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Abstract

Experience across many countries shows that, without large premium subsidies, crop insur-

ance uptake rates are generally low. In this article, we propose to use the cumulative prospect

theory to design weather insurance products for situations in which farmers frame insurance

narrowly as a stand-alone investment. To this end, we introduce what we call “behavioral

weather insurance” whereby insurance contract parameters are adjusted to correspond more

closely with farmers’ preferences. Depending on farmers’ preferences, we find that a stochas-

tic multiyear premium increases the prospect value of weather insurance, while a zero deduct-

ible design does not. We suggest that insurance contracts should be tailored precisely to

serve farmers’ needs. This offers potential benefits for both the insurer and the insured.

1. Introduction

Climate risks threaten agricultural crop production and are expected to become even more

pronounced due to climate change [1]. Crop insurance could be one of the key risk manage-

ment tools to help address increased weather variability resulting from climate change [2, 3].

In many countries, crop insurances are heavily subsidized to encourage farmers to participate.

In fact, premium subsidies are often so high that taking out insurance has a positive expected

value [4,5,6,7]. In contrast, the uptake of unsubsidized crop insurance is often low (See note 1

in S1 Footnotes [8]). Assuming a standard expected utility (EU) framework, this observation is

not consistent with the optimal behavior of risk averse farmers. A possible explanation for this

anomaly is that some farmers do not assign insurance premiums and payouts to fluctuations

in crop income, but tend to frame insurance narrowly as a stand-alone investment [9,10,11].

Recent evidence also suggests that the cumulative prospect theory (CPT) [12] may be a better

predictor of farmers’ insurance decision-making than EU theory [6,7,9,10,11,13]. For these

farmers, losses are felt whenever premiums exceed payouts while gains are perceived in the

opposite case.

In this paper, we investigate the feasibility of adjusting insurance contracts so that they fit

better within a stand-alone investment framing. Therefore, we assume that some farmers frame

insurance purchase decisions as a stand-alone investment rather than a risk management tool
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(See note 2 in S1 Footnotes). We propose to modify the traditional weather insurance (TWI)

design and introduce what we call behavioral weather insurance (BWI). To this end, we pro-

pose a two-step design of weather insurance products. Firstly, the BWI should be effective in

reducing farmers’ financial exposure to weather risk. Secondly, the design of this BWI should

be adjusted in line with insights derived from CPT, thus extending the narrower EU

framework.

Our study enlarges the available literature in three dimensions. Firstly, it reviews currently

available literature on crop insurance decision-making under narrow framing and CPT prefer-

ences [9,10,11] and explicitly simulates and tests how contract adjustments can make insur-

ance more attractive under such framing (see e.g. Sydnor [14] on behavioral decision-making

in home insurance). Secondly, it adds to the literature on optimal crop insurance which at

present focuses mainly on expected utility maximizing decision-making [15,16]. Thirdly, our

BWI is a first attempt to optimally design crop insurance under behavioral decision-making,

something which others are attmepting in sectors outside of agriculture [e.g. 17,18].

Based on a microeconomic framework for insurance decision-making under narrow-fram-

ing with cumulative prospect theory preferences, we derive two adjustments to traditional

weather insurance contracts and introduce the behavioral weather insurance that has the

potential to increase the prospect value. Firstly, ADJUSTMENT 1 proposes “Insure small losses

also (no deductible)”. Secondly, ADJUSTMENT 2 proposes “Conclude a multiyear contract and

only pay premiums in years of no crop losses or, if there are no years with no losses, at the end

of the contract period”.

We use 15 years of yield data from 38 representative winter wheat producers in the eastern

part of Germany. This is one of Europe’s most productive grain growing regions, but it is also

extremely drought-prone. We match yield data with high-resolution rainfall and phenology

data and tailor drought (i.e. lack of rainfall) index insurance contracts (TWI and BWI) for

each farm. We are thus able to simulate the insured and uninsured revenue stream over the

observed time period based on hypothetical insurance payouts and premium payments. We

apply a two-step test procedure. Firstly, we test whether both TWI and BWI can effectively

reduce the insured party’s financial exposure to production risk. To this end, we test for

increases in expected utility (EU) across various scenarios of risk aversion and along quantiles

of the revenue distribution between insured and uninsured revenues. Secondly, we evaluate

potential changes in insurance demand through BWI compared to TWI by testing for prospect

value changes under various real world elicited CPT specifications and the assumption of a

stand-alone investment framing (see Bocquého, Jacquet, and Reynaud, [19] and Bougherara

et al. [20] for elicited CPT preferences).

Our results show that BWI with ADJUSTMENT 1 only “Insure small losses also (no deduct-

ible)”, increases the risk reducing capacity in Step 1, but does not increase the prospect value

under narrow framing in Step 2. In contrast, our findings reveal that compared to TWI, BWI

with ADJUSTMENT 2 only (“Conclude a multiyear contract and only pay premiums in years of

no crop losses or, if there are no years with no losses, at the end of the contract period”) can

increase an insurance’s prospect value under narrow framing, while preserving the risk reduc-

ing capacity. This added value opens new possibilities for making crop insurance more attrac-

tive, apart from subsidization. The unexploited potential of behavioral insurance, which has

proved useful in other branches, offers valuable opportunities for both insurers and insured

parties to strengthen the resilience of the agricultural sector against extreme weather events.

Our findings lay a foundation also for other framings, such as state-dependent reference levels

[13, 7] that can be integrated into the design of crop insurances.

We proceed as follows. Firstly, the theoretical framework of EU and CPT is used to propose

adjustments to the design of TWI contracts to create BWI. Secondly, we introduce hypotheses
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about preferences for BWI designs to be tested in relation to TWI. We assume an EU value

function and then a CPT value function, according to the above two-step procedure. Thirdly,

we test these hypotheses using data from a drought-prone wheat production region in eastern

Germany.

2. Methodology

This section gives an overview of the decision-making criteria under risk, the specifications

used, the underlying testing procedure and the insurance design.

2.1. Decision-making under risk

In the next section, we present the methodology on which our two-step approach for designing

BWI is based. We begin with an overview of the EU framework used in Step 1. Step 2 describes

how cumulative prospect theory is used to assess insurance from a narrowly framed stand-

alone investment perspective. We then combine both frameworks within one decision-making

model. On this basis, we are able to propose ADJUSTMENTS to the insurance contract that poten-

tially increase both expected utility and prospect value, thus making it more attractive for the

two interest groups (expected utility maximizers and prospect value maximizers) within the

farming population.

2.1.1. Expected utility theory (Step 1). In the EU framework, terminal wealth Wti for

farm i in year t is transformed into a utility value using a utility function U(Wti). The occur-

rence probability weighted average of these is the expected utility E[U(Wti)] (EU). For the sake

of clarity in our analysis, we assume that farmers produce wheat only, resulting in terminal

wealth Wti to follow Wti = δyti + πti − Γi. Here, yti denotes the yield of farm i in year t, πti the

insurance payout and Γi the insurance premium (see note 3 in S1 Footnotes). The standard

assumption is that farmers chose their insurance plans according to the expected utility maxi-

mization problem, i.e. max E[U(Wti)]. If farmers are downside risk averse, insurance payouts

πti should cover downward movements of stochastic yields yti. Thus, assuming that insurance

premium Γi is fair, and all else being equal, changes in E[U(Wti)] through modified insurance

plans serve as proxy for changes in welfare and consequently for changes in the ability of the

respective insurance to reduce the financial exposure to risks.

