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Abstract

The transport layer security (TLS) protocol is widely adopted by apps as well as malware.
With the geometric growth of TLS traffic, accurate and efficient detection of malicious TLS
flows is becoming an imperative. However, current studies focus on either detection accu-
racy or detection efficiency, and few studies take into account both indicators. In this paper,
we propose a two-layer detection framework composed of a filtering model (FM) and a mal-
ware family classification model (MFCM). In the first layer, a new set of TLS handshake fea-
tures is presented to train the FM, which is devised to filter out a majority of benign TLS
flows. For identifying malware families, both TLS handshake features and statistical features
are applied to construct the MFCM in the second layer. Comprehensive experiments are
conducted to substantiate the high accuracy and efficiency of the proposed two-layer frame-
work. A total of 96.32% of benign TLS flows can be filtered out by the FM with few malicious
TLS flows being discarded provided the threshold of the FM is set to 0.01. Moreover, a multi-
classifier is selected to construct the MFCM to provide better performance than a set of
binary classifiers under the same feature set. In addition, when the ratio of benign and mali-
cious TLS flows is set to 10:1, the detection efficiency of the two-layer framework is 188%
faster than that of the single-layer framework, while the average detection accuracy reaches
99.45%.

Introduction

Plaintext messages can be readily eavesdropped and tampered with during transmission,
which poses a great security risk to network users. This plaintext access behavior has been
marked as unsafe by Google Chrome. In this context, the transport layer security (TLS) proto-
col has been widely adopted for its ability to encrypt plaintext and to prevent general man-in-
the-middle attacks as mentioned in [1]. According to Sandvine’s latest report [2], encrypted
traffic accounts for 50% of global web traffic.
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The TLS protocol can guarantee the security of users’ access to the Internet; however, it also
facilitates malware to establish command and control (C&C) channels. Malware can briskly
pass through the firewall via TLS-based communication technology, and the encrypted pay-
load makes it difficult to analyze. Malicious TLS traffic has also shown an increasing trend in
recent years. As portrayed in Cisco’s report in 2018 [3], 33% of malware utilizes the TLS proto-
col to establish C&C communication. In addition, MITRE ATT&CK [4] has recorded a series
of cyber attacks exposed in the past few years, and the number of attacks using 443 ports to
establish C&C communication accounts for 66.67%. Therefore, the wide application of the
TLS protocol brings a large challenge to achieve the purpose of identifying malicious TLS
flows with suitable efficiency.

In industry, the whitelist approach has played an indispensable role in refining malware
detection efficiency. Through checking the server name field or domain in the certificate, the
TLS flows regarded as “benign” can be filtered out directly. Nevertheless, server names and
certificates can be fabricated by malware, which makes the whitelist approach unreliable to
some extent.

Facing this sophisticated and untrusted communication environment, this paper proposes
a two-layer detection framework with a rapid rate and high precision based on the supervised
learning algorithm. Current studies focus on either improving the detection accuracy [5-7] or
optimizing the detection efficiency [8, 9]. Few studies discuss how to improve the detection
efficiency for a two-layer detection framework without affecting the detection accuracy.
Indeed, as long as a majority of benign TLS flows are excluded quickly, both detection indexes
can be guaranteed. Moreover, through further exploration of the features of TLS flows, we can
establish a more accurate classification model. Accordingly, we propose two models, namely, a
filtering model and a malware family classification model. The former is applied to filter out a
majority of benign TLS flows, and the latter is employed to identify malware families. The
combination of these two models forms our two-layer detection framework. The innovations
of this paper are as follows:

1. A binary classifier termed the filtering model based on a new set of TLS handshake features
is constructed, in which the accuracy (ACC) and the false positive rate (FPR) can reach
99.82% and 0.072%, respectively. When the threshold of the classifier is set to 0.01, the fil-
tering model can exclude 96.32% of benign TLS flows in advance without affecting the
identification of malicious TLS flows.

2. Comparison experiments are conducted between a multiclassifier and a set of binary classi-
fiers under the same feature set to select a better method of dealing with a multiclassifica-
tion problem. The superior performance of the multiclassifier is verified through
comparison experiments.

3. This paper proposed a two-layer framework to refine the efficacy of detecting TLS flows, in
which the first layer applies a binary classifier to filter out benign TLS flows and the second
layer employs a multiclassifier to identify the malware family of TLS flows. Experiments
show that our two-layer framework can greatly improve the detection efficiency, while the
detection accuracy is also guaranteed.

The remainder of this paper is arranged as follows. Related work is described in Section 2.
A problem statement is introduced in Section 3. Section 4 shows the two-layer detection
framework. Section 5 introduces the TLS protocol, especially the TLS handshake information.
Section 6 discusses feature engineering, including TLS handshake features, statistical features,
and feature selection methods. Section 7 presents the experiments and the related remarks.
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The conclusion is demonstrated in the last section, in which potential future work is also
discussed.

Related work

For encrypted network traffic, effective identification cannot be done via simply matching sig-
natures used by traditional deep packet inspection (DPI) methods. Because the encrypted pay-
load does not have a fixed string, DPI tools such as Snort [10] do not work. To remedy this
drawback, much effort has been devoted to building various detection models via statistical
features [11-16], such as the packet size, number of packets and interpacked time.

Some works have focused on discovering and selecting more relevant features among statis-
tical features. A feature selection method utilizing correlation was proposed by Wang et al.
[17], in which the least feature set was selected based on KDD Cup 99 dataset [18] and
NSL-KDD dataset [19], and high detection efficiency was gained. In a study by McGaughey
et al. [20], the fast orthogonal algorithm was applied to select 12 features from 2839 features,
which reduced the time overhead by 81% while maintaining the detection rate. Zhang et al.
[21] proposed two feature selection algorithms. One is called “WSU_AUC” and is used to deal
with the class imbalance problem; the other is termed SRSF and is employed to select robust
and stable features. The advancements of the classification model were verified by experi-
ments. Optimizing the feature set can improve the detection efficiency. Nonetheless, in regard
to the encrypted network traffic, the classification models based only on the statistical features
are insufficient to detect malicious traffic because there exist many false positives that are diffi-
cult to analyze.

