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Abstract

Schizophrenia is a debilitating disorder affecting just under 1% of the population. While the

symptoms of this disorder do not appear until late adolescence, pathological alterations

likely occur earlier, during development in utero. While there is an increasing literature

examining transcriptome alterations in patients, it is not possible to examine the changes in

gene expression that occur during development in humans that will develop schizophrenia.

Here we utilize three distinct rodent developmental disruption models of schizophrenia to

examine potential overlapping alterations in the transcriptome, with a specific focus on

markers of interneuron development. Specifically, we administered either methylazoxy-

methanol acetate (MAM), Polyinosinic:polycytidylic acid (Poly I:C), or chronic protein malnu-

trition, on GD 17 and examined mRNA expression in the developing hippocampus of the

offspring 18 hours later. Here, we report alterations in gene expression that may contribute

to the pathophysiology of schizophrenia, including significant alterations in interneuron

development and ribosome function.

Introduction

Schizophrenia is a debilitating psychiatric disorder that affects just under 1% of the population

[1]. It is characterized by positive symptoms, such as delusions and hallucinations; negative

symptoms, such as blunted affect and social avoidance; and cognitive symptoms, including

disruptions in working memory and cognitive inflexibility. As early as the 1980’s, it was pro-

posed that schizophrenia was a neurodevelopmental disorder[2,3]. Evidence for this theory

comes from the observation that prenatal complications such as maternal infection[4–8] and

famine[9–13] significantly increase the risk of developing psychosis; and postmortem studies

reveal neuroanatomical alterations indicative of abnormal neuronal development (i.e. hetero-

topias[14,15]). Further, many of the genes implicated in schizophrenia have been associated

with neurodevelopmental processes[16,17] and the etiology of schizophrenia overlaps with the

etiology of other neurodevelopmental disorders, like autism[18].
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Recent work has demonstrated a key role for the hippocampus in the pathology of schizo-

phrenia. In humans, anatomical and physiological changes are consistently observed in the

hippocampus. Specifically, using imaging approaches, an increase in hippocampal activity at

rest has been observed in schizophrenia patients[19–22]. This increase in hippocampal activity

has been correlated with the severity of positive symptoms[23], suggesting that aberrant hippo-

campal activity may be a key site of pathology in schizophrenia. Indeed, we have previously

used rodent models to demonstrate that aberrant dopamine system function and behavioral

correlates of positive, negative and cognitive symptoms of schizophrenia are directly attribut-

able to a pathological increase in hippocampal activity[24,25].

This increase in hippocampal activity is thought to be caused by a loss of inhibitory inter-

neuron function. In schizophrenia patients, reductions in specific interneuron subtypes have

been observed in the hippocampus[26,27], and work in our lab (and others) has demonstrated

that disrupting interneuron function can induce schizophrenia-like deficits in behavior

[28,29]. Further, restoring interneuron function in a rodent model of schizophrenia was able

to alleviate schizophrenia-like deficits[30,31]. However, these disruptions in hippocampal and

interneuron function have all been observed in schizophrenia patients after the first episode of

psychosis or in the prodromal period. Due to the developmental nature of the disorder, it is

important to identify the neurobiological changes that occur during gestation. Therefore, we

began these studies with the a priori hypothesis that schizophrenia-like deficits are caused by

disruptions in interneuron development and migration. This hypothesis could be tested by

qPCR to measure the expression of a limited number of genes involved in interneuron devel-

opment and migration. However, recent technological advances have made RNA Sequencing

more feasible. Therefore, in the current experiments, we use RNA Sequencing to identify

changes across the entire transcriptome to determine if development disruptions affect inter-

neuron development as well as other neural pathways.

While there are limitations to the use of individual rodent models to parallel human schizo-

phrenia, the examination of similarities across a number of diverse models can provide critical

information about alterations that may contribute to schizophrenia. Therefore, in the current

experiments, we utilize three validated developmental disruption models of schizophrenia,

induced by the administration of methylazoxymethanol acetate (MAM) [32], Polyinosinic:

polycytidylic acid (Poly I:C) [33], or protein malnutrition[34], to examine potential overlap-

ping alterations in the hippocampal transcriptome during embryonic development.