For this analysis, we use a power utility function to reflect farmers’ preferences [21].

Utiφ Wtið Þ ¼

W1� φ
ti

1 � φ
if φ 6¼ 1

lnðWtiÞ if φ ¼ 1

8
><

>:
ð1Þ

where φ is the measure of relative risk aversion. As a result, we obtain vectors euκφi containing

EU values for each of the i farms for the two insurance designs κ (κ = TWI or BWI) and levels

of risk aversion are φ.

Consequently, changes in E[U(Wti)] can likewise be expressed as changes in the willingness

to pay to eliminate risks. Thus, any increase in E[U(Wti)] can be displayed as a decrease in the

risk premium R. Furthermore, insurance premium Γi shall not exceed a farmer’s individual

risk premium R, which constitutes the maximum amount a farmer is willing to pay to elimi-

nate the risk arising from yit and which is dependent on his risk preferences. Based on Kim

et al. [22], we decompose R into incremental risk premiums ΔRk, i.e. “the incremental willing-

ness to pay to eliminate the risk in the k-th quantile, moving it to the mean payout, while risk

has been already eliminated in lower quantiles”. As a result, we obtain vectors ΔRkκφi contain-

ing the incremental risk premium of farm i, quantile k, insurance design κ and levels of risk
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aversion φ. We are thus able to decompose changes in the financial risk exposure, with and

without insurance, into parts of the wealth distribution. See the online supplementary file

for further information on how we mathematically derive ΔRkκφi based on quantile

moments of Wti.

2.1.2. Cumulative prospect theory (Step 2). As farmers tend to deviate from the expected

utility maximizing insurance choice, Babcock [9] suggests that they might frame insurance

narrowly as a stand-alone investment and evaluate this investment, which is counter to the

expected utility theory (see also [10,11]). In fact, previous studies suggest that people frequently

make decisions that are contrary to EU determined preference rankings (see Stamer, [23] for

an overview). Consequently, a number of alternative theories have been proposed to explain

and predict human behavior, such as CPT or rank-dependent expected utility [24]. In particu-

lar, CPT has received considerable attention in recent agricultural economics literature in gen-

eral (e.g. [25,26]) and crop insurance demand literature in particular [6,7,9,10,11,13].

CPT extends EU by distinguishing gains and losses as deviations from a certain reference

point, resulting in two (potentially) different ‘utility’ functions combined into a value function

v(σ), which implies risk aversion over gains and risk seeking behavior over losses:

vtialðstiÞ ¼

sati if sti > 0

0 if sti ¼ 0

� lð� stiÞ
a if sti < 0

8
><

>:
ð2Þ

Instead of terminal wealth realizations, CPT transforms single prospect outcomes σ into

prospect values v, which depend on the level of risk aversion α and loss aversion λ (See note 4

in S1 Footnotes). v(σ) is strictly increasing and |v(σ)| < |v(−σ)| suggests loss aversion. More-

over, @2v(σ)/@σ2� 0 for σ> 0 (implying risk aversion in gains) and @2v(σ)/@σ2� 0 for σ< 0

(implying risk seeking in losses) jointly indicate diminishing sensitivity towards changes in σ
with increasing distance from the reference point for both gains and losses [27].

We base the CPT framework on Babcock [9] and frame the EU increasing weather insur-

ance from Step 1 as a stand-alone investment. This means that gains are perceived when pay-

outs exceed premiums and losses are felt in the opposite case (see also Barberis, Huang &

Thaler, [28] for further details on narrow framing). Babcock [9] finds that farmers tend to

frame insurance so that the difference between payouts and premiums for farm i in year t is

indicated by the prospect outcome σti = πti − Γi. The reference point Ri is then equal to σti = 0.

There is a corresponding probability of occurrence pti for each σti. These probabilities are

translated into decision weights, allowing for the tendency observed among decision-makers

to overweight small probabilities and underweight large ones [24,13], i.e. by using a function ω
(p). Assuming ordered outcomes σi with probabilities pi of farm i over the years t from largest

loss year m to largest gain year n, the decision weight of a gain in year t is defined as

W
þ

ti ¼ oðpt þ � � � þ pnÞ

� oðptþ1 þ � � � þ pnÞ

and of a loss in t as

W
�

ti ¼ oðpm þ � � � þ piÞ

� oðpm þ � � � þ pi� 1Þ
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The final prospect value pνiα is evaluated by summing up the weighted single year values:

pvialg ¼
Xn

t¼1
WtivtiaðstiÞ ð3Þ

Thus, when insurance is framed narrowly as a stand-alone investment, the maximization

problem is max pνiαλγ, where farmer i evaluates the insurance contract based on all available

realizations of σti. Hence, CPT enables us to apply a second performance measure to assess

insurance in addition to the risk reducing properties provided by the EU framework. This is in

line with Jäntti et al. [29] who suggest the use of welfare measures according to the subject’s

underlying decision-making process. More specifically, we use the prospect value to measure

welfare when the subject tends towards prospect value maximization.

2.1.3. Coexistence of decision-making processes and contract adjustments. In accor-

dance with Harrison & Rutström [30], we assume that “several behavioral processes [. . .]

coexist” within the farming population (see note 5 of S1 Footnotes [31]) (see also Sproul &

Michaud [32]). Hence, any number of (unobservable) decision rules could be assumed and

our framework allows various decision rules to be tested. However, we will focus on the two

that have been addressed most prominently in the crop insurance decision literature, namely

max E[U(Wti)] and max pνiαλγ, i.e. expected utility maximization (i.e. max E[U(Wti)]) and

maximization of a prospect value based on cumulative prospect theory (i.e. max pνiαλγ). The

framework presented here allows further processes to be included if experimental evidence

suggests their existence. If some of the farmers maximize pνiαλγ, we advocate that insurance

design should take this into account. By assuming that BWI should increase both EU and pν
according to our two step-procedure, we aim to increase the welfare for both interest groups,

i.e. EU and CPT maximizers [29], while keeping EU related risk reducing properties constant.

In the following, we derive ADJUSTMENTS of insurance contracts that potentially increase both

the expected utility E[U(Wti)] and the prospect value pνiαλγ of weather insurance. In order to

maximize pν of an insurance under narrow framing (See note 6 of S1 Footnotes), we recall the

properties of the value function in this specific case. The diminishing sensitivity property of v

(σ) in the gain domain, i.e. @2v(σ)/@σ2� 0 for σ> 0, implies that decision-makers have a partic-

ularly positive attitude towards small gains that occur close to their reference point. This prop-

erty is consistent with the decreasing marginal utility property of U(W). However, in CPT this

sensitivity is shifted and appears close to the reference point. In our insurance case, this implies

a preference for frequent positive σti, i.e. insurance payouts frequently exceeding premiums.

Moreover, the concavity of v(σ) in the gain domain implies risk aversion in gains, i.e. a prefer-

ence for a lower variation in gains. Therefore, individuals prefer multiple small gains in relation

to, or in addition to, infrequent large gains [33,34,35]. When this is applied to weather insur-

ance, farmers exhibit a preference for insurance with a lower volatility in payouts. Hence, farm-

ers favor contracts that provide larger payouts in the case of catastrophic losses as well as small

payouts with higher frequencies. It follows that insurance without deductibles might benefit

farmers’ prospect value under narrow framing. Hence, we propose the following first ADJUST-

MENT to be tested.

