)
NANA2 0 0 1¡ (²) pa(1yr) pd(1yr)
NAA2 0 0 0 1¡ (²) RRd(a)pd(1yr)
D2 0 0 0 0 1

1
CCCCA
ð13Þ

As stated before, transition probabilities at t = 3 must keep into account that patients termi-

nate the immunotherapy, and thus the probability of reaching a state where AIT is adminis-

tered must be zero:

T2;3 =

0
BBBB@

ANA2 AA2 NANA2 NAA2 D2
ANA2 0 0 1¡ (²) RRa(AIT)pa(1yr) pd(1yr)
AA2 0 0 0 1¡ (²) RRd(a)pd(1yr)
NANA2 0 0 1¡ (²) 0.00403 pd(1yr)
NAA2 0 0 0 1¡ (²) RRd(a)pd(1yr)
D2 0 0 0 0 1

1
CCCCA

ð14Þ

Transition probability in cell (3, 4) is Pr(No AIT + No Asthma! No AIT + Asthma),

that is the 1-year probability of developing asthma. Up to t = 2 a patient reaches a No AIT
state because she/he has interrupted immunotherapy. From t = 3 onwards, a patient who has

not prematurely interrupted the treatment has completed a full immunotherapy cycle in t = 2,

and, with probability 1, she/he moves towards any state labeled No AIT. For patients who

have not completed a full cycle, the 1-year probability of asthma is pa(1yr), whereas patients

who have completed their therapy are provided with long-term protection, and their 1-year

risk of asthma drops to RRd(a) pd(1yr). From the data reported in [40], Table 3, 26% of

patients carry out SCIT for at least three years, and thus the transition probability in cell (3, 4)
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is calculated as the following weighted average:

PrðNo AITþ No Asthma! No AITþ AsthmaÞ ¼

¼ 0:74 p
að1yrÞ þ 0:26RR

aðAITÞpað1yrÞ � 0:00403
ð15Þ

For t = 4, 5, . . . transition probabilities are collected in the matrices T2,t. States AIT + no
Asthma and AIT + Asthma become isolated, and patients of the cohort cannot reach them

anymore.

T2;t =

0
BBBB@

ANA2 AA2 NANA2 NAA2 D2
ANA2 1 0 0 0 0
AA2 0 1 0 0 0
NANA2 0 0 1¡ (²) 0:00403 pd(1yr)
NAA2 0 0 0 1¡ (²) RRd(a)pd(1yr)
D2 0 0 0 0 1

1
CCCCA

ð16Þ

Transition diagrams with superimposed transition probabilities are shown in Fig 4.

• SLIT. There are a few differences with the preceding strategy that are worth examining

in detail:

• From [40], using Table 3 with parameters: pollen, age� 18 (adults), N = 570, we obtained

the following discontinuation probabilities: pdr(1yr) = 0.52, p
drð2yrsÞ

¼ 0:49,

p
drð3yrsÞ

¼ 0:39. There is an apparently lower adherence to therapy than SCIT, that has been

reported in other studies (see [46] for recent data).

The initial state vector in t = 0 for the SLIT arm keeps into account that only 52% stay in

the AIT + No Asthma state, while the remaining 48% are in No AIT + No Asthma
state, as these patients started the therapy but discontinued it already in the first year. This has

a deep influence on cost calculation already from the first Markovian cycle. Hence the initial

state vector is:

Np3;0

ANA3

ð1000 � ð1 � p
drð1yrÞÞ

AA3

0

NANA3

1000p
drð1yrÞ

NAA3

0

D3

0Þ
ð17Þ

Transition matrices for t = 1 and t = 2 are formally identical to (7) and (13), that is T3,1�

T2,1, T3,2� T2,2, after modifying what was needed to be changed. For t = 3 and t = 4, 5, . . ., . . .

we have:

T3;3 =

0
BBBB@

ANA3 AA3 NANA3 NAA3 D3
ANA3 0 0 1¡ (²) RRa(AIT)pa(1yr) pd(1yr)
AA3 0 0 0 1¡ (²) RRd(a)pd(1yr)
NANA3 0 0 1¡ (²) 0:00428 pd(1yr)
NAA3 0 0 0 1¡ (²) RRd(a)pd(1yr)
D3 0 0 0 0 1

1
CCCCA

ð18Þ
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T3;k =

0
BBBB@

ANA3 AA3 NANA3 NAA3 D3
ANA3 1 0 0 0 0
AA3 0 1 0 0 0
NANA3 0 0 1¡ (²) 0:00428 pd(1yr)
NAA3 0 0 0 1¡ (²) RRd(a)pd(1yr)
D3 0 0 0 0 1

1
CCCCA

ð19Þ

Fig 4. Transition probabilities. State transition diagram for the SCIT strategy with superimposed transition probabilities, calculated

according to transition matrices (7), (13), (14) and (16).

https://doi.org/10.1371/journal.pone.0232753.g004
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As [40] reports that 15% of patients completed at least three years of therapy, the transition

probability in cell (3, 4) can be calculated as:

PrðNo AITþ No Asthma! No AITþ AsthmaÞ ¼

¼ 0:85 p
að1yrÞ þ 0:15RR

aðAITÞpað1yrÞ � 0:00428
ð20Þ

Finally, the specific values assumed by transition probabilities are shown in Fig 5.

Utilities

Utilities for health states are based on preferences for the different health states, in the sense

that the more desirable (i.e. less severe) health states will receive greater weight. Utilities are

measured on a cardinal scale 0–1, where 0 indicates death and 1 full health [47].

