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Abstract

Experience across many countries shows that, without large premium subsidies, crop insur-
ance uptake rates are generally low. In this article, we propose to use the cumulative prospect
theory to design weather insurance products for situations in which farmers frame insurance
narrowly as a stand-alone investment. To this end, we introduce what we call “behavioral
weather insurance” whereby insurance contract parameters are adjusted to correspond more
closely with farmers’ preferences. Depending on farmers’ preferences, we find that a stochas-
tic multiyear premium increases the prospect value of weather insurance, while a zero deduct-
ible design does not. We suggest that insurance contracts should be tailored precisely to
serve farmers’ needs. This offers potential benefits for both the insurer and the insured.

1. Introduction

Climate risks threaten agricultural crop production and are expected to become even more
pronounced due to climate change [1]. Crop insurance could be one of the key risk manage-
ment tools to help address increased weather variability resulting from climate change [2, 3].
In many countries, crop insurances are heavily subsidized to encourage farmers to participate.
In fact, premium subsidies are often so high that taking out insurance has a positive expected
value [4,5,6,7]. In contrast, the uptake of unsubsidized crop insurance is often low (See note 1
in S1 Footnotes [8]). Assuming a standard expected utility (EU) framework, this observation is
not consistent with the optimal behavior of risk averse farmers. A possible explanation for this
anomaly is that some farmers do not assign insurance premiums and payouts to fluctuations
in crop income, but tend to frame insurance narrowly as a stand-alone investment [9,10,11].
Recent evidence also suggests that the cumulative prospect theory (CPT) [12] may be a better
predictor of farmers’ insurance decision-making than EU theory [6,7,9,10,11,13]. For these
farmers, losses are felt whenever premiums exceed payouts while gains are perceived in the
opposite case.

In this paper, we investigate the feasibility of adjusting insurance contracts so that they fit
better within a stand-alone investment framing. Therefore, we assume that some farmers frame
insurance purchase decisions as a stand-alone investment rather than a risk management tool
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(See note 2 in S1 Footnotes). We propose to modify the traditional weather insurance (TWTI)
design and introduce what we call behavioral weather insurance (BWI). To this end, we pro-
pose a two-step design of weather insurance products. Firstly, the BWI should be effective in
reducing farmers’ financial exposure to weather risk. Secondly, the design of this BWI should
be adjusted in line with insights derived from CPT, thus extending the narrower EU
framework.

Our study enlarges the available literature in three dimensions. Firstly, it reviews currently
available literature on crop insurance decision-making under narrow framing and CPT prefer-
ences [9,10,11] and explicitly simulates and tests how contract adjustments can make insur-
ance more attractive under such framing (see e.g. Sydnor [14] on behavioral decision-making
in home insurance). Secondly, it adds to the literature on optimal crop insurance which at
present focuses mainly on expected utility maximizing decision-making [15,16]. Thirdly, our
BWI is a first attempt to optimally design crop insurance under behavioral decision-making,
something which others are attmepting in sectors outside of agriculture [e.g. 17,18].

Based on a microeconomic framework for insurance decision-making under narrow-fram-
ing with cumulative prospect theory preferences, we derive two adjustments to traditional
weather insurance contracts and introduce the behavioral weather insurance that has the
potential to increase the prospect value. Firstly, ADJusTMENT 1 proposes “Insure small losses
also (no deductible)”. Secondly, ApjusTMENT 2 proposes “Conclude a multiyear contract and
only pay premiums in years of no crop losses or, if there are no years with no losses, at the end
of the contract period”.

We use 15 years of yield data from 38 representative winter wheat producers in the eastern
part of Germany. This is one of Europe’s most productive grain growing regions, but it is also
extremely drought-prone. We match yield data with high-resolution rainfall and phenology
data and tailor drought (i.e. lack of rainfall) index insurance contracts (TWI and BWI) for
each farm. We are thus able to simulate the insured and uninsured revenue stream over the
observed time period based on hypothetical insurance payouts and premium payments. We
apply a two-step test procedure. Firstly, we test whether both TWI and BWI can effectively
reduce the insured party’s financial exposure to production risk. To this end, we test for
increases in expected utility (EU) across various scenarios of risk aversion and along quantiles
of the revenue distribution between insured and uninsured revenues. Secondly, we evaluate
potential changes in insurance demand through BWI compared to TWI by testing for prospect
value changes under various real world elicited CPT specifications and the assumption of a
stand-alone investment framing (see Bocquého, Jacquet, and Reynaud, [19] and Bougherara
et al. [20] for elicited CPT preferences).

Our results show that BWI with ApjusTMENT 1 only “Insure small losses also (no deduct-
ible)”, increases the risk reducing capacity in Step 1, but does not increase the prospect value
under narrow framing in Step 2. In contrast, our findings reveal that compared to TWI, BWI
with ApjusTMENT 2 only (“Conclude a multiyear contract and only pay premiums in years of
no crop losses or, if there are no years with no losses, at the end of the contract period”) can
increase an insurance’s prospect value under narrow framing, while preserving the risk reduc-
ing capacity. This added value opens new possibilities for making crop insurance more attrac-
tive, apart from subsidization. The unexploited potential of behavioral insurance, which has
proved useful in other branches, offers valuable opportunities for both insurers and insured
parties to strengthen the resilience of the agricultural sector against extreme weather events.
Our findings lay a foundation also for other framings, such as state-dependent reference levels
[13, 7] that can be integrated into the design of crop insurances.

We proceed as follows. Firstly, the theoretical framework of EU and CPT is used to propose
adjustments to the design of TWI contracts to create BWI. Secondly, we introduce hypotheses
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about preferences for BWI designs to be tested in relation to TWI. We assume an EU value
function and then a CPT value function, according to the above two-step procedure. Thirdly,
we test these hypotheses using data from a drought-prone wheat production region in eastern
Germany.

2. Methodology

This section gives an overview of the decision-making criteria under risk, the specifications
used, the underlying testing procedure and the insurance design.

2.1. Decision-making under risk

In the next section, we present the methodology on which our two-step approach for designing
BWTI is based. We begin with an overview of the EU framework used in Step 1. Step 2 describes
how cumulative prospect theory is used to assess insurance from a narrowly framed stand-
alone investment perspective. We then combine both frameworks within one decision-making
model. On this basis, we are able to propose ADJUSTMENTS to the insurance contract that poten-
tially increase both expected utility and prospect value, thus making it more attractive for the
two interest groups (expected utility maximizers and prospect value maximizers) within the
farming population.

2.1.1. Expected utility theory (Step 1). In the EU framework, terminal wealth Wy, for
farm i in year ¢ is transformed into a utility value using a utility function U(Wy;). The occur-
rence probability weighted average of these is the expected utility EfU(W,)] (EU). For the sake
of clarity in our analysis, we assume that farmers produce wheat only, resulting in terminal
wealth Wy, to follow Wy; = dy,; + my; — I';. Here, yy; denotes the yield of farm i in year ¢, 7y, the
insurance payout and I'; the insurance premium (see note 3 in S1 Footnotes). The standard
assumption is that farmers chose their insurance plans according to the expected utility maxi-
mization problem, i.e. max E[U(W,,)]. If farmers are downside risk averse, insurance payouts
1 should cover downward movements of stochastic yields yy;. Thus, assuming that insurance
premium I'; is fair, and all else being equal, changes in E[U(W,)] through modified insurance
plans serve as proxy for changes in welfare and consequently for changes in the ability of the
respective insurance to reduce the financial exposure to risks.