ADJUSTMENT 1: Insure small losses also (no deductible).

Compared to a situation where only larger yield losses are insured, two differences are

expected in the probability mass of payouts. Firstly, payouts occur more often. Secondly, as

there are more payouts, the overall payout mean is shifted away from zero. In addition, increas-

ing the number of payouts generates higher premiums, which, in our narrow framing example,

are experienced as losses. Hence, changes in pν through ADJUSTMENT 1 depend on how deci-

sion-makers rate less risk in the gain domain in comparison to additional losses. More specifi-

cally, the success of ADJUSTMENT 1 is expected to be a function of α and λ, i.e. risk aversion and
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loss aversion. Our focus on an index insurance product means we can envisage high frequency

payouts (no deductibles) due to low administrative costs as payouts are triggered automatically

based on the performance of the index rather than by farm damage assessments. Moreover,

moral hazard is less of an issue in the index insurance framework which reduces the need for a

deductible.

In addition, the convexity of the value function in the loss domain, @2v(σ)/@σ2� 0 for σ<
0, implies risk seeking behavior in losses, i.e. v(−x) + v(−y) < v(−(x + y)) [30]. Translated into

the narrowly framed weather insurance context, this implies that farmers prefer volatile pre-

mium payments rather than the more commonly sought stable premium payments (See note 7

of S1 Footnotes). Hence, an increase in the range of premium payments realized is likely to

raise the prospect value. Moreover, in case of mixed gain/loss events, i.e. occurrence of out-

come (x = insurance payout, -y = premium payment) with |x|< |y|, it is not intuitive whether

v(x) + v(−y) ≷ v(x − y)). The general trend is that the smaller x is in relation to y, the more seg-

regation of x and −y is preferred as v(x) + v(−y)> v(x − y)) tends to hold. In our weather insur-

ance example, premium payments and insurance payouts occur jointly. When payouts are

smaller than the premiums due, farmers must pay the resulting difference to the insurer so

under narrow framing a loss occurs even though the insurance theoretically granted a payout.

Hence, segregating gains and losses can increase the prospect value under narrow framing.

Therefore, we propose a second ADJUSTMENT.

ADJUSTMENT 2: Conclude a multiyear contract and only pay premiums in years of no crop

losses or, if there are no years with no losses, at the end of the contract period.

ADJUSTMENT 2, is designed to shift premium payments to a less sensitive part of the value

function, with the multiyear property as precondition. If premiums are only paid every n-th

year, the amount of this payment depends on how many yearly instalments are summed

together. Thus, we propose to change the deterministic annual premium into a stochastic

multiyear premium, which considers risk seeking behavior and declining sensitivity to losses.

Moreover, farmers can postpone their premium payments in case of small insurance payouts

(generated by ADJUSTMENT 1) and thus perceive these payouts as a gain. This means that the

insurance contract must be extended to cover a period of several years.

2.1.4. Specification of expected utility & cumulative prospect theory. The analysis is

performed using different EU and CPT specifications for the empirical part. In the case of EU,

we vary the measure of risk aversion φ across [0, 0.2, 0.4, 0.6, 0.8, 1.0]. This range is in accor-

dance with experimentally elicited preferences of farmers in Germany (e.g. [36,37,38]). We

account for the quantile risk premiums that complement the analysis on expected utility by

dividing the wealth distribution into four equally large quartiles and derive the quantile risk

premium based on an average φ = 0.5.

In the case of CPT, we expect our results to be dependent on α, λ and γ/δ. To be exact, we

use specifications from the only two empirical peer reviewed studies that have elicited CPT

preferences in European agriculture [19,20]. Bocquého, Jacquet and Reynaud [19] present

three sets of CPT parameters based on different estimation techniques (abbreviated as Boc.1- 3
hereafter). In addition, Bougherara et al. [20] provide a fourth set of CPT elicited parameters

(abbreviated as Bou hereafter). We use CPT specifications employed by Babcock [9], which

were taken from the original cumulative prospect theory paper by Tversky & Kahneman [12]

(abbreviated as Bab hereafter) to extend real world elicited preferences. Table 1 and Fig 1 sum-

marize and visualize the different specifications elicited in the above papers. Here, Boc.1 is

characterized by a low α-coefficient indicating relatively marked risk aversion over gains and

risk seeking over losses. The loss aversion coefficient λ indicates that losses are weighted

almost twice as much as gains. Similarly, Boc.2 implies slightly lower risk aversion in gains

(and lower risk seeking in losses) and a loss aversion comparable to Boc.1. Boc.3 exhibits even
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lower risk aversion over gains and risk seeking over losses compared to Boc.1 and Boc.2 but

with higher loss aversion. Compared to the three scenarios above, Bou has lower risk aversion

over gains (and risk seeking over losses) together with considerably lower loss aversion. The

Bab specification has relatively lower risk aversion over gains and risk seeking over losses

together with a loss aversion specification that is similar to Boc.1 and Boc.2.

With respect to probability weighting, all CPT specifications imply overweighting of small

and underweighting of high probability values with almost similar magnitudes. The specifica-

tions employed also differ with respect to the functional forms of ω(p). Eqs 4 to 5.2 show the

specifications of ω(p) as used by i) Bocquého, Jacquet and Reynaud [19] (ω1) and ii) Bougher-

ara et al. [20] (originally proposed by Prelec [39]) and Babcock [9] (oþ
2

and o�
2

for gain and

Table 1. CPT specifications of recent studies.

Abbreviation α − coefficient (risk aversion)a λ − coefficient (loss aversion) ξ/γ/δ − coefficient (probability distortion)c

Bocquého, Jacquet. and Reynaud [17] Boc.1 0.280 2.275 0.655

Boc.2 0.325 2.110 0.679

Boc.3 0.512 3.756 0.647

Bougherara et al. [18] Bou 0.614 1.374 0.785 / 0.844

Babcock [7] Bab 0.880 2.250 0.610 / 0.690b

a Note that smaller numbers imply higher risk aversion
b According to Eq 5.1 and 5.2, different weighting functions are used for gains and losses respectively
c See Eqs 4, 5.1 and 5.2 for further details of weighting functions based on Prelec [39] and Tversky & Kahneman [12]

https://doi.org/10.1371/journal.pone.0232267.t001

Fig 1. Visual classification of CPT specifications in recent studies. Flags indicate abbreviations according to Table 1.

https://doi.org/10.1371/journal.pone.0232267.g001
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loss probabilities respectively; originally proposed by Tversky & Kahneman, [11]):

o1ðpÞ ¼ exp½� ð� lnðpÞÞx� ð4Þ

oþ
2
pð Þ ¼

pg

ðpg þ ð1 � pÞgÞ
1
g

o�
2
pð Þ ¼

pd

ðpd þ ð1 � pÞdÞ
1
d

ð5:1=5:2Þ

We thus obtain vectors pνiαλγ for the two insurance designs κ and the five CPT specifica-

tions. These vectors contain insurance prospect values for each farm. Taken together, the five

specifications above allow us to implement a realistic range of preference scenarios that sup-

port our empirical analysis (See note 8 of S1 Footnotes [40]).