Materials and methods

All experiments were performed in accordance with the guidelines outlined in the USPH

Guide for the Care and Use of Laboratory Animals and were approved by the Institutional

Animal Care and Use Committee of the University of Texas Health Science Center at San

Antonio.

Rodent models

Timed pregnant female Sprague-Dawley rats were obtained from Envigo on gestational day

11. Either polyinosine:cytosine (Poly I:C, 7.5 mg/kg, i.p), methylazoxymethanol acetate

(MAM: 22mg/kg, i.p.) or saline were administered on gestational day 17. For maternal protein

malnutrition, pregnant rats had access to a low protein diet ad libitum (Envigo: TD.90016)

containing 6.1% protein, 75.6% carbohydrate and 5.5% fat (3.8Kcal/g) from GD11-GD18.

Control rats were fed an isocaloric diet of 20.3% protein, 61.6% carbohydrate and 5.5% fat

(3.8Kcal/g: Envigo: TD.91352) from GD11-GD18. Pregnant rats were sacrificed on GD18 (18

hours following drug administration), three pups per mom were removed and the developing
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neocortex and hippocampus (Fig 1) were dissected on ice and frozen. Experiments included

pups from multiple (two) litters for a total of 6 pups per group.

RNA sequencing

RNA was extracted using the Qiagen AllPrep kit. Briefly, 17-75mg of tissue were homogenized

in 600–2,400ul RLT buffer, and then processed through the AllPrep kit following manufactur-

er’s instructions. RNA samples were then DNase treated using the TurboDNA-free kit

(Thermo Fisher Scientific) and cleaned with the Zymo RNA Clean and Concentrator kit.

250ng of RNA underwent cDNA library preparation using the Illumina TruSeq Stranded

mRNA kit, followed by cluster generation and sequencing (2x100bp paired end read) on the

Illumina HiSeq 2500.

In Partek Flow, input paired fastq files were trimmed by quality at both ends using phred

30 and minimum read length of 25 as cutoffs (Trim Bases tool). Quality reads were aligned to

the RefSeq rn6 genome (Rattus norvegicus) with the STAR v2.4.1d aligner using default

parameters for a mammalian genome. Aligned reads were quantified (Quantify to Annotation

Model Partek E/M tool) against RefSeq rn6 Transcripts 80 (2017-02-06) and resulting counts

were normalized by sample to TPM (Total per million) with an offset of 0.0001 (Normalize

Counts tool). Normalized reads were used for GSA (Gene Specific Analysis tool) of differential

expression at gene and transcript levels. For differential expression analysis, genes were

included if the lowest average coverage (normalized read count) by treatment group was

greater than 1.0 and if they were within the estimation reliability cutoff defined by the Partek

software. In total, 5,212 genes were included for differential expression analysis.

Quantitative polymerase chain reaction

300 ng RNA was converted to cDNA using the Applied Biosystems High Capacity Reverse

Transcription Kit. Real-time quantification of diluted cDNA was performed in triplicate reac-

tions containing sample (10 ng), Applied Biosystems TaqMan Universal PCR Master Mix

(20X), and TaqMan Gene Expression Assay (20X) on a BioRad CFX384 Real Time System.

Cycling Conditions consisted of one cycle at 50˚C for 2 min, one cycle at 95˚C for 10 min, fol-

lowed by 50 cycles of denaturation (95˚C for 15 sec) and elongation (60˚C for 1 min). The rela-

tive gene expression was calculated using the 2-ΔΔCT method. The following TaqMan Gene

Expression Assays were used: Dlx1 (Rn01513884), Dlx5 (Rn00564070), Lhx6 (Rn1438474),

Nkx2.1 (Rn01512482), and GAPDH (Rn01775763).