For this analysis, we use a power utility function to reflect farmers’ preferences [21].

W,
U w)={ -9 7971 W
ln(Wti) lf ¢ = 1

where ¢ is the measure of relative risk aversion. As a result, we obtain vectors eu,,; containing
EU values for each of the i farms for the two insurance designs x (x = TWI or BWI) and levels
of risk aversion are ¢.

Consequently, changes in E[U(W;)] can likewise be expressed as changes in the willingness
to pay to eliminate risks. Thus, any increase in E[U(W)] can be displayed as a decrease in the
risk premium R. Furthermore, insurance premium I'; shall not exceed a farmer’s individual
risk premium R, which constitutes the maximum amount a farmer is willing to pay to elimi-
nate the risk arising from y;, and which is dependent on his risk preferences. Based on Kim
etal. [22], we decompose R into incremental risk premiums ARy, i.e. “the incremental willing-
ness to pay to eliminate the risk in the k-th quantile, moving it to the mean payout, while risk
has been already eliminated in lower quantiles”. As a result, we obtain vectors ARy,,; contain-
ing the incremental risk premium of farm i, quantile k, insurance design x and levels of risk
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aversion ¢. We are thus able to decompose changes in the financial risk exposure, with and
without insurance, into parts of the wealth distribution. See the online supplementary file
for further information on how we mathematically derive AR;,,; based on quantile
moments of W,

2.1.2. Cumulative prospect theory (Step 2). As farmers tend to deviate from the expected
utility maximizing insurance choice, Babcock [9] suggests that they might frame insurance
narrowly as a stand-alone investment and evaluate this investment, which is counter to the
expected utility theory (see also [10,11]). In fact, previous studies suggest that people frequently
make decisions that are contrary to EU determined preference rankings (see Stamer, [23] for
an overview). Consequently, a number of alternative theories have been proposed to explain
and predict human behavior, such as CPT or rank-dependent expected utility [24]. In particu-
lar, CPT has received considerable attention in recent agricultural economics literature in gen-
eral (e.g. [25,26]) and crop insurance demand literature in particular [6,7,9,10,11,13].

CPT extends EU by distinguishing gains and losses as deviations from a certain reference
point, resulting in two (potentially) different ‘utility’ functions combined into a value function
v(0), which implies risk aversion over gains and risk seeking behavior over losses:

o’ if 6,>0

ti

Vtiu}\(o-ti) = 0 lf 0, =0 (2)
—(=0,)" if 6,<0

Instead of terminal wealth realizations, CPT transforms single prospect outcomes ¢ into
prospect values v, which depend on the level of risk aversion ¢ and loss aversion A (See note 4
in S1 Footnotes). v(0) is strictly increasing and |v(0)| < |[v(—0)| suggests loss aversion. More-
over, 0*v(0)/dd* < 0 for 6 > 0 (implying risk aversion in gains) and 9*v(0)/0d* > 0 for 6 < 0
(implying risk seeking in losses) jointly indicate diminishing sensitivity towards changes in ¢
with increasing distance from the reference point for both gains and losses [27].

We base the CPT framework on Babcock [9] and frame the EU increasing weather insur-
ance from Step 1 as a stand-alone investment. This means that gains are perceived when pay-
outs exceed premiums and losses are felt in the opposite case (see also Barberis, Huang &
Thaler, [28] for further details on narrow framing). Babcock [9] finds that farmers tend to
frame insurance so that the difference between payouts and premiums for farm i in year ¢ is
indicated by the prospect outcome oy; = 71;; — I';. The reference point R; is then equal to o; = 0.
There is a corresponding probability of occurrence p,; for each o,; These probabilities are
translated into decision weights, allowing for the tendency observed among decision-makers
to overweight small probabilities and underweight large ones [24,13], i.e. by using a function w
(p). Assuming ordered outcomes ¢; with probabilities p; of farm i over the years t from largest
loss year m to largest gain year n, the decision weight of a gain in year ¢ is defined as

9, = olp,+--+p,)
- w(ptﬂ +"'+pn)

and of aloss in t as

8, = 0(p,+ - +p)

1

- w(Pm t-- +Pi71)
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The final prospect value pv,, is evaluated by summing up the weighted single year values:

n

PViusy = 1 8,V (04) (3)

Thus, when insurance is framed narrowly as a stand-alone investment, the maximization
problem is max pviqs,, where farmer i evaluates the insurance contract based on all available
realizations of 0. Hence, CPT enables us to apply a second performance measure to assess
insurance in addition to the risk reducing properties provided by the EU framework. This is in
line with Jantti et al. [29] who suggest the use of welfare measures according to the subject’s
underlying decision-making process. More specifically, we use the prospect value to measure
welfare when the subject tends towards prospect value maximization.

2.1.3. Coexistence of decision-making processes and contract adjustments. In accor-
dance with Harrison & Rutstrom [30], we assume that “several behavioral processes [. . .]
coexist” within the farming population (see note 5 of S1 Footnotes [31]) (see also Sproul &
Michaud [32]). Hence, any number of (unobservable) decision rules could be assumed and
our framework allows various decision rules to be tested. However, we will focus on the two
that have been addressed most prominently in the crop insurance decision literature, namely
max E[U(Wy)] and max pv;q,,, i.e. expected utility maximization (i.e. max E[U(W)]) and
maximization of a prospect value based on cumulative prospect theory (i.e. max pv;q,,). The
framework presented here allows further processes to be included if experimental evidence
suggests their existence. If some of the farmers maximize pv;q,,, we advocate that insurance
design should take this into account. By assuming that BWI should increase both EU and pv
according to our two step-procedure, we aim to increase the welfare for both interest groups,
i.e. EU and CPT maximizers [29], while keeping EU related risk reducing properties constant.

In the following, we derive ADJUSTMENTs of insurance contracts that potentially increase both
the expected utility EfU(W)] and the prospect value pv;, of weather insurance. In order to
maximize pv of an insurance under narrow framing (See note 6 of S1 Footnotes), we recall the
properties of the value function in this specific case. The diminishing sensitivity property of v
(0) in the gain domain, i.e. 0*v(0)/00” < 0 for ¢ > 0, implies that decision-makers have a partic-
ularly positive attitude towards small gains that occur close to their reference point. This prop-
erty is consistent with the decreasing marginal utility property of U(W). However, in CPT this
sensitivity is shifted and appears close to the reference point. In our insurance case, this implies
a preference for frequent positive oy;, i.e. insurance payouts frequently exceeding premiums.
Moreover, the concavity of v(0) in the gain domain implies risk aversion in gains, i.e. a prefer-
ence for a lower variation in gains. Therefore, individuals prefer multiple small gains in relation
to, or in addition to, infrequent large gains [33,34,35]. When this is applied to weather insur-
ance, farmers exhibit a preference for insurance with a lower volatility in payouts. Hence, farm-
ers favor contracts that provide larger payouts in the case of catastrophic losses as well as small
payouts with higher frequencies. It follows that insurance without deductibles might benefit
farmers’ prospect value under narrow framing. Hence, we propose the following first Apjust-
MENT to be tested.

ADjUSTMENT 1: Insure small losses also (no deductible).