In the identification of malicious encrypted traffic, some works have also explored other
detection methods. Chen et al. [5] designed a multilayer detection framework that was
employed to alleviate the class imbalance problem. To improve the detection accuracy, they
proposed a tree-shaped deep neural network algorithm along with a quantity-dependent back-
propagation algorithm to establish a detection model based on statistical features. Experiments
showed that this model could achieve higher detection accuracy than other methods. Comar
etal. [6] designed a two-layer detection model and focused on introducing a tree-based feature
transformation algorithm to obtain more effective features. The main function of the first layer
was also to filter out benign packets, but there was no detailed description of the filtering
mechanism, and they did not evaluate whether the method they proposed could improve the
detection efficiency. Celik et al. [22] identified malware by heartbeat packets. Zhao et al. [23]
detected APT attack traffic by analyzing DNS records. Vadrevu et al. [24] captured malicious
flows by identifying download behaviors produced by malware. Bilge et al. [25] used Netflow
[26] records in conjunction with an external evaluation system to detect malware C&C com-
munications. However, all these studies depicted above focus on how to refine the detection
accuracy and seldom discuss the impact on detection efficiency.

Since the TLS protocol exchanges plaintext information during the handshake phase, more
reliable features can be brought to construct the classification model. Cisco engineers Ander-
son and David et al. have conducted in-depth research on malicious TLS flows. Their main
contributions are exploring various new features that can be applied to improve the detection
accuracy of TLS flows [27-29]. In [27], the state transition features based on the Markov chain
and the byte distribution features are verified by contrast experiments. Context information
including DNS responses, HT'TP headers, and TLS handshake information are imported to
establish classification models of a malware family in [28]. The authors of [29] further discuss
TLS handshake characteristics and combine the other 3 kinds of statistical features to detect
malicious TLS flows. In the studies mentioned above, the authors all claim that their methods
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significantly increase the performance of classifiers. However, in the recent study [29], by
using only the TLS handshake features, the accuracy of the two-class model was determined to
be 98.2%. When the false discovery rate is 0.01%, the accuracy is 63.8%, which means that this
method produces many false positives. In the process of reproducing the method of Anderson
et al., we found that only a few TLS handshake features are taken into consideration and that
TLS handshake features can be further mined. Moreover, there is no detailed discussion on the
detection efficiency in these papers. Accordingly, motivated by this prior research, we can
train a filtering model by using only TLS handshake features and establish a malware family
classification model by utilizing both TLS handshake features and statistical features.

In fact, some researchers are dedicated to improving the detection efficiency of network
traffic. Liya et al. [8] used a hierarchical clustering algorithm to divide the samples into multi-
ple clusters. Several representative flows are selected in each cluster. The classification result of
these flows is the classification result of the entire cluster by applying the multinomial naive
Bayes algorithm. In this way, the detection efficiency can be improved because many flows do
not need to be classified. However, a small loss in accuracy does exist in the related experi-
ments. Wang et al. [9] presented the seed expanding (SE) algorithm to optimize clustering per-
formance, which can significantly reduce the number of iterations when two seeds are
selected. However, there was no further discussion of the influence of the detection effect.
Most of the previous works deal with heavy network traffic via clustering-related methods.
There are few discussions on improving efficiency by designing a reasonable detection frame-
work based only on the supervised learning algorithm, and this is exactly what this paper aims
to do.

Problem statement

To detect malicious TLS flows efficiently, this paper proposes a two-layer detection framework.
The first layer is designed to filter out benign network traffic; the second layer is utilized to
identify malware families of TLS flows. Similar detection frameworks are used in [5] and [6],
but in their methods, neither any description of the filtering mechanism nor the efficiency
evaluation is mentioned. Simultaneously, the TLS flow is a kind of encrypted network traffic
and cannot be filtered by simply matching the signature. For the proposed two-layer detection
framework, in addition to the extra consumption time of the filtering model, the traversal
times of the two-layer framework are also more than that of the single-layer framework, which
may result in the two-layer framework being less efficient than the single-layer framework. To
address this disadvantage, the consumption time of the filtering model must be lower than
that of the malware family classification model. Accordingly, the first problem is how to train
an efficient filtering model (a binary classification model, BC) that can filter out benign TLS
flows with a rapid rate and high precision.

Due to the existence of various malicious TLS flows in cyberspace, the malware family clas-
sification model focuses mainly on solving a multiclassification problem. To accurately iden-
tify the malware family of TLS flows, either a multiclassifier or the “one against all” strategy
that utilizes a set of binary classifiers can be applied. However, current studies seldom compare
the effects of these two options under the same feature set in the field of network flow detec-
tion. Hence, the second problem is which option is better to deal with the multiclassification
problem.

Two-layer detection framework

In a real gigabit network environment, hundreds of TLS flows generated every minute make it
costly to identify malware families of TLS flows in real time. In addition, as the number of
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Fig 1. Two-layer detection framework.
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malware families surges, so does the pressure on the detection system. Hence, it is imperative
and appropriate to design a detection framework to reduce the time consumption of TLS flows
and guarantee the detection accuracy at the same time.

We propose a two-layer detection framework as shown in Fig 1. The first layer consists of a
BC termed the filtering model, which is applied mainly to filter benign TLS flows based only
on TLS handshake features. The second layer is a malware family classification model for iden-
tifying the malware family of TLS flows based on both TLS handshake features and statistical
features. When a new TLS flow is imported into this detection framework, the detection pro-
cess is as follows.