2.2. Testing

We investigate the proposed BWI by conducting statistical tests in three different dimensions.

Firstly, we test the risk reducing properties of an actuarially fair TWI scheme against the actu-

arially fair BWI by comparing euκφ vectors of insured terminal wealth. We complement this by

testing for changes in the quantile risk premiums ΔRkκφi. This allows us to pinpoint where the

reduction in financial risk exposure occurs in the wealth distribution. More specifically, we

test the following null hypotheses based on observations across various farms and across differ-

ent levels of risk aversion φ:

H1 : H0 : eutraditional φ � euno insurance φ

H2 : H0 : eubehavioral φ � euno insurance φ

H3 : H0 : eubehavioral φ � eutraditional φ

Secondly, we test whether the BWI scheme is better suited to farmers’ preferences (in terms

of prospect value) than a TWI scheme and would be likely to increase insurance demand. Fur-

thermore, we explore the stability of the expected performance of the BWI scheme using dif-

ferent CPT value function parameters. The performance of BWI and TWI is then compared

across the different CPT specifications (See Table 1).

H4 : H0 : pvbehavioral boc:1 � pvtraditional boc:1

H5 : H0 : pvbehavioral boc:2 � pvtraditional boc:2

H6 : H0 : pvbehavioral boc:3 � pvtraditional boc:3

H7 : H0 : pvbehavioral bou � pvtraditional bou

H8 : H0 : pvbehavioral bab � pvtraditional bab

Thirdly, we clarify how the individual ADJUSTMENTS that inform our approach contribute to

an increase in the prospect value of the insurance. More specifically, we present results for the

statistical tests of H1–H8 when BWI ADJUSTMENT 1 (“Insure small losses also—no deductible”)

is revoked and when ADJUSTMENT 2 (“Conclude a multiyear contract and only pay premiums in

years of no crop losses or, if there are no years with no losses, at the end of the contract

period”) is revoked.

PLOS ONE Behavioral weather insurance

PLOS ONE | https://doi.org/10.1371/journal.pone.0232267 May 1, 2020 8 / 25

https://doi.org/10.1371/journal.pone.0232267


We use nonparametric paired Wilcoxon signed rank tests to compare vectors euκφ (to test

for expected utility changes across levels of risk aversion), ΔRkκφi (to test for quantile risk pre-

mium changes) and pνiαλγ (to test for prospect value changes across levels of risk aversion in

gains and risk seeking in losses, loss aversion as well as probability weighting functions). The

Wilcoxon signed rank test is used to perform pairwise comparisons of the differences between

the vectors stated in all the above hypotheses. We test for increases in the expected utility and

prospect value and for decreases in the quantile risk premia. The Wilcoxon signed rank test

calculates sample differences and ranks them based on absolute sizes. These differences are

weighted by their rank and summed together. A p-value is derived from the resulting test sta-

tistic for each scenario tested.

2.3. Index design

TWI and BWI both aim to provide indemnification in case of a drought event during sensitive

stages of plant growth. We consider a TWI design with a standard linear payout function, a

10% deductible, and premium payment every year. TWI is compared with a BWI design that

includes the two ADJUSTMENTS described earlier. The multiyear contract length was fixed at

three years (following Chen & Goodwin, [41]) (See note 9 of S1 Footnotes). The cumulative

premium due must be paid if there is no payout at any time during the three year period. It

must also be duly paid at the end of the contract period if the insurance makes payouts in each

of the three years. Fig 2 illustrates an example of yields together with premiums and payouts

for both TWI and BWI across a 12 year period (See note 12 of S1 Footnotes).

In accordance with Conradt et al. [42], we select the characteristics of the weather insurance

contracts for each farm to minimize basis risk and maximize risk reducing properties. Thus

each farm in our sample receives a farm individual insurance contract tailored to the site spe-

cific risk exposure. We focus on the coverage of drought induced yield losses in winter wheat

and use a deficit of the cumulative rainfall during vulnerable plant growth stages as an indica-

tor of drought. We therefore match farm-level yield records with historical cumulative rainfall

data during the critical stages that are exogenous to our analysis (See note 11 of S1 Footnotes).

We use high-resolution rainfall grid data to remove spatial basis risk [43]. Thus, the rainfall

index value rRti for farm i in year t is calculated as the sum of rainfall Rti
d from day d = ‘start date’

to day d = ‘end date’:

rRti ¼
Xend

d¼start
Rti

d ð6Þ

Start and end dates of critical plant growth stages (i.e. from winter wheat’s stem elongation

to milk ripening) are determined using regional crop growth monitoring network data for

each year as proposed by Dalhaus, Musshoff & Finger [44]. Thus, the farm’s individual insur-

ance period is flexible in both space and time according to actual occurrence dates of winter

wheat growth stages, which vary across reporting stations and years. See Fig 3 for a graphical

illustration of the farm individual determination of rRti and Dalhaus [45] for further studies

using this approach.

We estimate the relationship between rRti and farm yields yti using quantile regression that

allows special emphasis to be placed on explaining certain (e.g. low) yield outcomes [42]. More

specifically, we expect yti to be determined by a function gðrRtiÞ including rRti and other factors

that are summarized within an error term ε and are uncorrelated with weather. The relation-

ship between weather and yield is quantified econometrically by estimating the model

yi ¼ ai þ ri
R 0βi þ εi ð7Þ
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where βi marks the change in yields when the rainfall index value rRti changes by one unit (mil-

limeter). More specifically, βi is the farm individual marginal impact of a millimeter of rainfall

on a farm’s wheat yield. As we expect βi to be nonlinear across yield levels (i.e. the impact of

rainfall absence is more severe when yields are low), we use quantile regression as proposed by

Fig 2. Exemplary visualization of TWI and BWI (no basis risk).

https://doi.org/10.1371/journal.pone.0232267.g002

Fig 3. Farm individual determination of the cumulative rainfall index value using regional phenological observations to find the day of the year when stem

elongation and milk ripeness occur in wheat. Rainfall is only measured between the observed phenology dates.

https://doi.org/10.1371/journal.pone.0232267.g003
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Conradt et al. [42]. Firstly, quantile regression minimizes the absolute sum of residuals rather

than the squares and secondly it allows a focus on different quantiles of the yield distribution

dependent on τ 2 (0, 1). More specifically, τ is used to weight parts of interest of the yit distri-

bution. Therefore, the estimated rainfall impact that is later used to inform the insurance pay-

out function, is especially tailored to explain losses in yield rather than average yield levels. The

minimization problem of quantile regression is

βiτ ¼ minβiτ
Xn

t¼1
rtðyit � r R 0

ti βitÞ ð8Þ

where

rtðyit � r R 0
ti βitÞ ¼

tjyit � r R 0
ti βitj if yit � r R 0

ti βit

ð1 � tÞjyit � r R 0
ti βitj if yit � r R 0

ti βit

(

ð9Þ

We use τ = 0.5 to put a special emphasis on below median yield outcomes.