Compared to a situation where only larger yield losses are insured, two differences are
expected in the probability mass of payouts. Firstly, payouts occur more often. Secondly, as
there are more payouts, the overall payout mean is shifted away from zero. In addition, increas-
ing the number of payouts generates higher premiums, which, in our narrow framing example,
are experienced as losses. Hence, changes in pv through ApjustMeNT 1 depend on how deci-
sion-makers rate less risk in the gain domain in comparison to additional losses. More specifi-
cally, the success of ADJUSTMENT 1 is expected to be a function of & and 4, i.e. risk aversion and
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loss aversion. Our focus on an index insurance product means we can envisage high frequency
payouts (no deductibles) due to low administrative costs as payouts are triggered automatically
based on the performance of the index rather than by farm damage assessments. Moreover,
moral hazard is less of an issue in the index insurance framework which reduces the need for a
deductible.

In addition, the convexity of the value function in the loss domain, 0*(0)/90* < 0 for o <
0, implies risk seeking behavior in losses, i.e. v(—x) + v(—y) < v(—(x + y)) [30]. Translated into
the narrowly framed weather insurance context, this implies that farmers prefer volatile pre-
mium payments rather than the more commonly sought stable premium payments (See note 7
of S1 Footnotes). Hence, an increase in the range of premium payments realized is likely to
raise the prospect value. Moreover, in case of mixed gain/loss events, i.e. occurrence of out-
come (x = insurance payout, -y = premium payment) with |x| < |y|, it is not intuitive whether
v(x) + v(-=y) 2 v(x — )). The general trend is that the smaller x is in relation to y, the more seg-
regation of x and —y is preferred as v(x) + v(—y) > v(x — »)) tends to hold. In our weather insur-
ance example, premium payments and insurance payouts occur jointly. When payouts are
smaller than the premiums due, farmers must pay the resulting difference to the insurer so
under narrow framing a loss occurs even though the insurance theoretically granted a payout.
Hence, segregating gains and losses can increase the prospect value under narrow framing.
Therefore, we propose a second ADJUSTMENT.

ApjusTMENT 2: Conclude a multiyear contract and only pay premiums in years of no crop
losses or, if there are no years with no losses, at the end of the contract period.

ADJUSTMENT 2, is designed to shift premium payments to a less sensitive part of the value
function, with the multiyear property as precondition. If premiums are only paid every n-th
year, the amount of this payment depends on how many yearly instalments are summed
together. Thus, we propose to change the deterministic annual premium into a stochastic
multiyear premium, which considers risk seeking behavior and declining sensitivity to losses.
Moreover, farmers can postpone their premium payments in case of small insurance payouts
(generated by ApjustMmeNT 1) and thus perceive these payouts as a gain. This means that the
insurance contract must be extended to cover a period of several years.

2.1.4. Specification of expected utility & cumulative prospect theory. The analysis is
performed using different EU and CPT specifications for the empirical part. In the case of EU,
we vary the measure of risk aversion ¢ across [0, 0.2, 0.4, 0.6, 0.8, 1.0]. This range is in accor-
dance with experimentally elicited preferences of farmers in Germany (e.g. [36,37,38]). We
account for the quantile risk premiums that complement the analysis on expected utility by
dividing the wealth distribution into four equally large quartiles and derive the quantile risk
premium based on an average ¢ = 0.5.

In the case of CPT, we expect our results to be dependent on o, A and /6. To be exact, we
use specifications from the only two empirical peer reviewed studies that have elicited CPT
preferences in European agriculture [19,20]. Bocquého, Jacquet and Reynaud [19] present
three sets of CPT parameters based on different estimation techniques (abbreviated as Boc.I- 3
hereafter). In addition, Bougherara et al. [20] provide a fourth set of CPT elicited parameters
(abbreviated as Bou hereafter). We use CPT specifications employed by Babcock [9], which
were taken from the original cumulative prospect theory paper by Tversky & Kahneman [12]
(abbreviated as Bab hereafter) to extend real world elicited preferences. Table 1 and Fig 1 sum-
marize and visualize the different specifications elicited in the above papers. Here, Boc.1 is
characterized by a low a-coefficient indicating relatively marked risk aversion over gains and
risk seeking over losses. The loss aversion coefficient A indicates that losses are weighted
almost twice as much as gains. Similarly, Boc.2 implies slightly lower risk aversion in gains
(and lower risk seeking in losses) and a loss aversion comparable to Boc.1. Boc.3 exhibits even
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Table 1. CPT specifications of recent studies.

Abbreviation | & — coefficient (risk aversion)® | 1 — coefficient (loss aversion) | £/y/6 — coefficient (probability distortion)®

Bocquého, Jacquet. and Reynaud [17] Boc.1 0.280 2.275 0.655
Boc.2 0.325 2.110 0.679
Boc.3 0.512 3.756 0.647

Bougherara et al. [18] Bou 0.614 1.374 0.785/ 0.844

Babcock [7] Bab 0.880 2.250 0.610 / 0.690°

* Note that smaller numbers imply higher risk aversion
® According to Eq 5.1 and 5.2, different weighting functions are used for gains and losses respectively

© See Eqs 4, 5.1 and 5.2 for further details of weighting functions based on Prelec [39] and Tversky & Kahneman [12]

https://doi.org/10.1371/journal.pone.0232267.t001

lower risk aversion over gains and risk seeking over losses compared to Boc.1 and Boc.2 but
with higher loss aversion. Compared to the three scenarios above, Bou has lower risk aversion
over gains (and risk seeking over losses) together with considerably lower loss aversion. The
Bab specification has relatively lower risk aversion over gains and risk seeking over losses
together with a loss aversion specification that is similar to Boc.1 and Boc.2.

With respect to probability weighting, all CPT specifications imply overweighting of small
and underweighting of high probability values with almost similar magnitudes. The specifica-
tions employed also differ with respect to the functional forms of w(p). Eqs 4 to 5.2 show the
specifications of w(p) as used by i) Bocquého, Jacquet and Reynaud [19] (w;) and ii) Bougher-
ara et al. [20] (originally proposed by Prelec [39]) and Babcock [9] (w7 and w; for gain and

A - coefficient

2 0‘ Boc.2 e L
e Bou

0 0.2 0.4 0.6 0.8 1
o - coefficient

Fig 1. Visual classification of CPT specifications in recent studies. Flags indicate abbreviations according to Table 1.

https://doi.org/10.1371/journal.pone.0232267.9001
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loss probabilities respectively; originally proposed by Tversky & Kahneman, [11]):

,(p) = exp[—~(~In(p))’] (4)

d o) =— 2 (51/52)

T+ -p)) @+ (1—p))

We thus obtain vectors pv;q, for the two insurance designs x and the five CPT specifica-

o, (p)

tions. These vectors contain insurance prospect values for each farm. Taken together, the five
specifications above allow us to implement a realistic range of preference scenarios that sup-
port our empirical analysis (See note 8 of S1 Footnotes [40]).