Fig 5. Transition probabilities. State transition diagram for the SLIT strategy with superimposed transition

probabilities, calculated according to transition matrices defined above.

https://doi.org/10.1371/journal.pone.0232753.g005
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A quantitative index of ARC severity is the Rhinoconjunctivitis Total Symptom Score

(RTSS; [48]), based on patient reported outcomes. RTSS considers the six symptoms most

commonly associated with pollinosis (sneezing, rhinorrhea, nasal pruritus, nasal congestion,

ocular pruritus and watery eyes). The self-attributed score to each symptom varies from 0 to 3,

namely: 0 = none, 1 = mild, 2 = moderate, 3 = severe. The total of the scores attributed to these

six symptoms results in a daily RTSS that can vary from 0 to 18. The final RTSS is calculated as

the mean of the total daily scores recorded throughout the whole pollen season.

The utilities associated with seasonal ARC have been estimated in [49], who developed a

multi-attribute utility index for symptoms of this disease, called RSUI (Rhinitis Symptom Util-

ity Index). This index has been constructed based on the interplay between the two existing

standard approaches to assign an utility score to an health state, i.e. the VAS (Visual Analog

Scale) and SG (Standard Gamble) methods [50, 51]. Mapping RTSS one-to-one to RSUI was

largely based on the same procedure used in [33], as communicated to our study group by one

of the authors (K.Y. Westerhout, personal communication, 2016-03-10. Full details of the

mapping algorithm used are available upon request).

In synthesis, for each possible value of the RTSS score, we were able to calculate the proba-

bility distribution of symptom severity, where severity was categorized according to four levels:

0 = none, 1 = mild, 2 = moderate and 3 = severe, as shown in Table 1. For example, in a ran-

domly chosen patient having RTSS = 1, there is an 83% probability that any of the symptoms is

present with a degree of severity equal to 0 (or, in other words, the symptom is not present),

and a 17% probability that the same symptom has a degree of severity equal to 1 (mild). Finally,

each RTSS integer score was mapped in a one-to-one fashion to an utility score using the

multi-attribute multiplicative function defined in [49]:

ui ¼ 1:198ð�s1 � �s2 � �s3 � �s4 � �s5 � �s6Þ � 0:198 ð21Þ

Table 1. For each integer RTSS, columns 2 to 5 show the probability distribution on symptom severity, column 6 (ui) reports the RSUI calculated according to 21.

Finally, column 7 (ui,interp) shows the model-based RSUI (see the text for a full description).

RTSS None Mild Moderate Severe ui ui,interp

0 1.0000 0.0000 0.0000 0.0000 1.0000 0.9999

1 0.8333 0.1667 0.0000 0.0000 0.9440 0.9444

2 0.7143 0.2381 0.0476 0.0000 0.8873 0.8864

3 0.6250 0.2679 0.0893 0.0179 0.8255 0.8255

4 0.5417 0.2917 0.1250 0.0417 0.7640 0.7638

5 0.4676 0.3009 0.1620 0.0694 0.7027 0.7029

6 0.4018 0.3006 0.1935 0.1042 0.6442 0.6437

7 0.3399 0.2961 0.2215 0.1425 0.5864 0.5864

8 0.2839 0.2839 0.2473 0.1850 0.5314 0.5310

9 0.2328 0.2672 0.2672 0.2328 0.4773 0.4775

10 0.1850 0.2473 0.2839 0.2839 0.4265 0.4261

11 0.1425 0.2215 0.2961 0.3399 0.3769 0.3769

12 0.1042 0.1935 0.3006 0.4018 0.3301 0.3298

13 0.0694 0.1620 0.3009 0.4676 0.2846 0.2848

14 0.0417 0.1250 0.2917 0.5417 0.2421 0.2419

15 0.0179 0.0893 0.2679 0.6250 0.2006 0.2007

16 0.0000 0.0476 0.2381 0.7143 0.1612 0.1608

17 0.0000 0.0000 0.1667 0.8333 0.1210 0.1212

18 0.0000 0.0000 0.0000 1.0000 0.0792 0.0790

https://doi.org/10.1371/journal.pone.0232753.t001
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for i = 0, 1, 2, . . ., 18. For a given RTSS, coefficients �s1, �s2, �s3, �s4, �s5, and �s6, were obtained by

taking, for each of the six symptoms used in the calculation of the RTSS, a weighted average of

utility scores in Table 2 by [49] (averaged by symptom severity), weighted by the correspond-

ing probability distribution over symptom severity reported in Table 1. Utilities provided by

[49] considered only five health states (symptoms), whereas the RTSS is based on six symp-

toms. For this reason, in order to create a correspondence between the two systems, the col-

umn present in the above-mentioned Table 2, named “itchy eyes”, was duplicated and named

“watery eyes”.

Utility values ui can range from a maximum value of 1, when no symptoms are present, to a

minimum value of about 0.07 in the worst possible case. However, we introduced some minor

variations considering that the RTSS score used in pharmacoeconomic studies it is hardly ever

an integer number. On the contrary, it is often an average value estimated from meta-analyses

over selected populations. Therefore, the first operation that is usually carried out is rounding

such average score to the nearest integer. As estimated by [52], the Minimally Important Dif-

ference (MID, i.e. the smallest improvement considered worthwhile by a patient) corresponds

to a reduction of about 1.1–1.3 points of the RTSS in patients with grass pollen induced ARC,

a threshold that can be conceivably rounded to 1 in according to [52]. If we consider, for exam-

ple, an average RTSS score of 4.51 in the treatment group, rounded to RTSS = 5, and an aver-

age RTSS score 4.49 in the control group, rounded to RTTS = 4, we introduce a fictitious

clinical improvement in the treatment group (according to the MID estimate proposed by

[52]) which is not actually present in the data. To prevent such rounding bias, we considered

an interpolation procedure capable of mapping RTSS scores to RSUI also in case of a non-inte-

ger RTSS score. The procedure consists of the following steps:

• For each degree of symptom severity (SSev: 0 = none, 1 = mild, 2 = moderate, 3 = severe),

we overfitted a statistical relationship between X = RTSS and Y = pSSev, where pSSev is the

corresponding probability in the Table 1, using the following polynomial regression model:

p
SSev
¼ b0 þ b1X þ � � � þ bpX

p þ noise

By setting p = 9, we were able to make the overall root mean square prediction error less

Table 2. Age- and age- and asthma-adjusted utilities for grass-pollen induced season ARC, for each of the three

therapeutic regimes.