The flow is sent to the filtering model; if this model identifies it as a benign TLS flow, it is
directly discarded and no longer put into the next layer; if classified as a potentially malicious
TLS flow, it passes to the next layer for further identification about which malware family it
belongs to. Through this process, one can speculate that the TLS flow that is not discarded by
the filtering model may contain both malicious TLS flows and benign TLS flows. However,
compared to the number of flows in the first layer, the number of benign TLS flows in the sec-
ond layer is much less; thus, the detection efficiency can be improved.

To make the two-layer framework more efficient, the time consumed by the first layer must
be less than that of the second layer; otherwise, the two-layer framework would reach the
opposite destination. In this section, an inequality is used to infer the condition with superior
efficiency by the mathematical calculation concerning the time consumed by the two models.
A more efficient method will result in lower time overhead. We consider the following
inequality:

NF+«T, +(1—r)«NF«T, < NFxT, (1)
In Eq (1), NF represents the number of TLS flows, T represents the average time consumed
by the filtering model for every piece of flow, r represents the proportion of TLS flows filtered

out by the first layer (r € [0, 1]), and T, represents the average time consumed by the malware
family classification model for every flow segment. This inequality can be simplified as follows:

r> T\T, (2)

From the inequality, we can conclude that the efficiency of our method depends not on the
number of flows but on the proportion of flows filtered out by the first layer. The original
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range of r is [0, 1]. To make the two-layer framework more efficient, the value of T, must be
greater than T). Under this condition, the range of  needs to be (T1\T5, 1].

Since the model of the first layer has fewer training features than the malware family classi-
fication model, the time consumption T of the former is less than the time consumption T, of
the latter. That is, if the prerequisite condition of In Eq (2) is satisfied, a more efficient detec-
tion process can be achieved.

TLS handshake

information

The TLS protocol is derived from the secure sockets layer (SSL) protocol. The TLS protocol
version has been updated to 1.3, but the mainstream version is still 1.2. Few apps implement
version 1.3, which regulates the samples collected in this paper to be based mainly on TLS 1.0,

TLS 1.1 and TLS 1.2.

Fig 2 shows a typical process for TLS key negotiation. In this process, two main purposes
are completed, namely, key negotiation and identity authentication, and the message informa-
tion exchanged between the client and the server is the focus in this paper. In the figure, the cli-
ent hello contains the TLS version, cipher suites, extensions, etc. The server hello includes the
TLS version, cipher suite, extensions, certificate, server key exchange, and client certificate

Client Server
Client Hello
SSL version, supported ciphers, extensions, etc. i
Server Hello
P Cipher Suite(RSA, TLS1.0, etc)
Server Certificate
Server Key Exchange(public key)
[Client Certificate Request]
Server Hello Done
Client Key Exchange
[Client Certificate) i
Certificate Verify
Change Cipher Spec
Client Finished i
F Change Cipher Spec
Server Finished
) Encrypted Application Data _

Fig 2. TLS protocol key negotiation process.
https://doi.org/10.1371/journal.pone.0232696.g002
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request. In the change cipher specification, since the message between the client and server is
very constrained, this paper does not consider extracting features from it. In fact, much plain-
text information is exchanged in the key negotiation phase except for a few encryption fields.

Because the negotiation information generated by different software programs is not
completely the same, such as the cipher suites, server name, and certificate information, it is
not feasible to extract the signature features that can be used to identify the TLS flows. Differ-
ent applications may also adopt the same cipher suite and other negotiation information.

To save computing resources of the server, malware tends to adopt simple encryption algo-
rithms and provides little handshake information [28], which allows benign applications and
malware to show many differences during the key negotiation phase.

Feature engineering
TLS handshake feature

In Anderson et al.’s method [29], three main types of features are used: the list of offered cipher
suites, the list of advertised extensions, and the public key length. A total of 198 TLS handshake
features are selected in their method. However, in the TLS key negotiation phase, there are dif-
ferences not only in these fields but also in other fields, such as the protocol version, server
name, client hello length (CHL), cipher suite number, client/server extension number, and
certificate number. This paper compares the discrimination between benign and malicious
samples in these fields (refer to the discussion of data collection for details about the sample
set).

Protocol version: The protocol version used by most of the benign applications is TLS 1.2,
and the TLS flows with lower protocol version account for only 2.19% of the entire TLS flows.
However, among malicious TLS flows, the proportion of the lower protocol version is higher,
reaching 30.28%.

Server name: There are different forms in the representation of this field. This field may be
empty, filled with the domain generation algorithm (GDA) domain, or filled with IP addresses.
The corresponding proportions are 0.51%, 17.77%, and 1.32% in the benign TLS flows; how-
ever, in malicious TLS flows, these proportions are 71.36%, 4.0%, and 0%.

Other fields: Since these fields are all represented by numerical values, we group them for
convenience of description. In general, malware has smaller values in these fields, while benign
TLS flows tend to have a longer CHL and a larger cipher suite number, extension number, and
certificate number. From these fields, some features are selected to draw Fig 3 according to 2
criteria: the value of each feature is larger than 0.05, and the ratio of benign to malicious (or
malicious to benign) samples at each feature is larger than 3. The features that satisfy both cri-
teria can be selected in Fig 3. A trend is observed that as the numerical value is larger, the pro-
portion of malicious TLS flows is lower, while the proportion of benign TLS flows is higher.

In addition, sparse representation is applied to design the features of each field. For exam-
ple, under the client hello version field, we set 3 features, namely, TLS 1.0, TLS 1.1 and TLS
1.2. Under the CHL field, we set 150 bins of 10 bytes each, from [0, 10) to [1490, 1500); if the
CHL is greater than 1490, it is put into the last bin. Each bin represents a feature, so there are a
total of 150 features in the CHL field. The value of CHL belongs to a certain bin; this bin’s
value is 1, and the remaining values are 0. These features are called “sparse features”, and we
use them to devise our feature set. In addition to the features proposed by Anderson et al. [29],
we further mine the other 6 kinds of TLS features, including the client/server hello version,
CHL, cipher suite number, client/server extension number, server name, and certificate num-
ber. As shown in Table 1, there are a total of 705 features.
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Fig 3. Differences in other fields.

https://doi.org/10.1371/journal.pone.0232696.9003

Statistical features

To accurately identify malware families of TLS flows, it is insufficient to use just the TLS hand-
shake features. Anderson et al. [29] demonstrated that TLS handshake features combined with
statistical features can achieve higher detection accuracy than other techniques in identifying
malware families. Here, we refer to the research of predecessors and select a set of statistical
features that have been verified. Aksoy et al. [30] utilized the features in packet headers to train

Table 1. TLS handshake feature set.