2.2. Testing

We investigate the proposed BWI by conducting statistical tests in three different dimensions.
Firstly, we test the risk reducing properties of an actuarially fair TWI scheme against the actu-
arially fair BWI by comparing eu,, vectors of insured terminal wealth. We complement this by
testing for changes in the quantile risk premiums ARy,;. This allows us to pinpoint where the
reduction in financial risk exposure occurs in the wealth distribution. More specifically, we
test the following null hypotheses based on observations across various farms and across differ-
ent levels of risk aversion ¢:

Hl:H,:eu eu

traditional ¢ S no insurance ¢

H2: HO * €Upehayioral ¢ S eu

no insurance ¢

H3: HO * €Upehavioral ¢ S €U, uditional @

Secondly, we test whether the BWI scheme is better suited to farmers’ preferences (in terms
of prospect value) than a TWI scheme and would be likely to increase insurance demand. Fur-
thermore, we explore the stability of the expected performance of the BWI scheme using dif-
ferent CPT value function parameters. The performance of BWI and TWI is then compared
across the different CPT specifications (See Table 1).

H4 : HO : pvhehaviorul boc.1 Z pvtmditionul boc.1
H5 : HO :pvhehavioml boc.2 Z pvtmditionul boc.2
H6 : HO :pvhehavioral boc.3 Z pvtmditionul boc.3
H7 : H[) :pvbehavioml bou 2 pvtmditianal bou

HS: HO : pvbehaviaml bab Z pvtmd:‘tionul bab

Thirdly, we clarify how the individual ApjustMENTs that inform our approach contribute to
an increase in the prospect value of the insurance. More specifically, we present results for the
statistical tests of H1-H8 when BWI ApjustMeNT 1 (“Insure small losses also—no deductible”)
is revoked and when ApjustMENT 2 (“Conclude a multiyear contract and only pay premiums in
years of no crop losses or, if there are no years with no losses, at the end of the contract
period”) is revoked.
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We use nonparametric paired Wilcoxon signed rank tests to compare vectors e, (to test
for expected utility changes across levels of risk aversion), ARy, (to test for quantile risk pre-
mium changes) and pv;;, (to test for prospect value changes across levels of risk aversion in
gains and risk seeking in losses, loss aversion as well as probability weighting functions). The
Wilcoxon signed rank test is used to perform pairwise comparisons of the differences between
the vectors stated in all the above hypotheses. We test for increases in the expected utility and
prospect value and for decreases in the quantile risk premia. The Wilcoxon signed rank test
calculates sample differences and ranks them based on absolute sizes. These differences are
weighted by their rank and summed together. A p-value is derived from the resulting test sta-
tistic for each scenario tested.

2.3. Index design

TWI and BWI both aim to provide indemnification in case of a drought event during sensitive
stages of plant growth. We consider a TWI design with a standard linear payout function, a
10% deductible, and premium payment every year. TWI is compared with a BWI design that
includes the two ApjusTMENTS described earlier. The multiyear contract length was fixed at
three years (following Chen & Goodwin, [41]) (See note 9 of S1 Footnotes). The cumulative
premium due must be paid if there is no payout at any time during the three year period. It
must also be duly paid at the end of the contract period if the insurance makes payouts in each
of the three years. Fig 2 illustrates an example of yields together with premiums and payouts
for both TWI and BWTI across a 12 year period (See note 12 of S1 Footnotes).

In accordance with Conradt et al. [42], we select the characteristics of the weather insurance
contracts for each farm to minimize basis risk and maximize risk reducing properties. Thus
each farm in our sample receives a farm individual insurance contract tailored to the site spe-
cific risk exposure. We focus on the coverage of drought induced yield losses in winter wheat
and use a deficit of the cumulative rainfall during vulnerable plant growth stages as an indica-
tor of drought. We therefore match farm-level yield records with historical cumulative rainfall
data during the critical stages that are exogenous to our analysis (See note 11 of S1 Footnotes).
We use high-resolution rainfall grid data to remove spatial basis risk [43]. Thus, the rainfall
index value rf for farm i in year ¢ is calculated as the sum of rainfall RY from day d = “start date’
to day d = ‘end date’:

end .
rﬁ = Zd:sturt R; (6)

Start and end dates of critical plant growth stages (i.e. from winter wheat’s stem elongation
to milk ripening) are determined using regional crop growth monitoring network data for
each year as proposed by Dalhaus, Musshoff & Finger [44]. Thus, the farm’s individual insur-
ance period is flexible in both space and time according to actual occurrence dates of winter
wheat growth stages, which vary across reporting stations and years. See Fig 3 for a graphical
illustration of the farm individual determination of * and Dalhaus [45] for further studies
using this approach.

We estimate the relationship between r* and farm yields y,; using quantile regression that
allows special emphasis to be placed on explaining certain (e.g. low) yield outcomes [42]. More
specifically, we expect y,; to be determined by a function g(r}) including rX and other factors
that are summarized within an error term £ and are uncorrelated with weather. The relation-
ship between weather and yield is quantified econometrically by estimating the model

Y=o+ riRlﬁi TE (7)
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Fig 2. Exemplary visualization of TWI and BWI (no basis risk).
https://doi.org/10.1371/journal.pone.0232267.9002

where B; marks the change in yields when the rainfall index value r} changes by one unit (mil-
limeter). More specifically, §; is the farm individual marginal impact of a millimeter of rainfall
on a farm’s wheat yield. As we expect f; to be nonlinear across yield levels (i.e. the impact of

rainfall absence is more severe when yields are low), we use quantile regression as proposed by

Start of rainfall End of rainfall
accumulation accumulation
[ |
[ |
[ |
[
A [
[
[
[

Cumulative Rainfall

« 11 I |
Day of the year

<:| Stem Elongation |::> <:| Milk Ripeness |:>

Fig 3. Farm individual determination of the cumulative rainfall index value using regional phenological observations to find the day of the year when stem
elongation and milk ripeness occur in wheat. Rainfall is only measured between the observed phenology dates.

https://doi.org/10.1371/journal.pone.0232267.9003
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Conradt et al. [42]. Firstly, quantile regression minimizes the absolute sum of residuals rather
than the squares and secondly it allows a focus on different quantiles of the yield distribution
dependent on 7 € (0, 1). More specifically, 7 is used to weight parts of interest of the y;, distri-
bution. Therefore, the estimated rainfall impact that is later used to inform the insurance pay-
out function, is especially tailored to explain losses in yield rather than average yield levels. The
minimization problem of quantile regression is

B;. = min, Z::1 p. (i — 1 Br.) (8)
where

p.(y, —rRB) = ty —ri'Bel iy = 1By (9)
e n (1 - T)'})it - rtlizlﬁi‘c| ’f Vit < rzlfl it

We use 7= 0.5 to put a special emphasis on below median yield outcomes.

Since the aim of our insurance is to pay out in the event of drought, it is designed as a Euro-
pean put option, i.e. insurance payout 7, = 9 - [T}, - max{(S, — r~.), 0}]. Thus, an insurance
payout 7, in year t of farm i and insurance contract k is made whenever the rainfall r, falls
below the farm individual strike level of rainfall S;;. The amount of money a farmer receives is
then determined by the difference between the actual rainfall rf, and the strike level rainfall S;
multiplied by the tick size Tj. The tick size indicates the payout per millimeter of deficit rain-
fall. The optimal tick size and strike level are determined from quantile regression results.
More specifically, the strike level S of rainfall under which a payout is triggered is estimated
as the rainfall value that corresponds to the mean yield y, in the case of BWL, i.e.