Age classes 25–34 35–49 50–64 >65

Age-adjusted utilities

no AIT FE 0.7558 0.7402 0.7013 0.7091

no AIT RE 0.7516 0.7361 0.6973 0.7051

SCIT FE 0.8254 0.8083 0.7658 0.7743

SCIT RE 0.9228 0.9037 0.8562 0.8657

SLIT FE 0.8057 0.7891 0.7475 0.7578

SLIT RE 0.8014 0.7849 0.7436 0.7518

Age- and asthma-adjusted utilities

SYMPT. FE 0.5576 0.5461 0.5174 0.5232

SYMPT. RE 0.5545 0.5431 0.5145 0.5202

SCIT FE 0.6090 0.5964 0.5650 0.5713

SCIT RE 0.6808 0.6668 0.6317 0.6387

SLIT FE 0.5945 0.5822 0.5515 0.5576

SLIT RE 0.5913 0.5791 0.5486 0.5547

https://doi.org/10.1371/journal.pone.0232753.t002

PLOS ONE A non-stationary Markov model for economic evaluation of grass pollen AIT

PLOS ONE | https://doi.org/10.1371/journal.pone.0232753 May 14, 2020 16 / 33

https://doi.org/10.1371/journal.pone.0232753.t002
https://doi.org/10.1371/journal.pone.0232753


than 10−3. In this way, theoretical probabilities estimated by the polynomial regression

model in correspondence of an integer RTSS score are almost indistinguishable from the

respective empirical probabilities reported in 1. Moreover, the polynomial model can be

used to interpolate probabilities in correspondence of any sensible (possibly non-integer)

RTSS as follows:

p̂
SSev
¼ b̂0 þ b̂1RTSSþ � � � þ b̂pRTSS

p

• As the four the probabilities in each row, one for each severity level, must sum to 1, the

model-based probabilities for 0 = none, 1 = mild and 2 = moderate can be obtained by direct

interpolation, while those relative to 3 = severe can be calculated by difference:

p̂severe ¼ 1 � p̂none � p̂mild � p̂moderate

• Finally, on the basis of those interpolated probabilities, we can estimate the RSUI score in

correspondence of any possibly non-integer RTSS. For example, for RTSS = 4.50 we get uin-

terp = 0.7332, which is roughly equal to the midpoint of the interval (0.7027, 0.7640). For

reader’s convenience, Table 1 also reports the model-based estimated utilities in correspon-

dence of integer RTSS scores.

Having derived a reasonable algorithm for converting a condition-specific symptom score

into utilities, we used the following data sources for attaching utilities to health states:

• SCIT, the experimental arm of the meta-analysis 3 (Fig 1) in [22] on the efficacy of SCIT

versus placebo for grass-pollen induced seasonal ARC, based on standardized mean differ-

ences (SMD) for symptom score (SS).

• SLIT, the experimental arm of the meta-analysis B (Fig 1) in [21] on the efficacy of SLIT

versus placebo for grass-pollen induced seasonal ARC, based on mean differences (MD) for

SS.

• no AIT, the control arm of the latter meta-analysis.

From [21], in order to maintain consistency with the estimated pooled effect size, the aver-

age symptom scores in each of the two arms were calculated as:

average SS in the experimental arm ¼ �xðeÞ ¼
PK

i¼1
wðeÞi �xðeÞi

PK
i¼1
wðeÞi

ð22Þ

average SS in the control arm ¼ �xðcÞ ¼
PK

i¼1
wðcÞi �xðcÞi

PK
i¼1
wðcÞi

ð23Þ

where:

• �xðeÞi is the mean of the ith study included in the experimental arm.

• �xðcÞi is the mean of the ith study included in the control arm.

• wð�Þi are the respective weights, which differ according to whether either a fixed or a random

effect model (FE and RE, respectively) is used for combining data from multiple study [53].
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The obtained values were, respectively:

�xðcÞ ¼

(
3:7507; FE model

3:8208; RE model
! average No AITRTSS

�xðeÞ ¼

(
2:9176; FE model

2:9891; RE model
! average SLIT RTSS

ð24Þ

All the studies included in [21] used the RTSS ranging from 0 to 18 as the outcome mea-

sure, and hence, the obtained average scores were amenable to transformation into health

states utilities.

Unfortunately, the same procedure could not be applied to the meta-analysis in [22],

because effect sizes are expressed on a standardized scale. A sensible solution consists in back-

transforming the standardized pooled effect size to a non-standardized scale, thus comparable

with that used in the previous meta-analysis. The basic idea, expressed in [54], section 12.6.4,

is to use a reference standard deviation for the particular measurement scale on which we

want to back-transform the standardized pooled effect size as follows:

ŷðeÞ ¼ �xtypical þ ðSMD� SDtypicalÞ ð25Þ

where:

• ŷðeÞ is the unstandardized average score for the experimental arm, back-transformed to the

scale of measurement of interest (in our case represented by the RTSS).