Feature Name Description Feature
Number
Client hello version (new) Which version it belongs to 3
CHL (new) Which bin it belongs to (10 bytes per bin) 150
Cipher suite number (new) Which number it belongs to 128
Client cipher suites Which cipher suites it belongs to 190
Client extension type Which extension type it belongs to 32
Client extension number How many extensions it has 32
(new)
Server name (partly new) If it is in the top 1 million DNS Alexa (not new), empty, random | 4
string or IP
Client public key length Which key length it belongs to 12
Client signature algorithm Which number it belongs to 9
number
Client padding length Which bin it belongs to (8 bytes per bin) 32
Server hello version (new) Which version it belongs to 3
Server cipher suite Which cipher suite it belongs to 30
Server extensions type Which extensions type it belongs to 32
Server extension number How many extensions it has 32
(new)
Certificate number (new) How many certificates it has 16

https://doi.org/10.1371/journal.pone.0232696.t001
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Table 2. Statistical features.

Description Feature number
Min. packet length 2

Max. packet length 2

First packet length 2

Packets with a push flag 2

Packet length distribution 150

Packet interarrival time distribution 100

Byte distribution 256

Packet interarrival time transition probability matrix 100

Packet length transition probability matrix 100

https://doi.org/10.1371/journal.pone.0232696.t002

classifiers. The validity of the packet length distribution and time interval distribution is dem-
onstrated in [31]. The first packet length and minimum packet length feature are used in [32].
The Markov chain generated by the sequence of the length and time interval among packets is
mentioned in [33], and the state transition probability is used as the feature. By taking advan-
tage of the research results of predecessors, as shown in Table 2, we summarize the statistical
features in this paper.

In Table 2, since we take the direction of the flow into account (client to server and server to
client), the min. packet length is represented by two features, the same as the max. packet
length, first packet length, and packets with a push flag. For the packet length distribution, we
also set 150 bins of 10 bytes each and calculate the length distribution of the first 100 packets
among the 150 bins. For the packet interarrival time distribution, we set 100 bins of 5 ms each,
and any interarrival time of more than 495 ms is put in the last bin. Then, we calculate the inter-
arrival time distribution of the first 100 packets among the 100 bins. For the byte distribution,
we compute the ratio of each byte count to the total number of bytes in the packet payload.
There are 256 representations of a byte, so there are 256 features. For the packet interarrival
time transition probability matrix, we set 10 bins of 50 ms each, and any interarrival time of
more than 450 ms is put in the last bin. We calculate the transition probability matrix with the
first 100 packets based on the Markov chain. Similarly, for the packet length transition probabil-
ity matrix, we set 10 bins of 150 bytes each and calculate the length transition probability matrix
by utilizing the first 100 packets. The statistical features are combined with the handshake fea-
tures to establish a more accurate classification model for identifying malware families.

Feature selection

Because we use sparse representation to design our feature set, the produced features are high
dimensional. Inevitably, there are some irrelevant features in the feature set. For this reason,
before training the model, we need to reduce the number of feature dimensions by removing
those irrelevant features. Because the filtering method does not depend on a specific machine
learning method, it has the characteristics of high operational efficiency and is suitable for
solving the problem of feature selection in high-dimensional data. We use the information
gain [34], which is one of the filtering methods, to select more relevant features. The informa-
tion gain can be expressed as the difference between the entropy and conditional entropy, as
shown in the following equation:

IG(X) = H(C) - H(C| X) 3)
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In Eq (3), H(C) stands for the information entropy, and its essence is the measure of the
uncertainty of random variables. Its definition is as follows:

n

H(C) = =) P(C)log, P(C) (4)

i=1

In Eq (3), H(C | X) stands for the conditional entropy, which is a measure of the uncertainty
of random variable ¢ with a certain value of x. Its definition can be seen in Eq (5):

H(C|X) =) p(x) H(C| X = x) (5)

xeX

From the above three formulas, the information gain of each feature can be conveniently
computed. By comparing the information gain of each feature, the importance of features can
be measured, and by filtering out the features with low information gain, the feature dimen-
sion can be reduced.

Experiments and results

To demonstrate the effectiveness of our methods, comprehensive experiments are conducted.
There are mainly 4 parts: 1) Detailed methods of collecting samples are presented in the data
collection part. 2) The filtering model is established and evaluated through the selection of rel-
evant features and a reasonable threshold. 3) A multiclassifier and a set of binary classifiers are
compared to select a better method for dealing with the multiclassification problem in the eval-
uation malware family classification model. 4) The two-layer detection framework is evaluated
by comparing it with the single-layer framework.

Data collection

In this section, the collection methods of the sample set and the necessary preprocessing steps
are presented in detail. The Streamdump tool (https://github.com/NewBeel19/StreamDump)
we developed is used to collect TLS flows according to the quad information {srcIP, srcPort,
dstIP, dstPort}. There are two ways for StreamDump to reassemble TLS packets. One is moni-
toring network traffic on a network adapter, where the transport layer protocol is TCP and the
destination port is 443. Another is directly reading .pcap files that are saved by others. During
data collection, both methods are used to collect TLS flows. For collecting benign TLS flows,
StreamDump is used to reassemble real-time TLS packets, but for malicious samples that are
shared by others in the form of .pcap files, StreamDump is utilized to extract malicious TLS
flows from these files. Moreover, the handshake type field is applied to determine whether a
TLS flow contains a complete handshake process, and TLS flow samples that do not contain
the complete handshake process are discarded.