Suwr = & ' (7,), and to 90% of the mean yield in the case of TWI, i.e. S;, = g~'(0.9y,). This is
in accordance with Conradt et al. [42] and indemnity is not paid for below average rainfall but
rather for rainfall levels that imply below average yields. Tick size Tj is the estimated slope
coefficient B;,.

Actuarially fair premiums for the TWI and BWI contracts are calculated using the burn
rate method [46] (See note 12 of S1 Footnotes). The actuarially fair insurance premium is
determined on the basis of the average payout over 10,000 bootstrapped payout realizations
due to the estimated rainfall distribution. A fair premium implies that the cost of the insurance
for the farmer is equal to the expected payout. In reality the insurance provider would charge a
loading on the fair premium, which includes administrative costs and a profit margin. Using
fair premiums enables us to focus our analysis on the differences between the two insurance
contracts (TWI and BWI).

3. Data

In the following section we present the underlying farm level yield, crop phenology and
weather datasets used.

3.1. Yield data

Our case study region is located in a drought prone area of eastern Germany (see Fig 3) and
includes farms in the German Federal states of Mecklenburg-Western Pomerania, Branden-
burg, Saxony-Anhalt, Thuringia and Saxony. Here, crop yield variability is much larger
compared to other regions in Germany [47]. Our original farm-level yield (y;;) dataset was
obtained from a local insurance provider and consisted of a panel of 90 farms for the years
1995 to 2015. Each farm has a minimum size of 1,500 hectares, which is considerably higher
than the German average (of 60 hectares) but representative for the eastern part of Germany.
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The farms are highly specialized and crop production is the main source of farm income. As
aresult, they have a significant interest in managing their exposure to weather risk. Farmers
submitted their historical yield records for multiple crops to obtain an individual weather risk
assessment from the insurance provider. We selected winter wheat as an example for this
study. Based on the findings of the weather risk assessments, private non-subsidized and indi-
vidually-tailored weather insurance contracts were offered to the farmers. To our knowledge,
this unsubsidized weather index insurance market is a unique case in a developed country con-
text, which underlines the importance of further improving weather insurance to help farmers
to cover their weather risks (for further details see www.die-wetterversicherung.de).

Since our analysis concentrates on a single weather risk, we reduced the dataset to 38 farms
that provided at least 15 years of wheat yield data and exhibited significant vulnerability to a
lack of precipitation, i.e. where the estimated slope f8;; indicated a negative impact of rainfall
(See note 13 of S1 Footnotes). Farms that are more vulnerable to a lack of precipitation are also
more likely to be interested in a rainfall insurance. The yield data were detrended using the
M-Estimator as suggested by Finger [48] [49] to account for technological trends (See note 14
of S1 Footnotes). See Table 2 for summary statistics on the detrended yield data.

3.2. Phenology and weather data

We use a rich phenology observation network provided by the Deutscher Wetterdienst
(DWD; Engl. German Meteorological Office) [43] to define critical farm-level growth phases
during which wheat is especially reactive to drought stress. As advanced by Dalhaus & Finger
[43] and Dalhaus et al. [44], droughts during the periods from stem elongation to ear emer-
gence and from ear emergence to milk ripening can be extremely detrimental to final yields.
Insurance contracts include the sum of rainfall across both stages as the insured weather index
rR (See Fig 3 for a graphical explanation of the index building).

Rainfall grid data is used to generate records of farm-level rainfall levels for the period 1997
to 2014. More specifically, we follow Dalhaus & Finger [43] and use the RegNie weather rain-
fall grid, which is also provided by the DWD (available under ftp://ftp-cdc.dwd.de/). The grid
is based on interpolated rain gauge data with a spatial resolution of 1km x 1km. See Rauthe
et al. [50] for further details on the interpolation procedure. We used the read.regnie function
supplied within the ‘esmisc’ package of the statistical software environment R to derive this
weather information [51]. Using the geographical coordinates (latitude and longitude) of the
farms operating site, we extracted daily rainfall information from the grid dataset and obtain a
daily time series of rainfall per farm. Using the regional phenological observations we then
select and sum up daily rainfall within the time period from stem elongation to milk ripeness
(see S1 Fig for a graphical representation of the data manipulation procedure).

Table 2. Summary statistics of detrended winter wheat yields in decitons (= 100kg) per hectare.

Mean 66.39

Median 66.55

Min 17.42

Max 109.88

Standard Deviation 13.90
Coefficient of Variation 0.21

https://doi.org/10.1371/journal.pone.0232267.t002
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3.3. Data availability

Data cannot be shared publicly because the data will compromise the privacy of the human
subjects. The data are available from the gvf Versicherungsmakler AG (contact via Sebastian.
Mahler@gvf.de) for researchers who meet the criteria for access to confidential data.

4. Results

Table 3 gives a summary of statistics for the weather insurance contract parameters. The
median rainfall strike level was 206.20 mm for BWI and 127.70 mm for TWI, respectively.
The average tick size was 0.07 deciton/ millimeter rainfall [yield terms]. The average premium
rate for the TWI was 0.6% whereas it was 2.98% for the BWI. In comparison, BWI was more
expensive because it did not include a deductible. Hence the percentage of years in which pay-
outs were made was also considerably higher in the BWT case, 58.64% compared to 15.37% for
TWI on average.

4.1. Risk reducing properties of TWI and BWI according to expected utility
(Step 1)

Based on the two-step procedure described above, Tables 4, 5 and 6 show Wilcoxon signed
rank test results for expected utility changes in Step 1 (H1, H2 and H3). In addition, Tables 7,
8 and 9 show results for changes in quantile risk premiums when testing to identify which
parts of the wealth distribution are affected by the respective insurance scenario. Test results
for H1 and H2 in Table 4 reveal that both TWTI and BWTI significantly increase farmers’
expected utility compared to a no insurance scenario. Thus, assuming a fair premium and EU
preferences, TWI and BWI products reduce weather risk and are thus beneficial for risk averse
farmers. In addition, results for H3 indicate a statistically significant expected utility increase

Table 3. Summary statistics of contract parameters.

TWI BWI

Strike level [millimeter]

Median Across all farms 140.28 141.27

Min 4.22 16.95

Max 7560.03 584.35
Tick size [decitons/millimeter]

Mean Across all farms 0.08

Min 0.02

Max 0.23
Premium rate [in %)

Mean Across all farms 0.60 2.98

Min 0.00 0.21

Max 3.49 9.04
Years with payout [in %]

Mean Across all farms 15.37 58.64

Min 5.88 17.65

Max 50.0 100.00
Years with premium [in %]

Mean Across all farms 100 0.56

Min 100 333

Max 100 88.2

https://doi.org/10.1371/journal.pone.0232267.1003
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Table 4. Wilcoxon signed rank test results for changes in expected utility (H1, H2 and H3).