• �xtypical represents the ‘typical’ baseline average level of the measurement scale on which we

want to back-transform. Therefore, the most reasonable choice is:

�xtypical ¼ �xðcÞ ¼

(
3:7507; FE model

3:8208; RE model
ð26Þ

• SDtypical represents the ‘typical’ standard deviation of the measurement scale on which we

want to back-transform. In [54] it is suggested that “. . . the standard deviation could be
obtained as the pooled standard deviation of baseline scores in one of the studies.”. As it is not

apparent which study should be used for such purpose, we calculated SDtypical in the follow-

ing way:

SDtypical ¼

PK
i¼1
wðcÞi s

ðcÞ
i

PK
i¼1
wðcÞi

where sðcÞi is the sample standard deviation for the ith study in the control arm of the previous

meta-analysis. In other words, rather than calculating a pooled average, weighted by degrees

of freedom as usual (which, however, requires that the variances at population level are the

same for all the studies), we have calculated a weighted average using the weights from the

estimated model. This procedure allowed to reduce the weight of those studies that had a

higher sample variability (which was likely due to a high heterogeneity of the included
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patients). With this choice, we obtained the following values:

SDtypical ¼

(
3:1012; FE model

3:1871; RE model

• SMD is the standardized pooled effect size (pooled) of the SLIT meta-analysis, equal to -0.38

for the FE model and -0.92 for the RE model, respectively.

Using Eq (25) we obtained the following unstandardized scores:

ŷðeÞ ¼

(
2:5876; FE model

0:8768; RE model
! average SCIT RTSS ð27Þ

After transforming the average RTSS into utilities, we obtained the following baseline val-

ues: no AIT FE = 0.7792; no AIT RE = 0.7748; SCIT FE = 0.8509; SCIT RE = 0.9513;

SLIT FE = 0.8306; SLIT RE: 0.8262.

These utilities refer to a single condition. When deemed appropriate, heterogeneity between

individuals belonging to different age groups can be introduced into the model using a multi-

utility multiplicative function as in [55], that is:

uAB ¼ uA � uB ð28Þ

where uA is the utility of a single health condition and uB indicates the average utility of age

class B in the absence of any pathological dimensions. In our case, uB values were obtained

from the utility scores valid for Spain as reported in [56]. In a similar way, we also adjusted for

the co-existence of asthma, using the utility of 0.7378 attached by [57] to patients in whom

“allergic rhinitis and mild allergic asthma”, characterized by intermittent use of beta-agonists,

was present. We finally obtained the following sets of utilities (Table 2), that have a perfect

one-to-one correspondence with the health states included in our Markov model. By way of

example (using the FE-based utilities): u(NA1) = 0.7402, u(NANA2) = 0.8083, u(AA3) = 0.5822.

Costs

The cost of the medical resources used in the simulation was obtained, directly or indirectly,

from various data sources. None of the patients included in the simulated cohort was hospital-

ized. We used a societal perspective [58], by quantifying direct costs due to drug or medical

resource consumption, regardless whether these costs were paid by patients or by the provider

of the service, that is the Italian Regions and then, ultimately, the Italian Government, as well

as direct non-medical costs such as hospital transport cost, which is entirely borne by patients.

We also considered indirect non-medical costs, in particular the loss of income due to the

number of working hours lost as a result of immunologic treatment administration (SCIT).

We did not consider intangible costs attributable the physical or psychological distress associ-

ated with the disease, given their difficult quantification [59]. All costs were given in 2018 val-

ues, except costs for asthma medications, which were given in 2010 values (although the low

average annual inflation rate over the last 10 years makes this issue more apparent than real).

The various cost components have been calculated as follows:

• Seasonal costs for symptomatic drug treatment, entirely borne by patients. They are obtained

by summing the average seasonal cost for both Desloratadine and Budesonide:

PLOS ONE A non-stationary Markov model for economic evaluation of grass pollen AIT

PLOS ONE | https://doi.org/10.1371/journal.pone.0232753 May 14, 2020 19 / 33

https://doi.org/10.1371/journal.pone.0232753


1. Desloratidine: 5 mg orally once a day per os, the daily cost is 0.2055 €per 5 mg tablet

(Desloratadina DOC—generic drug—4.11 €per pack, 20 tablets). To estimate the aver-

age daily consumption of Desloratidine during the entire pollen season we used the data

from [60, 61]; in particular, [61] reported an average consumption 17.9 tablets per sea-

son in the control group and 12.2 tablets per season in the treatment group (treated with

SLIT for ARC), while [60] reported that the above mentioned difference between the

two groups corresponded to a reduction in the medication score from 2.4 (control

group) to 1.5 (treated group, undergone SLIT immunotherapy). To transform this refer-

ence average consumption into monetary values, we used a simple proportion assuming

a linear relationship between the average RTSS reduction and the average Desloratadine

consumption reduction during the entire pollen season. For example, using the FE

model, the reduction in the RTSS between the control and the experimental group

treated with SCIT was equal to 2.9176 − 3.7507 = -0.8331. Hence the average reduction x
in the Desloratadine consumption for the treated group was calculated as:

ð12:2 � 17:9Þ : ð1:5 � 2:4Þ ¼ x : ð� 0:8331Þ

ð� 5:7Þ : ð� 0:9Þ ¼ x : ð� 0:8331Þ

! � 5:28 tablets for the entire pollen season

which corresponds to a total of 17.9 − 5.28 = 12.62 tablets of Desloratidine on average

during the entire pollen season for the SCIT strategy. By repeating the same calculations

for all possible combinations (SLIT and SLIT, FE and ME model), and dividing by the

mean duration of a pollen season (58 days, see [60]), we obtained the average daily con-

sumption of Desloratadine, in tablets per day, valid for the entire pollen season. For the

no AIT strategy we considered the average seasonal consumption for the control arm

reported by [61], that is 17.9 tablets per season, corresponding 0.31 tablets per day. The

average seasonal cost was obtained by multiplying the average daily consumption for the

desired season length (e.g. 60, 90 or 120 days), and calculating the minimum number of

packs necessary to ensure the average seasonal consumption. By way of example, with

the SCIT strategy and a season length of 60 days, the average seasonal consumption was

of 10.896 tablets, and thus only 1 pack of Desloratadina DOC was charged, for an aver-

age seasonal cost of €4.11.