For the collection of benign TLS flow samples, we spent 15 days collecting a total of
1323667 TLS flows from our laboratory network. Before using these samples, we need to con-
duct several preprocessing steps on these samples. First, there are many TLS flows without the
entire TLS handshake process because of some optimization schemes, such as session tickets.
However, when the connection to the server occurs for the first time or when the session ticket
time runs out, the entire TLS handshake process is required to connect to the server. There-
fore, we need to exclude the flows that do not contain the entire TLS handshake information,
and 590093 flows remain. In addition, to objectively reflect the differences between benign
and malicious TLSs, we delete the TLS flows that have the same server name and CHL from
these samples and obtain 21743 flows after this step. In fact, at this point, we still cannot
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guarantee that the TLS flows obtained in the previous steps are all benign, and further prepro-
cessing is needed. This paper uses the open-source threat community AlienVault to check
whether the destination IP of a TLS flow is potentially malicious. We developed the check_ip
tool (https://github.com/NewBeel19/check_ip) by using AlienVault’s API to discover and fil-
ter out the potential malicious TLS flows, which can ensure the purity of benign samples.
Through preprocessing, we selected 18241 benign TLS flows from 1323667 TLS flows, which
not only improves the quality of the sample set but also alleviates the problem of class imbal-
ance to some extent.

For the collection of malicious TLS flow samples, we collect malware traffic samples shared
on the Internet by using our own crawler tool (https://github.com/NewBeel19/malware_
traffic_crawler). Malware Traffic [35] is a website which shares malicious network traffic and
malware samples since 2013. We only focus on .pcap files which can be used to extract TLS
flows by the StreamDump, and malware samples should not be run on your own machine in
case of being infected. We have obtained 15077 TLS flow samples in Malware Traffic. Another
source is the BCIC dataset [36] which also shares malicious traffic and malware samples, and a
total of 210,484 TLS flows are extracted. These flows are generated in the virtual machine by
executing malware. However, there is a problem that we cannot tell whether the TLS flows are
generated by malware or by other, benign applications in the virtual machine. To improve the
reliability of the training data, we still use AlienVault’s API to filter out TLS flows that are iden-
tified as benign. After these steps, we finally obtain 17923 malicious TLS flows that have a com-
plete handshake phase. Accordingly, we select some malware families to verify our method,
and malware families with less than 100 flows are not selected. The number of TLS flows for
each malware family is shown in Table 3.

Evaluation of the filtering model

The filtering model as a coarse classification model is employed mainly to quickly filter out the
benign TLS flows and to ensure that the malicious TLS flows are passed to the next layer as
much as possible. Three steps are presented to reach this goal: 1) selecting the relevant TLS
handshake features; 2) verifying the effectiveness of the filtering model; and 3) selecting the
appropriate threshold for the filtering model.

Since we obtain 705 TLS handshake features, the feature dimension needs to be reduced
before the training model. Based on the information gain algorithm mentioned in the previous
section, we can calculate the information gain value (IGV) for each feature and select candi-
date feature sets based on the IGV. The detailed process is presented in Algorithm 1. The mod-
ified wrapper method with a backward selection strategy is used to select the best feature

Table 3. TLS flows in each malware family.

Malware family Number of flows Unique server IPs
ElTest 135 53

Emotet 1898 144

Hancitor 2613 80

Nuclear 262 19

Rig 245 49

Trickbot 1600 115

Dridex 5074 12

Razy 1019 1

HTBot 695 19

https://doi.org/10.1371/journal.pone.0232696.t003
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subset. The information gain of each feature should be calculated in advance. IG(F;) represents
the result of information gain for feature subset F;, T; represents the ith feature subset, and F,
represents the original feature set. The ACC and FPR can be calculated by the classifier. X pereq
represents the labeled benign samples and malicious samples.

Algorithm 1 Modified wrapper method for feature selection
Requj're: Fo, IG(FO)/ Xiabeled
Ensure: the best feature subset (BFS)
1: select the classifier based on the logistic regression algorithm;
2: based on IG(Fy), sort(Fy) in descending order, and obtain the sorted
Fo';
3: calculate ACC; and FPR; for Xi.peieai
4: for backward select F[), and obtain F; do
5: if min(IG(F;)) is equal to O then
6 continue;
7 end if
8 calculate ACCy and FPR; for Xjapeieds
9: if ACCFx < ACCFH1 and FPRFl > FPRFH then

10: ACCFi = ACCFH, FPRF, = FPRFH;

11: if BFS is NULL then

12: BFS = F;_1;

13: end if

14: else {ACCF, > ACCFH or FPRF[ < FPRFH}
15: BFS = F;;

16: end if
17: end for
18: return BFS

There are three main steps in Algorithm 1: 1) preparatory work (lines 1-2); 2) calculating
the initial parameters based on classifier (line 3); 3) evaluating F; and selecting the best feature
subset (lines 4-17). In step 3, the backward selection strategy is used to construct a feature sub-
set (F;), and the number of features in F; is 1 less than that in F;_;. The features in which the
IGV is 0 can be directly excluded because they have no contribution to the classifier (lines 5-
7). Different from the original wrapper method, our proposed Algorithm 1 can skip irrelevant
features and screen out feature subsets with the highest detection accuracy. The feature subset
that can achieve the highest ACC can be regarded as the best feature subset (lines 8-16).

To alleviate the class imbalance problem [37], we randomly select 10,000 benign samples
and 10,000 malicious samples and utilize the logistic regression algorithm to evaluate the per-
formance among different feature subsets by calculating the ACC and FPR. As shown in Fig 4,
we select 7 feature subsets to exhibit the process described in Algorithm 1, from the feature
subset in which the minimum IGV is equal to or greater than 0 to the feature subset in which
the minimum IGV is equal to or greater than 0.004.