Coefficient of relative risk aversion ¢

0

0.2
0.4
0.6
0.8
1.0

p-value*”®

H1 H2 H3
Ho: esragitional @ < €Uno insurance P Ho: etpenavioral $ < €Uno insurance P Ho: etpenavioral @ < eUiraditional §
H.: eusraditional @ > €Uno insurance P H,: etpenavioral $ > €Uno insurance P H,: epenavioral § > €Uiraditional §

0.56 0.67 0.65

0.03 0.11 0.28

1.97-107° 0.02 0.08

7.27-107* 0.01 0.04

7.27-107* 0.02 0.03

7.27-107* 0.01 0.03

* Low p-values imply a rejection of the null hypotheses stated in H1-H3

® Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.1004

through BWI compared to TWI. This is not surprising as BWI insured larger parts of the risk
at a fair premium. Results regarding hypotheses H1-H3 are robust across all the levels of risk
aversion tested. No differences in expected utility are found for risk neutral decision-makers,
reflecting that the premium charged is actuarially fair. In addition, Table 7 shows the Wilcoxon
signed rank test results of comparing quantile risk premiums for H1-H3. Results indicate that
TWI is specifically suited to reduce risk at the edges of the wealth distribution whereas BWI
rather reduces risk in the second quartile, which is in line with its zero deductible design. How-
ever, while BWI is unable to insure against large losses in the first quartile, it outperforms TWI
in the second, third and fourth quartile of the wealth distribution in terms of risk reduction.

In addition to Table 4, where both ApjustMENTS of BWI are fulfilled, Table 5 shows tests for
expected utility changes when ApjusTMmENT 1 is revoked. Here, BWI only differs from TWI with
respect to the stochastic multiyear premium (ADJUSTMENT 2), i.e. small losses are uninsured.
Accordingly, results for H1 do not differ from those displayed in Table 4. Furthermore, results
for H2 show that expected utility of BWI is significantly greater compared to a no insurance
scenario. Hence, assuming a fair premijum, BWI without ApjusTMENT 1 can significantly reduce
farmers’ financial exposure to weather risk. To be precise, H3 reveals that no differences exist
between TWI and BWI at the 5% significance level with respect to expected utility changes.
This was no surprise as the ADjusTMENTs made were specifically suited to CPT decision-makers.

Table 5. Wilcoxon signed rank test results for changes in expected utility when ApjusTMENT 1 is revoked (insure small losses also) (H1, H2 and H3).

Coefficient of relative risk aversion ¢

0

0.2
0.4
0.6
0.8
1.0

p-value*®

H1 H2 H3
Ho: etiraditional P < €Uno insurance P Ho: eUpehavioral @ < €Uno insurance P Ho: eUpehavioral @ < €Usraditional P
H;: etragitional P > €Uno insurance P H;: etpenavioral @ > €Uno insurance P H;: eUpenayioral 9 > €Usraditional P

0.56 0.38 0.48

0.03 0.03 0.16

1.97-107° 1.97-107° 0.15

7.27-107* 1.62-107° 0.08

7.27-107* 237-107° 0.08

7.27-107* 413-107° 0.09

* Low p-values imply a rejection of the null hypotheses stated in H1-H3

® Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t005
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Table 6. Wilcoxon signed rank test results for changes in expected utility when Adjustment 2 (Conclude a multiyear contract and only pay premiums in years of no
crop losses or, if there are no years with no losses, at the end of the contract period) is revoked (H1, H2 and H3).

Coefficient of relative risk aversion ¢

0

0.2
0.4
0.6
0.8
1.0

H1
Ho: etsragitional @ < €Uno insurance P

HO: €Urqditional (P > €U0 insurance (P

p-value*®
H2
Ho: etpenavioral @ < €Uno insurance 9

Hl: €Upehavioral ‘P > €U0 insurance (P

H3
HO: €Upehavioral ‘P S €Utraditional ‘P

Hl: €Upehavioral (P > €U ¢raditional (P

0.56 0.67 0.66
0.03 0.03 0.04
1.97-107° 231-107° 3.19-107°
7.27-107* 3.48-107* 1.36-107°
7.27-107* 2.79-107* 5.04-107*
7.27-107* 238-107" 436-107"

* Low p-values imply a rejection of the null hypotheses stated in H1-H3

® Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t006

In addition, results in Table 8 show that BWI can no longer reduce financial exposure to
weather risk in the second quartile of the wealth distribution. In contrast, it now reduces risk
in the first quartile.

Table 6 shows test results for H1-H3 when ADjusTMENT 1 is reactivated and ADJUSTMENT 2 is
revoked. Here, small losses are insured and premiums are due every year. Results for H1 are
in accordance to those of Tables 4 and 5. Moreover, results for H2 show that BWI insurance
for small losses can significantly increase expected utility and thus reduce farmers’ financial
exposure to weather risk. Based on the above results, it is not surprising that H3 shows that
expected utility of BWI for the farmers insured is higher than with TWT as more risk is covered
at a fair rate. In addition, Table 9 suggests that with this specification, BWI reduces risk in
both the first and the second quantile of the wealth distribution.

4.2. Prospect value changes of TWI and BWI according to cumulative
prospect theory (Step 2)
The previous section focused on comparing TWI and BWI presupposing that farmers’ prefer-

ences are characterized by standard EU assumptions. This section makes the same comparison

Table 7. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk
aversion @ = 0.5 -all adjustments fulfilled.

p-value*®
Q1°(0.25) Q2 (0.5) Q3 (0.75) Q4(1)
H1 Ho: "Piraditional ¢ = TPro insurance ¢ 0.06 0.44 0.09 7.30-107*
Hi: Puraditional ¢ < Pno insurance ¢
H2 H0: "Pbehavioral % > "Pno insurance 7] 0.23 0.01 0.27 2.16 - 1073
H;: "Pbehavioral ) < TPro insurance [
H3 Ho: tPychavioral ¢ = Diraditional ¢ 0.33 7.05-107° 590-107° 3.61-107°
HI: rpbehavioml [ < rptraditional %
# Low p-values imply a rejection of the null hypotheses stated in H1-H3
® Bonferroni corrected p-values
© Values in brackets indicate the upper probability bound of the respective quantile
https://doi.org/10.1371/journal.pone.0232267.t1007
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Table 8. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk
aversion @ = 0.5—when ApjusTMENT 1 (insure small losses also) is evoked.

p-value*®
Q1°(0.25) Q2 (0.5) Q3 (0.75) Q4 (1)
H1 Ho: "Ptraditionat ¢ = TPno insurance ¢ 0.06 0.44 0.09 7.30-107*
Ha: "Puraditional 9 < TPno insurance ¢
H2 Ho: tPuehavioral 9 2 TPno insurance o 0.05 0.80 0.02 7.30-107*
Hi: tPoehavioral 9 < MPno insurance ¢
H3 Ho: rPvenavioral ¢ 2 1Prraditional ¢ 0.03 0.98 0.67 0.29

le "Poehavioral ] < IPtraditional )

* Low p-values imply a rejection of the null hypotheses stated in H1-H3
" Bonferroni corrected p-values

© Values in brackets indicate the upper probability bound of the respective quantile

https://doi.org/10.1371/journal.pone.0232267.t1008

but under the assumption that farmers’ preferences are characterized by CPT instead. Based
on Step 2 of our analysis, i.e. investigation of the performance of the different insurance
schemes across CPT specifications, Table 10 shows significance levels of Wilcoxon signed rank
test results of hypotheses H4 to H8, associated with three different BWI designs, i.e. all Apjust-
MENTs fulfilled, ADJUSTMENT 1 revoked, ADJUSTMENT 2 revoked.

The second column of Table 10 and the upper left graph of Fig 4 present BWI results with
all ApjusTMENTS described above in force (according to Table 4 of Section 4.1). In this case,
BWI provides no significant improvement in prospect value when compared to TWI for all
CPT specifications, i.e. Bocquého, Jacquet and Reynaud [19] (Boc.1, Boc.2 and Boc.3), Bough-
erara et al. [20] (Bou) and Babcock [9] (Bab).