2. Budesonide: two 50 mcg puffs per nostril twice a day (total 200 mcg per day), the cost

per inhalation is 0.0775 €with a daily cost of 0.0775 � 4 = €0.31, 200 mcg per die (Kesol1

Spray 50mcg 10ml/200D, €15.50 per 200 inhalations). We used the same procedure

described above for calculating the average seasonal cost.

• Costs for medical resource use. These costs vary as simulation run unfolds:

1. no AIT

a. 1st year (t = 0):

• first access visit: €30.66 for first specialist (physician) visit copayment + €10 for addi-

tional fixed copayment to access public health services;

• €22.91 for further specialist visit;

• Allergy testing: €11.92 up to 7 allergens for a total of 16 allergens, corresponding to a

total cost of €11.92 x 3 + €10 (additional fixed fee) = €44.86.

b. from 2nd year onwards: no additional use of medical resources.
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2. SCIT

a. 1st year (t = 0):

• first access visit: €30.66 for first specialist visit copayment + €10 for additional fixed

copayment to access public health services;

• 12 immunotherapy administrations, 4 administrations during the build-up phase

(1st month) + 8 additional administrations in the course of the year. The total cost of

this therapeutic schedule must be calculated in blocks of 8 administrations, at a unit

cost of €11.96 for each injection, for a total of €11.96 x 8 = €92.69 + €10 (fixed fee) =

€102.69. As 1 block is not enough during the first year (we have 12 administrations),

we assumed that two blocks are consumed, giving a yearly total cost of 102.69

+ 102.69 = €205.38.

b. 2nd year (t = 1):

• €22.91 for further specialist visit;

• 10 immunotherapy administrations during the year. Four injections purchased the

previous year are still available, thus only one new block will be purchased by

patients, incurring a cost of €92.69 + €10 (fixed copayment) = €102.69.

c. 3rd year (t = 2):

• €22.91 for further specialist visit;

• €44.86 for allergy testing;

• 10 immunotherapy administration, €102.69 as above.

d. from 4th years onwards: no additional use medical resources.

3. SLIT: the structure of costs for SLIT are identical to those charged for SLIT, except

that patients do not incur in cost for administering the immunotherapy (which is self-

administered).

All the calculations in this section were carried out using the (Italian) health copayment

amounts valid for the Apulia Region. Assuming an average duration of 20 minutes for

each specialist visit, we can conclude, with a good level of approximation, that the

amount of copayment for specialist visits incurred by the patients covers the remunera-

tion that the Apulia Region must pay to the specialist physician. Therefore, in line with

the societal perspective used, we do not have to charge any other cost for the specialist

visits. The copayment amount incurred by the patient for allergy tests covers the entire

cost of the service, and therefore also in this case we do not have to add any other costs

to be borne by the National Health System. Medical cost over a follow-up of T = 9 years

are then hereby detailed:

• Years 0–2

• no AIT: Average = €32.81

• SCIT: Average = €199.95

• SLIT: Average = €63.03

• Year 3 and afterwards

• None of the strategies incurred in any additional cost for medical resources
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• Costs of immunotherapy. These costs are entirely borne by patients:

• SCIT: The pharmaceutical formulations that we have considered in order to determine

the average annual cost were those marketed by the companies listed below. We report the

average price per pack, containing 1 vial for 5 administrations; the starter pack containing

the vials used for induction response has the same price:

1. Allergofarma (Allergovit1): €265

2. Hal-Allergy (Purethal1): €225

3. Lofarma (Lais In1): €214.50

4. Allergy Therapeutics (Tyrosin TU1): €199

5. Alk-Abellò (Pangramin Ultra1): €250

As 2 packs are needed to administer 10 injections, the average annual for SCIT is

equal to: (2 � 265 + 2 � 255 + 2 � 214.50 + 2 � 199 + 2 � 250) / 5 = €473.4

• SLIT: The two schedules considered for cost calculation are:

1. GRAZAX1: a continuous cycle over three years, 1 sublingual tablet per day. Retail

prices of Grazax packs are, respectively:

• GRAZAX Os 100 Liof 75 000 Sq-t: €330.08

• GRAZAX Os 30 Liof 75 000 Sq-t: €99.02

Thus, one year of therapy with GRAZAZ (360 tablets) costs 3×330.08 + 2×99.02 =

€1,289.46

2. ORALAIR1: 7 months per year, from 4 months before the beginning of the pollen

season, 1 sublingual tablet per day. Retail prices of Oralair are:

• ORALAIR 30 Cpr Subl 300 lr: €99.28

• ORALAIR 90 Cpr Subl 300 lr: €297.83

Thus, seven months of therapy with ORALAIR (210 tablets) costs 2×297.83 + 99.28

= €694.94. The cost used in the Markov simulations was the average between these

two costs, which translates to an average annual cost of (1,289.46 + 694.94) / 2 =

€992.2.

• Costs of asthma: costs for asthma were derived from Table 2 in [62]. Costs have been esti-

mated on the basis of: “. . . 462 subjects included in the analysis, that had mild (22.3%), mod-
erate (34.0%) or severe (43.7%) persistent asthma . . .”. The average annual direct healthcare

cost (given in 2010 Euros) includes specialist medical examinations, clinical and laboratory

examinations, medicines and hospital admission and discharge costs, and has been estimated

at €594. The average annual indirect non-healthcare cost reflects the loss of productivity due

to both lost working days and limitations in non-work-related activities, estimated at €989.

• Other costs: they must be charged for SCIT strategy only, as its administration involves a

temporary interruption of work as well as additional transport costs. The first eventuality

generates indirect non-healthcare costs (of the same kind of asthma-related indirect costs),

while the second generates direct non-healthcare costs that are borne entirely by patients.