Since the aim of our insurance is to pay out in the event of drought, it is designed as a Euro-

pean put option, i.e. insurance payout ptik ¼ d � ½Tik �maxfðSik � rRtikÞ; 0g�. Thus, an insurance

payout πtik in year t of farm i and insurance contract k is made whenever the rainfall rRtik falls

below the farm individual strike level of rainfall Sik. The amount of money a farmer receives is

then determined by the difference between the actual rainfall rRtik and the strike level rainfall Sik
multiplied by the tick size Tik. The tick size indicates the payout per millimeter of deficit rain-

fall. The optimal tick size and strike level are determined from quantile regression results.

More specifically, the strike level Sik of rainfall under which a payout is triggered is estimated

as the rainfall value that corresponds to the mean yield yi in the case of BWI, i.e.

SiBWI ¼ g � 1ðyiÞ, and to 90% of the mean yield in the case of TWI, i.e. Sik ¼ g � 1ð0:9yiÞ. This is

in accordance with Conradt et al. [42] and indemnity is not paid for below average rainfall but

rather for rainfall levels that imply below average yields. Tick size Tik is the estimated slope

coefficient βiτ.
Actuarially fair premiums for the TWI and BWI contracts are calculated using the burn

rate method [46] (See note 12 of S1 Footnotes). The actuarially fair insurance premium is

determined on the basis of the average payout over 10,000 bootstrapped payout realizations

due to the estimated rainfall distribution. A fair premium implies that the cost of the insurance

for the farmer is equal to the expected payout. In reality the insurance provider would charge a

loading on the fair premium, which includes administrative costs and a profit margin. Using

fair premiums enables us to focus our analysis on the differences between the two insurance

contracts (TWI and BWI).

3. Data

In the following section we present the underlying farm level yield, crop phenology and

weather datasets used.

3.1. Yield data

Our case study region is located in a drought prone area of eastern Germany (see Fig 3) and

includes farms in the German Federal states of Mecklenburg-Western Pomerania, Branden-

burg, Saxony-Anhalt, Thuringia and Saxony. Here, crop yield variability is much larger

compared to other regions in Germany [47]. Our original farm-level yield (yit) dataset was

obtained from a local insurance provider and consisted of a panel of 90 farms for the years

1995 to 2015. Each farm has a minimum size of 1,500 hectares, which is considerably higher

than the German average (of 60 hectares) but representative for the eastern part of Germany.
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The farms are highly specialized and crop production is the main source of farm income. As

a result, they have a significant interest in managing their exposure to weather risk. Farmers

submitted their historical yield records for multiple crops to obtain an individual weather risk

assessment from the insurance provider. We selected winter wheat as an example for this

study. Based on the findings of the weather risk assessments, private non-subsidized and indi-

vidually-tailored weather insurance contracts were offered to the farmers. To our knowledge,

this unsubsidized weather index insurance market is a unique case in a developed country con-

text, which underlines the importance of further improving weather insurance to help farmers

to cover their weather risks (for further details see www.die-wetterversicherung.de).

Since our analysis concentrates on a single weather risk, we reduced the dataset to 38 farms

that provided at least 15 years of wheat yield data and exhibited significant vulnerability to a

lack of precipitation, i.e. where the estimated slope βiτ indicated a negative impact of rainfall

(See note 13 of S1 Footnotes). Farms that are more vulnerable to a lack of precipitation are also

more likely to be interested in a rainfall insurance. The yield data were detrended using the

M-Estimator as suggested by Finger [48] [49] to account for technological trends (See note 14

of S1 Footnotes). See Table 2 for summary statistics on the detrended yield data.

3.2. Phenology and weather data

We use a rich phenology observation network provided by the Deutscher Wetterdienst

(DWD; Engl. German Meteorological Office) [43] to define critical farm-level growth phases

during which wheat is especially reactive to drought stress. As advanced by Dalhaus & Finger

[43] and Dalhaus et al. [44], droughts during the periods from stem elongation to ear emer-

gence and from ear emergence to milk ripening can be extremely detrimental to final yields.

Insurance contracts include the sum of rainfall across both stages as the insured weather index

rRti (See Fig 3 for a graphical explanation of the index building).

Rainfall grid data is used to generate records of farm-level rainfall levels for the period 1997

to 2014. More specifically, we follow Dalhaus & Finger [43] and use the RegNie weather rain-

fall grid, which is also provided by the DWD (available under ftp://ftp-cdc.dwd.de/). The grid

is based on interpolated rain gauge data with a spatial resolution of 1km x 1km. See Rauthe

et al. [50] for further details on the interpolation procedure. We used the read.regnie function

supplied within the ‘esmisc’ package of the statistical software environment R to derive this

weather information [51]. Using the geographical coordinates (latitude and longitude) of the

farms operating site, we extracted daily rainfall information from the grid dataset and obtain a

daily time series of rainfall per farm. Using the regional phenological observations we then

select and sum up daily rainfall within the time period from stem elongation to milk ripeness

(see S1 Fig for a graphical representation of the data manipulation procedure).

Table 2. Summary statistics of detrended winter wheat yields in decitons (= 100kg) per hectare.

Mean 66.39

Median 66.55

Min 17.42

Max 109.88

Standard Deviation 13.90

Coefficient of Variation 0.21

https://doi.org/10.1371/journal.pone.0232267.t002
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3.3. Data availability

Data cannot be shared publicly because the data will compromise the privacy of the human

subjects. The data are available from the gvf Versicherungsmakler AG (contact via Sebastian.

Mahler@gvf.de) for researchers who meet the criteria for access to confidential data.

4. Results

Table 3 gives a summary of statistics for the weather insurance contract parameters. The

median rainfall strike level was 206.20 mm for BWI and 127.70 mm for TWI, respectively.

The average tick size was 0.07 deciton/ millimeter rainfall [yield terms]. The average premium

rate for the TWI was 0.6% whereas it was 2.98% for the BWI. In comparison, BWI was more

expensive because it did not include a deductible. Hence the percentage of years in which pay-

outs were made was also considerably higher in the BWI case, 58.64% compared to 15.37% for

TWI on average.

4.1. Risk reducing properties of TWI and BWI according to expected utility

(Step 1)

Based on the two-step procedure described above, Tables 4, 5 and 6 show Wilcoxon signed

rank test results for expected utility changes in Step 1 (H1, H2 and H3). In addition, Tables 7,

8 and 9 show results for changes in quantile risk premiums when testing to identify which

parts of the wealth distribution are affected by the respective insurance scenario. Test results

for H1 and H2 in Table 4 reveal that both TWI and BWI significantly increase farmers’

expected utility compared to a no insurance scenario. Thus, assuming a fair premium and EU

preferences, TWI and BWI products reduce weather risk and are thus beneficial for risk averse

farmers. In addition, results for H3 indicate a statistically significant expected utility increase

Table 3. Summary statistics of contract parameters.

TWI BWI

Strike level [millimeter]

Median Across all farms 140.28 141.27

Min 4.22 16.95

Max 7560.03 584.35

Tick size [decitons/millimeter]

Mean Across all farms 0.08

Min 0.02

Max 0.23

Premium rate [in %]

Mean Across all farms 0.60 2.98

Min 0.00 0.21

Max 3.49 9.04

Years with payout [in %]

Mean Across all farms 15.37 58.64

Min 5.88 17.65

Max 50.0 100.00

Years with premium [in %]

Mean Across all farms 100 0.56

Min 100 33.3

Max 100 88.2

https://doi.org/10.1371/journal.pone.0232267.t003
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through BWI compared to TWI. This is not surprising as BWI insured larger parts of the risk

at a fair premium. Results regarding hypotheses H1-H3 are robust across all the levels of risk

aversion tested. No differences in expected utility are found for risk neutral decision-makers,

reflecting that the premium charged is actuarially fair. In addition, Table 7 shows the Wilcoxon

signed rank test results of comparing quantile risk premiums for H1-H3. Results indicate that

TWI is specifically suited to reduce risk at the edges of the wealth distribution whereas BWI

rather reduces risk in the second quartile, which is in line with its zero deductible design. How-

ever, while BWI is unable to insure against large losses in the first quartile, it outperforms TWI

in the second, third and fourth quartile of the wealth distribution in terms of risk reduction.