The third column of Table 10 shows results for BWT excluding ApjustmeNT 1 (“Insure small
losses also”). Contrary to the first specification, BWI outperformed (in terms of prospect
value) TWTI for specifications Boc.1, Boc.2, Boc.3 and Bab. Compared to the preceding column,
this BWI design introduces greater uncertainty in the loss domain, while overall losses are
smaller due to lower premiums resulting from the implementation of a deductible. Thus, the
effect of economies in premium payments outweighs the effect of covering small losses for

Table 9. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk
aversion @ = 0.5—when Adjustment 2 (Conclude a multiyear contract and only pay premiums in years of no crop
losses or, if there are no years with no losses, at the end of the contract period) is revoked.

p-value*®
Q1°(0.25) Q2 (0.5) Q3 (0.75) Q4 (1)
H1 Ho: Piraditional ¢ = MPno imsurance 0.06 0.44 0.09 7.30-107*
Hi: rPuraditionat ¢ < "Pro insurance ¢
H2 Ho: "Piehavioral ¢ = "Pro insurance o 8.89-107° 0.02 0.39 1.20-107*
Hi: tPoehavioral 9 < TPno insurance ¢
H3 Ho: rPochavioral ¢ = Prraditional o 0.01 0.02 0.37 1.90-107*

HI: "Pbehavioral @ < "Ptraditional @

* Low p-values imply a rejection of the null hypotheses stated in H1-H3
® Bonferroni corrected p-values

¢ Values in brackets indicate the upper probability bound of the respective quantile

https://doi.org/10.1371/journal.pone.0232267.t1009
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Table 10. Wilcoxon signed rank test results for differences in the prospect value using CPT specifications Boc.1, Boc.2 Boc.3 and Bab (H4 -H8).

BWI with all Apjustments fulfilled | BWI excluding ApjustMeNT 1 (small losses not insured) ‘ BWI excluding ApjusTMENT 2 (payment every year)

Specifications p—value“’h

HO: PVbehavioral < PVtraditional

I—Il: PVbehavioral > PViraditional

H4: Boc.1 0.99 122107 0.99
H5: Boc.2 1 3.05-107* 1
H6: Boc.3 1 1.22-107* 1
H7: Bou 1 0.20 1
H8: Bab 1 1.22-107* 1

* Low p-values imply a rejection of the null hypotheses stated in H4-H8

® Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t1010

these specifications. It could be said that loss aversion (the premium payments would be small
losses for the insured party) clearly dominates risk aversion in gains in these cases.

The fourth column of Table 10 shows results for BWI excluding ApjustmeNT 2 (“Conclude a
multiyear contract and only pay premiums in years of no crop losses or, if there are no years
with no losses, at the end of the contract period”). Here, TWI outperforms BWI (in terms of
prospect value) across all specifications. In this scenario, premium payments (small losses
from the perspective of the insured party) come every year and the overall amount of losses is

BWI with all Adjustments BWI exluding Adjustment 1
5 fulfilled 5
4
B © TWI 5 . o/ BWI
23 TWI Wi 53 BWI i
g2 %0 Tw1 bt S5 % BwI °
(; ¢ TWI i ¢ TWI
1 |
0 0
0 0.5 1 0 0.5 1
a - coefficient a - coefficient
BWI excluding Adjustment 2
S
g o/ TwI
83 n.s. TWI
§ 2 99 .. o
. o TWI
=
0

0 0.5 1

o - coefficient

Fig 4. Which weather insurance scheme is preferred in which CPT specification.

https://doi.org/10.1371/journal.pone.0232267.9004
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experienced more intensively as single year premium payments appear close to the reference
point (See note 15 of S1 Footnotes).

n.s. = not significant. No insurance outperformed the other.

Note: Flags indicate the outperforming insurance scenario according to test results dis-
played in Table 3. The underlying literature sources of CPT preferences can be derived from
Fig 1.

5. Discussion

Babcock [9] shows that loss aversion can lead to a reduction in optimal crop insurance cover-
age levels and thus to less protection against potential income losses, when farmers narrowly
frame their insurance as a stand-alone investment rather than a risk management tool. The
BWI proposed here aims to counteract this tendency by accounting for CPT properties of
farmers’ preferences under this narrow framing. This includes transforming single year premi-
ums into multiyear premiums (ADJUSTMENT 2). Since there is no deductible (ADjusTMENT 1), a
farmer can also experience frequent small gains (insurance payouts) with BWI. We introduce
a two-step procedure to test the ADjusTMENTS with respect to changes in the risk reducing prop-
erties (Step 1: Expected Utility Theory) and changes in the prospect value (Step 2: Cumulative
Prospect Theory) under various real world preference scenarios.

In the case of Step 1, we find that the actuarially fair BWT objectively reduces weather risk
exposure as each of the ADjusTMENTS separately, and the combination of both ADJUSTMENTS,
increase EU. Our quantile risk premium analysis reveals a weak statistical significance for
changes in the risk at lower quartiles for TWI. Clarke [52] suggests that weather insurance
becomes unattractive for risk averse decision-makers if it worsens bad financial situations, i.e.
in case of basis risk [53]. Thus, it is still important to further reduce the basis risk, i.e. the dis-
crepancy between insurance payout and financial losses on the farm. Most recently, Lampe &
Wiirtenberger [13] suggested a model for farmers that incorporate basis risk in their framing
of the insurance product. Using their findings to design a behavioral weather insurance also
for these farmers can further increase the attractiveness of index insurances.

Step 2 reveals that even with both ApjustMENTS implemented jointly, BWT is still unable to
increase the prospect value of farmers that narrowly frame insurance as a stand-alone invest-
ment when compared to TWI. However, when ApjustMmeNT 1 is revoked, BWTI increases the
prospect value compared to TWI for CPT specifications in Boc.1, Boc.2, Boc.3 and Bab. There-
fore, higher loss aversion, as observed in these specifications, increases preferences for BWI
compared to TWI. This is due to the fact that when ApjusTMENTI is implemented alone, BWI
entails stochastic multiyear premiums instead of the deterministic yearly premiums payable
with TWI. Hence, losses occur further away from the reference point. Therefore, stochastic
multiyear premiums potentially increase the insurance demand of prospect value maximizing
farmers that narrowly frame insurance as a stand-alone investment. It must be noted that post-
poning premium payments can also open the way to strategic default and action may have to
be taken to avoid this behavior [54]. Thus, BWI requires a strong institutional environment
with a strong legal system to enforce the insurance contract.