Using the human-capital method, indirect costs are evaluated as the loss of income that

could have been produced, but which was not actually produced because of the onset of the

morbid event [63]. To obtain an hourly monetary valuation of the loss of productivity, we
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considered the amount of gross domestic product per capita given in 2014 values equal to

€26,697.6 [64], first divided over 52 weeks and then over 35 hours per working week, giving

an average hourly value of €14.66. For transport costs we assumed a public/private mix, with

a cost of €5 per each injection. Indirect costs of lost productivity and costs of transport for

the SCIT strategy are shown below (for a follow-up of T = 9 years):

• Productivity

• Years 0–2: Average = €312.74

• Year 3 and afterwards: This strategy did not incur any additional cost

• Transport

• Years 0–2: Average = 53.33

• Year 3 and afterwards: This strategy did not incur any additional cost

Results

The evolution of cohorts based on the Markovian model that we have described was simulated

in R 3.6.1, using the markovchain library, v. 0.8.0 [65, 66]. For the base case we used the

fixed effects model, calculating the quality adjusted life years (QALYs) as follows:

QALYt ¼

(
ð12 � ksÞ

12
� 1þ

ks
12
uðNA1Þ no AIT; No Asthma

ð12 � ksÞ
12

� 1þ
ks
12
uðA1Þ no AIT; Asthma

ð29Þ

QALYt ¼

(
ð12 � ksÞ

12
� 1þ

kp
12
uðANA2Þ þ

ks � kp
12

uðNA1Þ SCIT; No Asthma

ð12 � ksÞ
12

� 1þ
kp
12
uðAA2Þ þ

ks � kp
12

uðA1Þ SCIT; Asthma

ð30Þ

QALYt ¼

(
ð12 � ksÞ

12
� 1þ

kp
12
uðANA3Þ þ

ks � kp
12

uðNA1Þ SLIT; No Asthma

ð12 � ksÞ
12

� 1þ
kp
12
uðAA3Þ þ

ks � kp
12

uðA1Þ SLIT; Asthma

ð31Þ

for t = 0, 1, 2, . . ., T, where:

• ks is the length of the grass-pollen season expressed in months (in the base case ks = 2, that is

60 days).

• kp (with kp� ks) is that part of the pollen season during which immunotherapy is more effec-

tive in symptom control than symptomatic therapy. When kp = ks then AIT is more effective

during the whole pollen season, and both clinical manifestations of ARC and perceived qual-

ity of life improve. When kp< ks the clinical manifestations and quality of life improve only

at the peak of the pollen season, whereas for the rest of the pollen season the QALY gained

are identical to those gained by means of first-line symptomatic therapy.

In the base case, for both premature discontinuations or after the end of therapy, we

assumed that the QALY gained were at the same level as those calculated with Formulas (30)
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and (31). For example, the evolution of QALY gained for patients undergone SCIT is shown

in Table 3 (assuming a follow-up of T = 9 years):

These assumptions imply that the clinical effectiveness of immunotherapy is maintained

for the entire duration of the follow-up. Moreover, the increased efficacy (with respect to

symptomatic therapy) is already present from the first year of immunotherapy, and the protec-

tive effect is preserved for the entire follow-up even in case of premature discontinuation.

These hypotheses are clearly unrealistic, and we are unable to understand whether the same set

of assumption has been used by published pharmacoeconomic studies since, as stated before,

most of these studies are not transparent about the calculation procedures that were actually

used.

Expected QALYs for each cycle were calculated by summing the QALYs for each state by

the proportion of the cohort in that state, and then adding these expected cycle QALYs across

all cycles to obtain the total expected QALYs over the follow-up horizon. Similarly, expected

costs for each cycle were calculated as a weighted averaged of costs pertaining to each state by

the proportion of the cohort, with the particularity that patients prematurely abandoning the

immunotherapy in a given cycle (either SCIT or SLIT) were charged of 50% of costs for

immunotherapy in that cycle. Moreover, in the base case, indirect costs of lost productivity

and transport cost were not charged to patients undergoing SCIT. The resulting total cost

were calculated adding the expected costs across all cycles. All the expected values (QALYs and

costs) were discounted at the annual rate r = 0.035 (3.5%). Traces of Markov cohort simulation

of each health state in the base case, as well as of expected costs and QALYs can be appreciated

in Fig 6.

Using the no AIT strategy as a comparator, the total expected costs and QALYs can be

used to calculate an incremental cost-effectiveness ratio (ICER), that is the incremental cost

for 1 additional QALY gained required for implementing the immunotherapy for reducing

symptoms and asthma co-occurrence in patients suffering from grass-pollen seasonal ARC:

ICER ¼
C

AIT
� C

No AIT

Q
AIT
� Q

No AIT

¼
DC
DQ

ð32Þ

where C(•) indicates the total expected cost across the follow-up horizon (AIT = either SCIT
or SLIT), while Q(•) indicates the total expected QALYs gained by each of the three strategies.

Estimate (32) is subject to uncertainty, that reflects the uncertainty in the model input parame-

ters [67–69]. To demonstrate the possibility of an intervention being cost-effective at a certain

willingness-to-pay (WTP) threshold, a probabilistic sensitivity analysis (PSA) is a valuable

option, in which a prior sampling distribution of the model input variables is set [70, 71]. In

the final section, we will briefly discuss on how our richly parameterized CEA model is well

suited for a PSA. However, in this paper we will limit ourselves to the analysis of some selected

scenarios, obtained by discontinuously varying one or more input parameters, having a two-

fold objective in mind. Firstly, we can test whether our conclusions are robust under different

circumstances, providing an early level sensitivity analysis. Secondly, these scenarios reflect

Table 3. QALY gained in the base case in each cycle of Markov simulation, for each health state of the SCIT strategy.

t 0 1 2 3 4 5 6 7 8 9

ANA2 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805

AA2 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640

NANA2 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805 0.96805

NAA2 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640 0.59640

https://doi.org/10.1371/journal.pone.0232753.t003
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situations that have a greater adherence to real-life and mirror plausible clinical assumptions,

departing from the unrealistic assumptions underlying the base case. Specifically, we simulated

the Markovian model under the following alternative settings:

• Base case with random effects (RE) model: this scenario is identical to the standard base

case, except that the effects of interventions are meta-analyzed under the random effect

model.