Fig 4 shows the feature subset in which the minimum IGV is equal to or greater than
0.0002, from which we can obtain the best classification results in which the ACC is the highest
and the FPR is the lowest compared with other feature subsets. Under this condition, 297 effec-
tive features can be screened out and used to train our filtering model.

For comparison, we completely reproduce Anderson et al.’s method [29] by utilizing the
logistic regression algorithm to train classifiers and 10-fold cross-validation to evaluate the
performance. The features used in our method include the 6 kinds of features we proposed;
the features without a new tag in Table 1 are used by Anderson et al.’s method. The ACC and
FPR are calculated by adopting their method and our method among different numbers of
TLS flow samples.
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Fig 4. Classification results among different feature sets.

https://doi.org/10.1371/journal.pone.0232696.9004

Fig 5 shows the comparison results of the two methods with the sample number ranging
from 2,000 to 20,000. The ratio of positive and negative samples is 1:1. When the sample size
increases past 10,000, both the ACC and FPR become gradually stable, and we can calculate
the average ACC and average FPR under this condition. By applying the 6 kinds of features we
newly proposed, the average ACC of our classifier is 99.78%, and the average FPR is 0.09%.
Compared with Anderson et al.’s method [29], the average ACC of our method is 0.20% higher
than that of their method, while the average FPR is 0.22% lower than their method. Since the
average ACC of Anderson et al.’s method is very high, reaching 99.58%, the 0.2% improvement
is also considerable. Therefore, by further mining TLS handshake features, we can establish a
better BC than Anderson et al.’s method [29].

Moreover, we also compare the classification effects among different machine learning
algorithms. A total of 20,000 samples with the same number of benign and malicious TLS
flows are used to calculate the ACC and FPR under k-fold cross-validation. As shown in Fig 6,
all 4 algorithms can achieve a high ACC, but the performance of the random forest algorithm
is the best both in the ACC and in the FPR, with the ACC being 99.82% and the FPR being
0.072%. Therefore, we select the random forest algorithm to train our filtering model.

The contribution of features can also be evaluated by the classifier based on the random for-
est algorithm. The 20 most important features are shown in Table 4. The cipher suites occupy
nearly half, which means that the client cipher suites used by benign applications and malware
are remarkably different since malware is tends to utilize simpler algorithms to encrypt net-
work traffic. There are 7 features we newly propose with a new tag in this paper, which demon-
strates the effectiveness of the features we proposed.
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Fig 5. Comparison of the two methods.

https://doi.org/10.1371/journal.pone.0232696.g005
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The main function of the filtering model is to filter out benign traffic, while all malicious
TLS flows need to be left. We can reach this goal by setting a reasonable decision threshold in
the filtering model and use all the testing samples, including 18241 benign samples and 17923
malicious samples, to evaluate our classifier. We used 10-fold cross-validation and the random
forest algorithm to calculate the confusion matrix for each threshold.

In Table 5, when the threshold is set to 0.01, the value of FN is 0, which means that all mali-
cious TLS flows can be identified as malicious. On the other hand, the value of TN is 17812,
which means that 17812 TLS flows are not passed to the second layer because they are regarded
as benign, and these TLS flows account for 97.65% of the total benign TLS flows. Thus, by
adopting the random forest algorithm and setting the threshold to 0.01, we can establish our
filtering model based only on TLS handshake features.

Table 4. The 20 most important features in the filtering model.

Feature description Importance

Client cipher suites: TLS_RSA_WITH_RC4_128_MD5 0.0920
Client cipher suites: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0.0716
Client extension type: extended master secret 0.0557
Client cipher suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0.0539
Client signature number: 2 (new) 0.0435
Client cipher suites: TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0.0390
Client cipher suites: TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0.0354
Client cipher suites: TLS_RSA_WITH_AES_256_GCM_SHA384 0.0318
Client extension type: application layer protocol negotiation 0.0296
Client cipher suites: TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256 0.0242
Server name is not in the top 1 million DNS Alexa 0.0234
Client cipher suites: TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0.0232
Server name is a random string (new) 0.0225
Client extension type: session ticket 0.0195
Server extension number: 1 (new) 0.0172
Client cipher suites: TLS_RSA_WITH_RC4_128_SHA 0.0164
CHL: [150, 160) (new) 0.0163
CHL: [610, 620) (new) 0.0156
Server name is empty (new) 0.0150
Client extension number: 5 (new) 0.0142

https://doi.org/10.1371/journal.pone.0232696.t004
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Table 5. Confusion matrix among different thresholds.

Threshold Confusion matrix
TP FN TN FP
0.4 17909 14 18235 6
0.1 17914 9 18172 69
0.05 17928 5 18101 140
0.01 17923 0 17812 429

https://doi.org/10.1371/journal.pone.0232696.t005

Evaluation of the malware family classification model

Generally, identifying malware families of TLS flows is a multiclassification problem. To deal
with this problem, there are two options to select. The first option is to train a multiclassifica-
tion model (MC); the second is using the one against all strategy by training a set of binary
classification models (BCs), and each model corresponds to a kind of malware family. Experi-
ments are designed to explore which of the two options performs better.

We prepare 9 kinds of malware families and 18241 benign TLS flows, as shown in Table 3.
For the first option, we only need to train a multiclassifier; for the second option, we train 10
binary classifiers in advance (9 for malware families, 1 for benign samples) and select the high-
est probability among 10 binary classifiers as the classification result during the test.

Before training the models, it is necessary to select relevant features from the original 705
TLS handshake features and 664 statistical features. Nevertheless, the information gain algo-
rithm cannot be directly used to select features for a multiclass sample set. The feature selec-
tion method we used here contains two steps: 1) selecting relevant features for each binary
classifier by utilizing the information gain algorithm and 2) utilizing the union of 10 feature
sets selected from 10 binary classifiers as our feature set. The process of feature selection for
each binary classifier is the same as that in the filtering model. As shown in Fig 7, the ACC and
FPR of each binary classifier are calculated among different feature sets.