In contrast, a zero deductible design (ApjusT™MENT 1) does not benefit farmers in terms of
prospect value under the narrow framing assumption as it increases the total amount of pre-
mium payments which are framed as losses in the CPT setting. This persists in the situation
when both ApjustmeNTs are fulfilled and also when only ApjustMenT 1 is implemented. This
result is in line with Babcock [7] who shows that prospect value maximizing farmers with
relatively low risk aversion and average loss aversion prefer insurance with higher deductibles.
Consequently, while a stochastic multiyear premium is in itself prospect value increasing, it is
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nevertheless not able to counteract the overweighting of premium payments framed as losses.
Thus the ‘segregation of silver linings’ is unable to counterbalance loss aversion in our case
study. In this context, Du, Feng & Hennessy [6] show that farmers are reluctant to buy actuari-
ally fair insurance as out of pocket premium payments increase. This underlines that farmers
avoid higher premium payments, even if these are fair and objectively reflect their risk profile.
While our findings suggest that farmers have little incentive to insure small/ moderate losses
under CPT narrow framing [9,10,11], Sydnor [14] detects over-insurance of modest risks (i.e.
the choice of low deductibles) in home insurance markets. He suggests potential explanations
such as, biased subjective beliefs, differences between global and local utility, extreme liquidity
constraints. Hence, these drivers might also influence the deductible choice made by farmers
in agricultural insurance settings. This could be tested in future research. Moreover, various
studies detect an increase in farmers’ insurance demands after experiencing a payout or a loss
[55,56,57,58]. Obviously, this cannot be explained by the narrow framed decision-making
under CPT used here and further research is needed to shed more light on behavioral crop
insurance demand. Numerous economic experiments that study insurance demand provide

a rich source of information on the role of various preferences on the demand for different
insurance types (see Jaspersen, [59] for an overview). The application of these experiments in
an agricultural insurance setting is a logical continuation of past research. However, there is a
notable lack of investigation into the effect of framing or communication (e.g. [60]), social
factors [61] or emotions [62] on insurance demand in agriculture and the moral hazard factor
has hitherto also been neglected. A better understanding of the connections between these
characteristics and decisions might improve the uptake of insurance as well as its environmen-
tal consequences. To summarize, additional knowledge about the driving characteristics of
farmers’ insurance demands and deductible choices could provide the foundation for an addi-
tional theoretical model that might be the underlying driver. One entry point can be the work
of Scholten & Read [63] who integrate Markowitz’ [64] “forgotten fourfold pattern of risk pref-
erences” into cumulative prospect theory by allowing switches between risk aversion to risk
seeking dependent on the size of the outcome (gain or loss) that is at stake. In addition to the
cumulative prospect theory, the salience theory [65] could also represent another interesting
course to follow. Here, decision-makers are driven by their attraction to a specific outcome
rather than their aversion.

It should be noted that our test results rely on the framing of insurance as a stand-alone
investment and this dictates the choice of the reference point. As stated, we expect that there is
a wide range of decision-making behavior among farmers and in particular differences in the
reference point may necessitate further ApjustMeNTs. Therefore, we regard our analysis as first
step towards a specific tailoring of insurance to align it with farmers’ decision-making behav-
ior. In particular, the findings of K&szegi & Rabin [66], Schmidt, Starmer & Sugden [67] and
Schmidt [68] offer various points of departure for adjusting the reference point to include
basis risk and frame it as a loss. Feng, Du & Hennessy [7] take up the findings of Schmidt,
Starmer & Sugden [67] and test for state dependent reference points in hypothetical crop
insurance decisions among US farmers. Their findings imply that based on state-dependent
reference levels “a strong distaste for paying premium” can be explained. Future research must
take this into account and experimental findings on farmers’ behavior should be included in
insurance design. Elabed & Carter [69] provide further behavioral economic insights into how
compound risk aversion can influence index insurance demand under basis risk. This offers
another point of departure for ongoing research. In addition, Sung et al. [17] propose an opti-
mal behavioral insurance under the prospect theory, where the whole wealth distribution is
considered in the reference point. In light of the extensive literature already available on opti-
mal crop insurance under expected utility, this seems to be a logical next step [15,16].
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Moreover, Lampe & Wiirtenberger [13] find that a narrow stand-alone investment framing of
index insurance contracts can be related to a low understanding of the index insurance prod-
uct, i.e. the reference level is state dependent. This suggests that the behavioral weather insur-
ance proposed here could be especially suited to incentivize the demand for index insurance
among farmers that have a limited understanding of the insurance contract. However, as
Lampe & Wiirtenberger [13] focus on a case study in India their findings on farmers’ prefer-
ences might only be partly applicable to our central European case-study due to large differ-
ences between the two agricultural systems (see also Petraud, Boucher & Carter [70]).

As our results rely on simulations, their viability must be proved in the field before we can
offer a BWTI in line with market requirements. Furthermore, it is important to note that the
analysis presented here is based on data from large farms in eastern Germany. Given differences
in institutional structures and possible divergences in risk preferences, future research could
examine whether or not these findings can be applied to developing country contexts where
considerable efforts are currently being made to develop weather insurance markets [71].

6. Conclusion

To summarize, our approach proposes at two-step procedure to develop an insurance product
that has risk reducing properties under expected utility and to evaluate the prospect value of
insurance under CPT. We test for various preference scenarios under both theories. Our strat-
egy involves a temporal redistribution of money flows to frame crop insurance in a way that we
believe may be more attractive to farmers. We find that BWI is preferable to TWI for farmers
with expected utility preferences. This was to be expected given its zero deductible design at a
fair premium. In addition, when either of the two ADjusTMENTS is revoked, BWI still reduces the
financial exposure to weather risk and is preferred by farmers with expected utility preferences.
Moreover, and most importantly, depending on the assumed CPT preference specifications,
farmers with CPT preferences may prefer BWI over TWT if the stochastic multiyear premium is
implemented (ApjusTMENT 2) alone. BWI could thus lead to an increase of insurance demand.

This leads to certain significant conclusions. Firstly, to our knowledge this is the first study
explicitly designing crop insurance in general and weather insurance in particular, on the basis
of farmers’ CPT preferences. In this way, we are able to show how integrated premium pay-
ments combined with a multiyear contract, can lead to an increase in insurance demand. Sec-
ondly, we show that the relative benefits of the BWI depend strongly on assumed CPT value
function characteristics, such as the degree of loss aversion. This means that farmers’ charac-
teristics must be considered when designing individual crop insurance contracts with a view
to increasing the attractiveness of the contracts and thus encourage insurance purchases.
Hence, it is worthwhile to consider offering multiple types of contracts. Thirdly, potentially
more farmers are insured against downside risks with BWI compared to the current state. This
makes the farming system as a whole more resilient against climate shocks. Finally, we tested
across a wide range of risk scenarios (as displayed through the very heterogeneous premium
rates) using the contract parameters shown in Table 3 and weather summary statistics in
Table 11. This leads us to conclude that our findings can be upscaled to meet other hazards in
other regions.

Future research should continue to focus on farmers’ insurance decision-making and, in
particular, should investigate the role of the framing situation and possible contract adjust-
ments. In particular, state-dependent framing and reference levels seem to offer promise for
better explaining farmers’ insurance demand. The framework proposed here should not be
seen as a static product but rather as an entry point for the dynamic development of new
behavioral considerations in crop insurance contract design. Future research on behavioral
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Table 11. Summary statistics of cumulative rainfall from stem elongation to milk ripening in liters per square
meter.

Mean 133.73

Median 127.1

Min 9.1

Max 402.7
Standard Deviation 56.14
Coefficient of Variation 0.42

https://doi.org/10.1371/journal.pone.0232267.t011

insurance design must take up future findings on farmers’ insurance decision making to opti-
mally suit farmers’ preferences. There are various links to literature on experimental derivation
of insurance decisions, optimal behavioral insurance design outside agriculture and promising
concepts such as salience theory, which should be helpful in identifying a methodological start-
ing point.
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