• No clinical benefit after premature discontinuation: this scenario is the most adverse to

immunotherapy, as it is assumed that the higher level of QALYs provided by the administra-

tion of SCIT and SLIT is warranted only after completing a full cycle of three years of ther-

apy (i.e. from t = 3 onwards we use Formulas (30) and (31)), while in t = 0, 1, 2 the utilities

are calculated according to Formula (29) (valid for no AIT). Furthermore, for all the

patients who prematurely discontinue therapy (i.e. before completing a full cycle of three

years), the clinical benefit remains at the baseline level warranted by a purely symptomatic

therapy (which is never discontinued), and QALYs are calculated with Formula 29 for each

cycle.

• No asthma prevention by AIT: the only substantial difference with the base case is that AIT
is assumed to not be more effective than a symptomatic therapy in preventing progression of

ARC to asthma. This assumption corresponds to setting:

RR
aðAITÞ ¼ 1

Transition matrices must be modified accordingly. In particular, expression 15 becomes:

prðNo AITþ No Asthma! No AITþ AsthmaÞ ¼

¼ 0:76 p
að1yrÞ þ 0:24 p

að1yrÞ ¼ pað1yrÞ � 0:00463

with an identical change holding in expression (20) valid for SCIT.

• Full societal perspective: in this scenario, unlike the base case, the SCIT immunotherapy gen-

erates the following additional costs:

Fig 6. Base case. Right: Markov cohort evolution in the base case, where the fixed effects model has been used for calculating

health states utilities, and for a pollen season length of 60 days. Left: Markov cohort evolution of expected costs and QALY gained

for each Markov cycle.

https://doi.org/10.1371/journal.pone.0232753.g006
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• Indirect non-healthcare costs due to the temporary interruption of work for administering

therapy.

• Direct transportation costs.

For each of the above defined scenarios (included the base cases) we considered four differ-

ent variation obtained in the following way:

• length of the follow-up T = 9, length of the grass-pollen season S = 60, kp = 2 (the efficacy of

the immunotherapy covers P = kp�30 = 60 days, the whole duration of the grass-pollen

season).

• length of the follow-up T = 9, length of the grass-pollen season S = 120, kp = 2.

• length of the follow-up T = 14, length of the grass-pollen season S = 60, kp = 2.

• length of the follow-up T = 9, length of the grass-pollen season S = 60, kp = 0.5 (the efficacy

of the immunotherapy covers P = 0.5�30 = 15 days, the peak of the grass-pollen season [61]).

Results are reported in Table 4, showing expected incremental costs, QALYs and the corre-

sponding ICERs for each scenario and each possible variation. A graphical summary of the

same results in the cost-effectiveness plane is shown in Fig 7. In synthesis, the average incre-

mental QALYs across scenarios are 0.1452 (sd: 0.1252) for SCIT and 0.0767 (sd: 0.0516) for

SLIT. In the same way, the average incremental costs across scenarios are €1420.542 (sd:

€271.115) for SCIT and €1208.275 (sd: €15.695) for SLIT. It emerges that SCIT strategy

offers, on average, a greater clinical benefit while being costlier than SLIT (as a consequence

of the greater adherence to therapy, which is reflected in a greater amount of costs for immu-

notherapy). However, incremental costs of SCIT have a larger variability, because of indirect

costs of lost productivity and transport cost that are a burden for the full societal scenario.

As far as ICERs are considered, a large variability in outcomes is present. We can observe

that:

• SCIT systematically outperforms SLIT, except for the full societal perspective (for example,

for T = 9 and a pollen season of 60 days, we have €16.729 for SCIT vs. €15,116 for SLIT).

• For longer pollen seasons (120 days) or longer follow-up duration (T = 14) the ICER

decreases, because each patient experiences a greater clinical benefit over a larger time span,

and QALYs gained per cycle increase accordingly.

• Assuming that no clinical benefit is achieved after premature discontinuation, and that at

least three years of immunotherapy are required to improve clinical manifestations and per-

ceiving a better quality of life, ICERs becomes far greater than €30,000. For example, for

T = 9 and a pollen season of 60 days, we have €43,166 for SCIT €92,891 for SLIT.

• If the immunotherapy is effective only at the peak of the pollen season (15 days), the relative

ICERs rise sharply. For example, when no clinical benefit is present after premature discon-

tinuation, we have €74,770 for SCIT vs. €152,110 for SLIT.

• The distance between SCIT and SLIT in the base case increases when the interventions are

meta-analyzed under the random effect model. This is an obvious consequence of the fact

that the average back-transformed RTSS for SCIT is 2.5876 under the RE model vs. 0.8768

under the RE model.

Even in the light of these consideration we cannot conclude that both SCIT and SLIT (or

only one of these two) could be considered cost-effective for ARC, as a reliable threshold value

for cost-effectiveness is missing. For example, the British National Institute for Health and
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Care Excellence (NICE) considers cost-effective each technology whose ICER is not exceeding

£30,000 per QALY gained [72]. However, other regulatory agencies adopt different thresholds.

In the Netherlands for example, the threshold for a drug to be considered cost-effective varies

from €10,000 to €80,000 depending on the severity of the disease.

Table 4. Expected incremental costs (ΔC), expected incremental QALYs (ΔQ) and the relative ICERs (in 2018 process) for each main scenario and each possible vari-

ation (20 scenarios in total). The length of the grass-pollen season S, and of the part P of the pollen season during which immunotherapy is more effective in symptom

control than symptomatic therapy, are expressed in days (d).