After completing these two steps, we finally obtain 762 features, including 234 TLS hand-
shake features and 528 statistical features, and use the random forest algorithm to train our
binary and multiple classifiers. We also use 10-fold cross-validation to evaluate the perfor-
mance of these two options. As shown in Table 6, the performance index of these two options
are demonstrated.

The overall performance of the MC is slightly better than that of the BCs, and their average
accuracies are 98.41% and 98.36%, respectively. However, due to the mechanism of the second
option, which is required to traverse all binary classifiers before obtaining the classification
result, the time consumption difference between the two options is remarkably conspicuous,
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Fig 7. Classification results from 10 binary classifiers among different feature set.

https://doi.org/10.1371/journal.pone.0232696.g007

PLOS ONE | https://doi.org/10.1371/journal.pone.0232696 May 6, 2020 15/22


https://doi.org/10.1371/journal.pone.0232696.t005
https://doi.org/10.1371/journal.pone.0232696.g007
https://doi.org/10.1371/journal.pone.0232696

PLOS ONE

Two-layer detection framework with high accuracy and efficiency over the TLS protocol

Table 6. Comparison of the two options.

Malware family MC BCs

Precision Recall F1-score Precision Recall F1-score
Dridex 100% 100% 100% 100% 100% 100%
ElTest 97.84% 83.81% 90.25% 97.64% 80.00% 87.90%
Emotet 98.28% 94.37% 96.28% 98.49% 94.01% 96.20%
Hancitor 99.56% 99.62% 99.59% 99.49% 99.65% 99.57%
HTBot 100% 81.74% 89.53% 100% 84.35% 91.27%
Nuclear 98.52% 90.00% 94.02% 97.78% 86.00% 91.45%
Razy 100% 100% 100% 100% 100% 100%
Rig 82.60% 64.62% 72.13% 93.06% 58.46% 71.45%
Trickbot 92.23% 94.06% 93.13% 91.31% 94.39% 92.82%
Benign samples 98.62% 99.99% 99.30% 98.63% 100% 99.31%
Average ACC 98.41% 98.36%
Time consumption (s) 108.62 232.51

https://doi.org/10.1371/journal.pone.0232696.t006

as the time consumption of the BCs is twice that of the MC. Accounting for the superiorities in
accuracy and efficiency, we adopt the first option (multiclassifier) to identify the malware fam-
ily of TLS flows. In a multiclassifier, the importance of each feature can also be evaluated, and

the 20 most important features are presented in Table 7.

From Table 7, there are 7 features related to client cipher suites, which means that different
malware families are intended to select different such suites. There are still 7 features we newly
propose with a new tag in this paper, thus demonstrating again the effectiveness of the features

we propose. Moreover, TLS handshake features occupy a majority compared to statistical

Table 7. The most important 20 features in the malware family classification model.

Feature description Importance

Client cipher suites: TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256 0.0481
Client cipher suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0.0272
Client cipher suites: TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0.0262
Client cipher suites: TLS_RSA_WITH_RC4_128_MD5 0.0250
Cipher suite number: 21 (new) 0.0249
Certificate number: 1 (new) 0.0236
Server extension number: 1 (new) 0.0228
Client cipher suites: TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0.0189
Client cipher suites: TLS_RSA_WITH_RC4_128_SHA 0.0183
Client signature number: 2 (new) 0.0162
Server name is not in the top 1 million DNS Alexa results 0.0138
Server cipher suite: TLS_RSA_WITH_AES_128 _CBC_SHA256 0.0130
Packet length distribution: [1490, 1500) (Statistical features) 0.0124
Server name is a random string (new) 0.0117
Packet length distribution: [180, 190) (Statistical features) 0.0116
Client extension number: 5 (new) 0.0114
Client cipher suites: TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0.0113
Packet interarrival time transition probability matrix: [100, 150 ms) (Statistical features) 0.0108
Packet length transition probability matrix: [980, 990) (Statistical features) 0.0101
Client extension number: 3 (new) 0.0091

https://doi.org/10.1371/journal.pone.0232696.t007
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features (that is, 16:4), so we can conclude that the TLS handshake features are more important
than statistical features.

Evaluation of the two-layer detection framework

In previous experiments, we trained the filtering model (a binary classifier) and the malware
family classification model (a multiclassifier). Combining these two models constitutes our
two-layer detection framework. To verify the efficiencies of the two-layer framework, contrast
experiments between it and a single-layer framework are conducted. As shown in Fig 8, the
multiclassifier used in the single-layer framework is the same as the classifier utilized in the
second layer of the two-layer framework. The purpose is to evaluate whether the two-layer
framework can improve the detection efficiency on the one hand and guarantee the detection
accuracy on the other hand.

Since benign TLS flows generally account for the majority of flows in a real network envi-
ronment, it is reasonable to set the number of benign samples to be greater than the number of
malicious samples. We prepared a total of 11,000 TLS flows for contrast experiments, includ-
ing 10,000 new benign samples and 1,000 malicious samples. Before the experiment, we set the
threshold of the filtering model to 0.01, as discussed in the filtering model. Moreover, we
adopt the random forest algorithm to train both the filtering model and the multiclassifier in
advance. By importing the testing samples into these two detection frameworks, we compare
the relative indicators as shown in Table 8.

Table 8 shows that the two-layer framework does not significantly affect the detection
results of TLS flows. Although the traversal times of the two-layer framework are larger than
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Fig 8. The processing flow of the two frameworks.

https://doi.org/10.1371/journal.pone.0232696.g008
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Table 8. Comparison of the two frameworks.