In addition to Table 4, where both ADJUSTMENTS of BWI are fulfilled, Table 5 shows tests for

expected utility changes when ADJUSTMENT 1 is revoked. Here, BWI only differs from TWI with

respect to the stochastic multiyear premium (ADJUSTMENT 2), i.e. small losses are uninsured.

Accordingly, results for H1 do not differ from those displayed in Table 4. Furthermore, results

for H2 show that expected utility of BWI is significantly greater compared to a no insurance

scenario. Hence, assuming a fair premium, BWI without ADJUSTMENT 1 can significantly reduce

farmers’ financial exposure to weather risk. To be precise, H3 reveals that no differences exist

between TWI and BWI at the 5% significance level with respect to expected utility changes.

This was no surprise as the ADJUSTMENTS made were specifically suited to CPT decision-makers.

Table 4. Wilcoxon signed rank test results for changes in expected utility (H1, H2 and H3).

Coefficient of relative risk aversion φ p-valuea/b

H1 H2 H3

H0: eutraditional φ � euno insurance φ H0: eubehavioral φ � euno insurance φ H0: eubehavioral φ � eutraditional φ
H1: eutraditional φ > euno insurance φ H1: eubehavioral φ > euno insurance φ H1: eubehavioral φ > eutraditional φ

0 0.56 0.67 0.65

0.2 0.03 0.11 0.28

0.4 1.97 � 10−3 0.02 0.08

0.6 7.27 � 10−4 0.01 0.04

0.8 7.27 � 10−4 0.02 0.03

1.0 7.27 � 10−4 0.01 0.03

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t004

Table 5. Wilcoxon signed rank test results for changes in expected utility when ADJUSTMENT 1 is revoked (insure small losses also) (H1, H2 and H3).

Coefficient of relative risk aversion φ p-valuea/b

H1 H2 H3

H0: eutraditional φ � euno insurance φ H0: eubehavioral φ � euno insurance φ H0: eubehavioral φ � eutraditional φ
H1: eutraditional φ > euno insurance φ H1: eubehavioral φ > euno insurance φ H1: eubehavioral φ > eutraditional φ

0 0.56 0.38 0.48

0.2 0.03 0.03 0.16

0.4 1.97 � 10−3 1.97 � 10−3 0.15

0.6 7.27 � 10−4 1.62 � 10−3 0.08

0.8 7.27 � 10−4 2.37 � 10−3 0.08

1.0 7.27 � 10−4 4.13 � 10−3 0.09

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t005
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In addition, results in Table 8 show that BWI can no longer reduce financial exposure to

weather risk in the second quartile of the wealth distribution. In contrast, it now reduces risk

in the first quartile.

Table 6 shows test results for H1-H3 when ADJUSTMENT 1 is reactivated and ADJUSTMENT 2 is

revoked. Here, small losses are insured and premiums are due every year. Results for H1 are

in accordance to those of Tables 4 and 5. Moreover, results for H2 show that BWI insurance

for small losses can significantly increase expected utility and thus reduce farmers’ financial

exposure to weather risk. Based on the above results, it is not surprising that H3 shows that

expected utility of BWI for the farmers insured is higher than with TWI as more risk is covered

at a fair rate. In addition, Table 9 suggests that with this specification, BWI reduces risk in

both the first and the second quantile of the wealth distribution.

4.2. Prospect value changes of TWI and BWI according to cumulative

prospect theory (Step 2)

The previous section focused on comparing TWI and BWI presupposing that farmers’ prefer-

ences are characterized by standard EU assumptions. This section makes the same comparison

Table 6. Wilcoxon signed rank test results for changes in expected utility when Adjustment 2 (Conclude a multiyear contract and only pay premiums in years of no

crop losses or, if there are no years with no losses, at the end of the contract period) is revoked (H1, H2 and H3).

Coefficient of relative risk aversion φ p-valuea/b

H1 H2 H3

H0: eutraditional φ � euno insurance φ H0: eubehavioral φ � euno insurance φ H0: eubehavioral φ � eutraditional φ
H0: eutraditional φ > euno insurance φ H1: eubehavioral φ > euno insurance φ H1: eubehavioral φ > eutraditional φ

0 0.56 0.67 0.66

0.2 0.03 0.03 0.04

0.4 1.97 � 10−3 2.31 � 10−3 3.19 � 10−3

0.6 7.27 � 10−4 3.48 � 10−4 1.36 � 10−3

0.8 7.27 � 10−4 2.79 � 10−4 5.04 � 10−4

1.0 7.27 � 10−4 2.38 � 10−4 4.36 � 10−4

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t006

Table 7. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk

aversion φ = 0.5 –all adjustments fulfilled.

p-valuea/b

Q1c (0.25) Q2 (0.5) Q3 (0.75) Q4 (1)

H1 H0: rptraditional φ� rpno insurance φ 0.06 0.44 0.09 7.30 � 10−4

H1: rptraditional φ< rpno insurance φ

H2 H0: rpbehavioral φ� rpno insurance φ 0.23 0.01 0.27 2.16 � 10−3

H1: rpbehavioral φ< rpno insurance φ

H3 H0: rpbehavioral φ� rptraditional φ 0.33 7.05 � 10−3 5.90 � 10−3 3.61 � 10−3

H1: rpbehavioral φ< rptraditional φ

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values
c Values in brackets indicate the upper probability bound of the respective quantile

https://doi.org/10.1371/journal.pone.0232267.t007
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but under the assumption that farmers’ preferences are characterized by CPT instead. Based

on Step 2 of our analysis, i.e. investigation of the performance of the different insurance

schemes across CPT specifications, Table 10 shows significance levels of Wilcoxon signed rank

test results of hypotheses H4 to H8, associated with three different BWI designs, i.e. all ADJUST-

MENTS fulfilled, ADJUSTMENT 1 revoked, ADJUSTMENT 2 revoked.

The second column of Table 10 and the upper left graph of Fig 4 present BWI results with

all ADJUSTMENTS described above in force (according to Table 4 of Section 4.1). In this case,

BWI provides no significant improvement in prospect value when compared to TWI for all

CPT specifications, i.e. Bocquého, Jacquet and Reynaud [19] (Boc.1, Boc.2 and Boc.3), Bough-

erara et al. [20] (Bou) and Babcock [9] (Bab).