Main scenario Model T + 1 S (d) P (d) Strategy ΔC ΔQ ICER (€)

Base case FE 10 60 60 SCIT 1256.1425 0.1139 11,028

10 60 60 SLIT 1216.8781 0.0805 15,116

10 120 120 SCIT 1389.2147 0.2086 6,660

10 120 120 SLIT 1181.5926 0.1486 7,951

15 60 60 SCIT 1241.2519 0.1675 7,410

15 60 60 SLIT 1208.2757 0.1178 10,257

10 60 15 SCIT 1256.1425 0.042 29,908

10 60 15 SLIT 1216.8781 0.0289 42,107

Base case RE 10 60 60 SCIT 1256.1425 0.2642 4,755

10 60 60 SLIT 1216.8781 0.0804 15,135

10 120 120 SCIT 1389.2147 0.4989 2,785

10 120 120 SLIT 1181.5926 0.1483 7,968

15 60 60 SCIT 1241.2519 0.3810 3,258

15 60 60 SLIT 1208.2757 0.1176 10,274

10 60 15 SCIT 1256.1425 0.0872 14,405

10 60 15 SLIT 1216.8781 0.0289 42,107

Premature discont. FE 10 60 60 SCIT 1256.1425 0.0291 43,166

10 60 60 SLIT 1216.8781 0.0131 92,891

10 120 120 SCIT 1389.2147 0.0444 31,289

10 120 120 SLIT 1181.5926 0.0192 61,541

15 60 60 SCIT 1241.2519 0.0507 24,482

15 60 60 SLIT 1208.2757 0.0229 52,763

10 60 15 SCIT 1256.1425 0.0168 74,770

10 60 15 SLIT 1216.8781 0.0080 152,110

No asthma prevention FE 10 60 60 SCIT 1278.4711 0.0992 12,888

10 60 60 SLIT 1227.4419 0.0731 16,791

10 120 120 SCIT 1411.5424 0.1951 7,235

10 120 120 SLIT 1192.1564 0.1419 8,401

15 60 60 SCIT 1274.0865 0.1461 8,721

15 60 60 SLIT 1223.9551 0.1071 1,1428

10 60 15 SCIT 1278.4711 0.0276 46,321

10 60 15 SLIT 1227.4419 0.0217 56,564

Full societal persp. FE 10 60 60 SCIT 1905.4595 0.1139 16,729

10 60 60 SLIT 1216.8781 0.0805 15,116

10 120 120 SCIT 2038.5317 0.2086 9,772

10 120 120 SLIT 1181.5926 0.1486 7,951

15 60 60 SCIT 1890.5689 0.1675 11,287

15 60 60 SLIT 1208.2757 0.1178 10,257

10 60 15 SCIT 1905.4595 0.0420 45,368

10 60 15 SLIT 1216.8781 0.0289 42,107

https://doi.org/10.1371/journal.pone.0232753.t004
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Discussion and conclusions

In this paper we have introduced a flexible, non-stationary Markov model for CEA of grass-

pollen induced seasonal ARC. The model is intended to provide healthcare professionals and

policymakers with useful and realistic information for cost-effective interventions. However,

there are some limitations that are worth to be discussed further.

As mentioned earlier, the impact of model input parameters uncertainty on the reliability

of our conclusions need to be investigated further. Indeed, in most of previously published

studies, each input parameter is assigned a point estimate value together with a level of confi-

dence around such estimate. In this way, a prior probability distribution can be assigned to all

parameters in the model, and a Monte Carlo simulation to generate the sampling distribution

of the joint mean cost and efficacy conducted, so that a quantification of the uncertainty sur-

rounding those estimates can be obtained [73]. As already discussed, PSA has the advantage of

indicating the probability of a health technology being cost-effective at various thresholds.

In our model, every clinical aspect can be linked to a specific input parameter. For example,

it is quite immediate to introduce a prior probability distribution on the fraction of the pollen

season during which the immunotherapy is effective, unifying and extending many scenarios

that we have presented in Table 4. As kp is a fraction constrained in a given range (between 0

and ks), the generalized Beta distribution provides a flexible way to specify a probability distri-

bution over a particular range (with a specified minimum and maximum) [74]. Prior

Fig 7. Cost-effectiveness plane. Expected incremental costs (ΔC, in 2018 prices) and expected incremental QALYs (ΔQ),

for each scenario and each possible variation (20 scenarios in total).

https://doi.org/10.1371/journal.pone.0232753.g007
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distributions over the remaining input parameters of the model, such as log-relative risks and

costs, are very commonly used in previous literature and hence will not be discussed further

[28]. On the contrary, it is much more difficult to program and compute a probabilistic Monte

Carlo simulation that includes, as a particular case, all the scenarios we have analyzed before.

For example, utilities of the scenario in which no clinical benefit is present if the immunother-

apy is prematurely discontinued, are calculated differently than the base case (Formulas (29),

(30) and (31)). In other words, we are facing a discontinuity between the two scenarios that

cannot fit in a prior probability distribution. In this case, we could experiment Bernoulli priors

to randomly switch between the two scenarios inside the same probabilistic simulation. Future

papers might fruitfully further explore these approaches and issues.

In conclusion, our model has demonstrated the ability to study the cost-effectiveness of the

immunotherapy for ARC, simulating scenarios that are typical of real-life clinical practice and

that cannot fall within the hypotheses underlying RCTs, whose conclusions are sometimes

unrealistic and generate ICER estimates that are biased in favor of the cost-effectiveness of

interventions. However, as we have already pointed in earlier sections, many are the processes

to be refined to make the Markov simulation model even more realistic, and to incorporate the

uncertainty about model input parameters in a generalizable way. Indeed, these are interesting

topics for future researches, as more investigations are necessary to validate the conclusions

that could be drawn from this current study.
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