Malware family Single-layer
Precision
Dridex 100%
EITest 100%
Emotet 93.48%
Hancitor 98.59%
HTBot 100%
Nuclear 100%
Razy 100%
Rig 92.31%
Trickbot 87.92%
Benign samples 99.81%
Average ACC 99.51%
Traversal Times 11000
Time consumption (ms) 1360.84

https://doi.org/10.1371/journal.pone.0232696.t008

Two-layer
Recall F1-score Precision Recall F1-score
100% 100% 100% 100% 100%
80.00% 88.89% 100% 80.00% 88.89%
93.99% 93.73% 93.48% 93.99% 93.73%
99.29% 98.94% 98.59% 99.29% 98.94%
76.92% 86.96% 100% 76.92% 86.96%
82.00% 90.11% 100% 82.00% 90.11%
100% 100% 100% 100% 100%
54.55% 68.57% 92.31% 54.55% 68.57%
95.62% 91.61% 87.41% 91.24% 89.29%
100% 99.91% 99.75% 100% 99.88%

99.45%

11377

722.44

that of the single-layer framework, the time consumption decreases by 188% compared to that
of the single-layer framework, which means that the efficiency improves by 188%. Meanwhile,
the average detection accuracy of the two-layer framework reaches 99.45%, which produces
only a 0.06% loss, which means that the proposed framework also guarantees the detection
accuracy. In fact, in the process of the experiment, there are 9623 TLS flows filtered out by the
filtering model, which accounts for 96.32% of benign samples, and 87.56% of all test samples.
At the same time, few malicious TLS flows are filtered out, which proves the reliability of the
filtering model. Moreover, we can compute the average time consumption of each flow in the
filtering model and the multiclassifier, respectively, as 0.06 ms and 0.12 ms. Substituting these
calculated parameters into In Eq (2), where r is 87.56%, T is 0.06 ms and T} is 0.12 ms, the
accuracy of In Eq (2) is substantiated.

We also compare the time consumption at different ratios of benign and malicious samples.
At each ratio, we test a total of 10 times and calculate the average time consumption. As shown
in Fig 9, when the ratio is 1:1, the single-layer framework is not much different from the two-
layer framework. However, along with the increase in the number of benign samples, the two-
layer framework is increasingly advantageous. When the ratio reaches 10:1, the two-layer
framework is nearly twice as fast as the single-layer framework. In the real network environ-
ment, since benign TLS flows account for the vast majority (the ratio is far more than 10:1),
application of the two-layer detection framework is well justified.

In summary, we demonstrate that the two-layer detection framework needs to meet certain
conditions to improve the detection efficiency of TLS flows. That is, 1) the detection efficiency
of the coarse classification model in the first layer must be higher than that of the detection
models in the second layer; 2) the ratio of flows filtered by the first layer must satisfy In Eq (2).
Otherwise, the improvement in detection efficiency cannot be guaranteed.

We also compare our method with 3 other methods in terms of the classification efficiency.
The related results are depicted in Fig 10, in which the average time consumption of each
method at different sample ratios is calculated.

As seen from the figure, Anderson et al.’s method [29] utilizes a single-layer detection
framework, and their method is more efficient than ours when the sample ratio is not more
than 2:1. However, their method is of low efficiency when the sample ratio is over 2:1. The rea-
son could be that the number of features they used is less than that in the second layer of our
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method but more than that in the first layer of our method. Comar et al.’s method [6] is based
on a two-layer detection framework, in which the first layer is also used to exclude benign
flows. However, the second layer consists of a set of 1-class SVM models to identify a specific
malware class, which means that a potential malicious flow needs to traverse all the models

before obtaining the classification result. Though the number of features is less than in our

method, the time consumption is always higher than ours. Chen et al.’s method [5] proposed a

triple-layer detection framework; the additional layer is the second layer, which is used to rec-
ognize the attack type. That is, a potential malicious flow needs to be classified twice, which
adds extra time for detection. Thus, the efficiency of Chen et al.’s method is always less than

ours.

In summary, though the efficiency of a classifier is strongly related to the number of fea-

tures, our two-layer detection framework is more efficient than other methods that utilize

fewer features. There are two reasons: 1) our method utilizes a multiclassifier to identify the

malware family, which is more efficient than the set of classifiers used by Comar et al.’s

method. 2) We used fewer features in the first layer; as long as the number of features in the

1600 { —— Our method

—+— Chen et al.'s method
—&— Anderson et al.'s method
1400 { —m— Comar et al.'s method

1200 A

1000 -

800

Time Consuming(ms)

600 -

11 2:1 31 41 5:1 6:1 7:1: 8:1 91 10:1
The ratio of benign and malicious samples

Fig 10. Time consumption among the 4 different methods.

https://doi.org/10.1371/journal.pone.0232696.g010
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filtering model is less than that of other methods (such as Anderson et al.’s method), our
method is more efficient than other methods with increasing ratios of benign and malicious
samples.

Conclusion

The TLS protocol as a kind of cryptographic protocol is increasingly employed to establish the
C&C channel by malware. The identification of malicious TLS flows is becoming an inevitable
challenge. In this paper, we proposed a two-layer framework that exhibited high accuracy and
superior efficiency. The first layer is the filtering model, which consists of a BC based on a new
set of TLS handshake features and is used to filter out benign TLS flows, while the second layer
is devised to identify the malware family via both TLS handshake features and statistical fea-
tures. The reliability of the filtering model is demonstrated via contrast experiments, through
which 96.32% of benign TLS flows are filtered out with all malicious TLS flows left. Moreover,
for dealing with the multiclassification problem, we compare the effects between a multiclassi-
fier and a set of binary classifiers under the same feature set. Experiments show that the multi-
classifier performs better both in detection efficiency and in detection accuracy. Upon
combining the filtering model and the malware family classification model, the high accuracy
and superior efficiency of the proposed two-layer detection framework are substantiated by
comparison experiments.

During our research, we also observed that the filtering model has the ability to detect
unknown malicious TLS flows. Since we find substantial discrimination between benign and
malicious TLS flows in the handshake phase, there is a chance to recognize unknown malicious
TLS flows. In upcoming research, we plan to redesign further experiments to prove this idea.
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