The third column of Table 10 shows results for BWI excluding ADJUSTMENT 1 (“Insure small

losses also”). Contrary to the first specification, BWI outperformed (in terms of prospect

value) TWI for specifications Boc.1, Boc.2, Boc.3 and Bab. Compared to the preceding column,

this BWI design introduces greater uncertainty in the loss domain, while overall losses are

smaller due to lower premiums resulting from the implementation of a deductible. Thus, the

effect of economies in premium payments outweighs the effect of covering small losses for

Table 8. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk

aversion φ = 0.5—when ADJUSTMENT 1 (insure small losses also) is evoked.

p-valuea/b

Q1c (0.25) Q2 (0.5) Q3 (0.75) Q4 (1)

H1 H0: rptraditional φ� rpno insurance φ 0.06 0.44 0.09 7.30 � 10−4

H1: rptraditional φ< rpno insurance φ

H2 H0: rpbehavioral φ� rpno insurance φ 0.05 0.80 0.02 7.30 � 10−4

H1: rpbehavioral φ< rpno insurance φ

H3 H0: rpbehavioral φ� rptraditional φ 0.03 0.98 0.67 0.29

H1: rpbehavioral φ< rptraditional φ

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values
c Values in brackets indicate the upper probability bound of the respective quantile

https://doi.org/10.1371/journal.pone.0232267.t008

Table 9. Wilcoxon signed rank test results for changes in quantile risk premiums with a coefficient of relative risk

aversion φ = 0.5—when Adjustment 2 (Conclude a multiyear contract and only pay premiums in years of no crop

losses or, if there are no years with no losses, at the end of the contract period) is revoked.

p-valuea/b

Q1c (0.25) Q2 (0.5) Q3 (0.75) Q4 (1)

H1 H0: rptraditional φ� rpno insurance φ 0.06 0.44 0.09 7.30 � 10−4

H1: rptraditional φ< rpno insurance φ

H2 H0: rpbehavioral φ� rpno insurance φ 8.89 � 10−3 0.02 0.39 1.20 � 10−4

H1: rpbehavioral φ< rpno insurance φ

H3 H0: rpbehavioral φ� rptraditional φ 0.01 0.02 0.37 1.90 � 10−4

H1: rpbehavioral φ< rptraditional φ

a Low p-values imply a rejection of the null hypotheses stated in H1-H3
b Bonferroni corrected p-values
c Values in brackets indicate the upper probability bound of the respective quantile

https://doi.org/10.1371/journal.pone.0232267.t009
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these specifications. It could be said that loss aversion (the premium payments would be small

losses for the insured party) clearly dominates risk aversion in gains in these cases.

The fourth column of Table 10 shows results for BWI excluding ADJUSTMENT 2 (“Conclude a

multiyear contract and only pay premiums in years of no crop losses or, if there are no years

with no losses, at the end of the contract period”). Here, TWI outperforms BWI (in terms of

prospect value) across all specifications. In this scenario, premium payments (small losses

from the perspective of the insured party) come every year and the overall amount of losses is

Table 10. Wilcoxon signed rank test results for differences in the prospect value using CPT specifications Boc.1, Boc.2 Boc.3 and Bab (H4 –H8).

BWI with all ADJUSTMENTS fulfilled BWI excluding ADJUSTMENT 1 (small losses not insured) BWI excluding ADJUSTMENT 2 (payment every year)

Specifications p-valuea,b

H0: pvbehavioral � pvtraditional
H1: pvbehavioral > pvtraditional

H4: Boc.1 0.99 1.22 � 10−4 0.99

H5: Boc.2 1 3.05 � 10−4 1

H6: Boc.3 1 1.22 � 10−4 1

H7: Bou 1 0.20 1

H8: Bab 1 1.22 � 10−4 1

a Low p-values imply a rejection of the null hypotheses stated in H4-H8
b Bonferroni corrected p-values

https://doi.org/10.1371/journal.pone.0232267.t010

Fig 4. Which weather insurance scheme is preferred in which CPT specification.

https://doi.org/10.1371/journal.pone.0232267.g004

PLOS ONE Behavioral weather insurance

PLOS ONE | https://doi.org/10.1371/journal.pone.0232267 May 1, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0232267.t010
https://doi.org/10.1371/journal.pone.0232267.g004
https://doi.org/10.1371/journal.pone.0232267


experienced more intensively as single year premium payments appear close to the reference

point (See note 15 of S1 Footnotes).

n.s. = not significant. No insurance outperformed the other.

Note: Flags indicate the outperforming insurance scenario according to test results dis-

played in Table 3. The underlying literature sources of CPT preferences can be derived from

Fig 1.

5. Discussion

Babcock [9] shows that loss aversion can lead to a reduction in optimal crop insurance cover-

age levels and thus to less protection against potential income losses, when farmers narrowly

frame their insurance as a stand-alone investment rather than a risk management tool. The

BWI proposed here aims to counteract this tendency by accounting for CPT properties of

farmers’ preferences under this narrow framing. This includes transforming single year premi-

ums into multiyear premiums (ADJUSTMENT 2). Since there is no deductible (ADJUSTMENT 1), a

farmer can also experience frequent small gains (insurance payouts) with BWI. We introduce

a two-step procedure to test the ADJUSTMENTS with respect to changes in the risk reducing prop-

erties (Step 1: Expected Utility Theory) and changes in the prospect value (Step 2: Cumulative

Prospect Theory) under various real world preference scenarios.

In the case of Step 1, we find that the actuarially fair BWI objectively reduces weather risk

exposure as each of the ADJUSTMENTS separately, and the combination of both ADJUSTMENTS,

increase EU. Our quantile risk premium analysis reveals a weak statistical significance for

changes in the risk at lower quartiles for TWI. Clarke [52] suggests that weather insurance

becomes unattractive for risk averse decision-makers if it worsens bad financial situations, i.e.

in case of basis risk [53]. Thus, it is still important to further reduce the basis risk, i.e. the dis-

crepancy between insurance payout and financial losses on the farm. Most recently, Lampe &

Würtenberger [13] suggested a model for farmers that incorporate basis risk in their framing

of the insurance product. Using their findings to design a behavioral weather insurance also

for these farmers can further increase the attractiveness of index insurances.

Step 2 reveals that even with both ADJUSTMENTS implemented jointly, BWI is still unable to

increase the prospect value of farmers that narrowly frame insurance as a stand-alone invest-

ment when compared to TWI. However, when ADJUSTMENT 1 is revoked, BWI increases the

prospect value compared to TWI for CPT specifications in Boc.1, Boc.2, Boc.3 and Bab. There-

fore, higher loss aversion, as observed in these specifications, increases preferences for BWI

compared to TWI. This is due to the fact that when ADJUSTMENT1 is implemented alone, BWI

entails stochastic multiyear premiums instead of the deterministic yearly premiums payable

with TWI. Hence, losses occur further away from the reference point. Therefore, stochastic

multiyear premiums potentially increase the insurance demand of prospect value maximizing

farmers that narrowly frame insurance as a stand-alone investment. It must be noted that post-

poning premium payments can also open the way to strategic default and action may have to

be taken to avoid this behavior [54]. Thus, BWI requires a strong institutional environment

with a strong legal system to enforce the insurance contract.

In contrast, a zero deductible design (ADJUSTMENT 1) does not benefit farmers in terms of

prospect value under the narrow framing assumption as it increases the total amount of pre-

mium payments which are framed as losses in the CPT setting. This persists in the situation

when both ADJUSTMENTS are fulfilled and also when only ADJUSTMENT 1 is implemented. This

result is in line with Babcock [7] who shows that prospect value maximizing farmers with

relatively low risk aversion and average loss aversion prefer insurance with higher deductibles.

Consequently, while a stochastic multiyear premium is in itself prospect value increasing, it is
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nevertheless not able to counteract the overweighting of premium payments framed as losses.

Thus the ‘segregation of silver linings’ is unable to counterbalance loss aversion in our case

study. In this context, Du, Feng & Hennessy [6] show that farmers are reluctant to buy actuari-

ally fair insurance as out of pocket premium payments increase. This underlines that farmers

avoid higher premium payments, even if these are fair and objectively reflect their risk profile.

While our findings suggest that farmers have little incentive to insure small/ moderate losses

under CPT narrow framing [9,10,11], Sydnor [14] detects over-insurance of modest risks (i.e.

the choice of low deductibles) in home insurance markets. He suggests potential explanations

such as, biased subjective beliefs, differences between global and local utility, extreme liquidity

constraints. Hence, these drivers might also influence the deductible choice made by farmers

in agricultural insurance settings. This could be tested in future research. Moreover, various

studies detect an increase in farmers’ insurance demands after experiencing a payout or a loss

[55,56,57,58]. Obviously, this cannot be explained by the narrow framed decision-making

under CPT used here and further research is needed to shed more light on behavioral crop

insurance demand. Numerous economic experiments that study insurance demand provide

a rich source of information on the role of various preferences on the demand for different

insurance types (see Jaspersen, [59] for an overview). The application of these experiments in

an agricultural insurance setting is a logical continuation of past research. However, there is a

notable lack of investigation into the effect of framing or communication (e.g. [60]), social

factors [61] or emotions [62] on insurance demand in agriculture and the moral hazard factor

has hitherto also been neglected. A better understanding of the connections between these

characteristics and decisions might improve the uptake of insurance as well as its environmen-

tal consequences. To summarize, additional knowledge about the driving characteristics of

farmers’ insurance demands and deductible choices could provide the foundation for an addi-

tional theoretical model that might be the underlying driver. One entry point can be the work

of Scholten & Read [63] who integrate Markowitz’ [64] “forgotten fourfold pattern of risk pref-

erences” into cumulative prospect theory by allowing switches between risk aversion to risk

seeking dependent on the size of the outcome (gain or loss) that is at stake. In addition to the

cumulative prospect theory, the salience theory [65] could also represent another interesting

course to follow. Here, decision-makers are driven by their attraction to a specific outcome

rather than their aversion.

It should be noted that our test results rely on the framing of insurance as a stand-alone

investment and this dictates the choice of the reference point. As stated, we expect that there is

a wide range of decision-making behavior among farmers and in particular differences in the

reference point may necessitate further ADJUSTMENTS. Therefore, we regard our analysis as first

step towards a specific tailoring of insurance to align it with farmers’ decision-making behav-

ior. In particular, the findings of Kőszegi & Rabin [66], Schmidt, Starmer & Sugden [67] and

Schmidt [68] offer various points of departure for adjusting the reference point to include

basis risk and frame it as a loss. Feng, Du & Hennessy [7] take up the findings of Schmidt,

Starmer & Sugden [67] and test for state dependent reference points in hypothetical crop

insurance decisions among US farmers. Their findings imply that based on state-dependent

reference levels “a strong distaste for paying premium” can be explained. Future research must

take this into account and experimental findings on farmers’ behavior should be included in

insurance design. Elabed & Carter [69] provide further behavioral economic insights into how

compound risk aversion can influence index insurance demand under basis risk. This offers

another point of departure for ongoing research. In addition, Sung et al. [17] propose an opti-

mal behavioral insurance under the prospect theory, where the whole wealth distribution is

considered in the reference point. In light of the extensive literature already available on opti-

mal crop insurance under expected utility, this seems to be a logical next step [15,16].
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Moreover, Lampe & Würtenberger [13] find that a narrow stand-alone investment framing of

index insurance contracts can be related to a low understanding of the index insurance prod-

uct, i.e. the reference level is state dependent. This suggests that the behavioral weather insur-

ance proposed here could be especially suited to incentivize the demand for index insurance

among farmers that have a limited understanding of the insurance contract. However, as

Lampe & Würtenberger [13] focus on a case study in India their findings on farmers’ prefer-

ences might only be partly applicable to our central European case-study due to large differ-

ences between the two agricultural systems (see also Petraud, Boucher & Carter [70]).

As our results rely on simulations, their viability must be proved in the field before we can

offer a BWI in line with market requirements. Furthermore, it is important to note that the

analysis presented here is based on data from large farms in eastern Germany. Given differences

in institutional structures and possible divergences in risk preferences, future research could

examine whether or not these findings can be applied to developing country contexts where

considerable efforts are currently being made to develop weather insurance markets [71].

6. Conclusion

To summarize, our approach proposes at two-step procedure to develop an insurance product

that has risk reducing properties under expected utility and to evaluate the prospect value of

insurance under CPT. We test for various preference scenarios under both theories. Our strat-

egy involves a temporal redistribution of money flows to frame crop insurance in a way that we

believe may be more attractive to farmers. We find that BWI is preferable to TWI for farmers

with expected utility preferences. This was to be expected given its zero deductible design at a

fair premium. In addition, when either of the two ADJUSTMENTS is revoked, BWI still reduces the

financial exposure to weather risk and is preferred by farmers with expected utility preferences.

Moreover, and most importantly, depending on the assumed CPT preference specifications,

farmers with CPT preferences may prefer BWI over TWI if the stochastic multiyear premium is

implemented (ADJUSTMENT 2) alone. BWI could thus lead to an increase of insurance demand.

This leads to certain significant conclusions. Firstly, to our knowledge this is the first study

explicitly designing crop insurance in general and weather insurance in particular, on the basis

of farmers’ CPT preferences. In this way, we are able to show how integrated premium pay-

ments combined with a multiyear contract, can lead to an increase in insurance demand. Sec-

ondly, we show that the relative benefits of the BWI depend strongly on assumed CPT value

function characteristics, such as the degree of loss aversion. This means that farmers’ charac-

teristics must be considered when designing individual crop insurance contracts with a view

to increasing the attractiveness of the contracts and thus encourage insurance purchases.

Hence, it is worthwhile to consider offering multiple types of contracts. Thirdly, potentially

more farmers are insured against downside risks with BWI compared to the current state. This

makes the farming system as a whole more resilient against climate shocks. Finally, we tested

across a wide range of risk scenarios (as displayed through the very heterogeneous premium

rates) using the contract parameters shown in Table 3 and weather summary statistics in

Table 11. This leads us to conclude that our findings can be upscaled to meet other hazards in

other regions.

Future research should continue to focus on farmers’ insurance decision-making and, in

particular, should investigate the role of the framing situation and possible contract adjust-

ments. In particular, state-dependent framing and reference levels seem to offer promise for

better explaining farmers’ insurance demand. The framework proposed here should not be

seen as a static product but rather as an entry point for the dynamic development of new

behavioral considerations in crop insurance contract design. Future research on behavioral
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insurance design must take up future findings on farmers’ insurance decision making to opti-

mally suit farmers’ preferences. There are various links to literature on experimental derivation

of insurance decisions, optimal behavioral insurance design outside agriculture and promising

concepts such as salience theory, which should be helpful in identifying a methodological start-

ing point.
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