Analysis

The RNA Sequencing data were analyzed using Advaita Bioinformatics iPathwayGuide

(http://www.advaitabio.com/ipathwayguide) to define significantly affected pathways, biologi-

cal processes, molecular interactions, etc. Differences between each treatment group (Poly I:C,

MAM and low protein) and control were analyzed individually (S1 Table), followed by a meta-

analysis of these data in order to examine potential overlapping or consistent effects of these

discrete prenatal manipulations. The qPCR data was analyzed using One-way ANOVAs fol-

lowed by the Holm-Sidak post-hoc test.

Results

All RNA Sequencing data is freely available online at the GEO (Gene Expression Omnibus) pub-
lic functional genomics data repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE149828).
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MAM

In this experiment, 599 differentially expressed genes were identified out of a total of 5211

genes with measured expression (S1 Table). These were obtained using a threshold of 0.05 for

statistical significance (p-value). These data were analyzed in the context of pathways obtained

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Release 81.0+/01-20,

Jan 17)[36,37], gene ontologies from the Gene Ontology Consortium database (2016-Sep26)

[38], predicted miRNAs from the miRBase (Release 21) and MICROCOSM (Microsm version:

v5) databases[39–44], and diseases from the KEGG database (Release 81.0+/01-20, Jan 17)

[36,37]. In summary, 28 pathways were found to be significantly impacted (S1 Table). In addi-

tion, 503 Gene Ontology (GO) terms, 15 miRNAs (predicted based on targets), and 3 diseases

were found to be significantly enriched based on uncorrected p-values (S1 Table).

Fig 1. The hippocampus and neocortex was dissected for RNA sequencing. Diagram of the fetal brain on embryonic day 18. The hippocampal and neocortical

regions that were dissected are outlined in yellow[35].

https://doi.org/10.1371/journal.pone.0232200.g001
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Poly I:C

In this experiment, 532 differentially expressed genes were identified out of a total of 5211

genes with measured expression (S1 Table). These were obtained using a threshold of 0.05 for

statistical significance (p-value) and a log fold change of expression with absolute value of at

least 0.6. We identified 22 pathways, 527 Gene Ontology (GO) terms, 52 miRNAs, and 5 dis-

eases that were significantly enriched based on uncorrected p-values (S1 Table).

Protein malnutrition

In this experiment, 440 differentially expressed genes were identified out of a total of 5211

genes with measured expression (S1 Table). These were obtained using a threshold of 0.05 for

statistical significance (p-value) and a log fold change of expression with absolute value of at

least 0.6. We identified 21 pathways, 476 Gene Ontology (GO) terms, 29 miRNAs, and 7 dis-

eases that were significantly enriched based on uncorrected p-values (S1 Table).

Meta-analysis

To examine potential overlapping alterations in the transcriptome that could underlie the

common neurophysiological and behavioral alterations observed in these rodent models, we

performed a meta-analysis of these data using iPathway Guide. Of the differentially expressed

genes described above, ~20% were consistently altered in 2 or more experimental conditions

and 33 total genes were consistently altered across all three experimental groups (Fig 2). Simi-

larly, 13 of the 58 pathways identified were also consistently altered in multiple (2 or more)

experimental conditions (Fig 2). Of specific relevance to schizophrenia, were GO terms ‘Neu-

roactive Ligand-Receptor Interactions’ (ranked 5th) and ‘GABAergic Synapses’ (Ranked 15th)

(Fig 3). We also had an a priori hypothesis that these conditions would produce alterations in

genes known to regulate GABAergic neuron differentiation and migration. Indeed, we

observed decreased expression of genes related to specific subsets of GABAergic development,

specifically those associated with medial ganglionic eminence (MGE: but not caudal GE)

derived interneurons (Fig 4). These results were confirmed using qPCR (Fig 5). Finally, some

of the most robust alterations were observed in genes associated with ribosomal function

(ranked 1st—Fig 6).

Quantitative polymerase chain reaction

To confirm the Meta-Analysis finding that developmental disruption decreases expression of

genes related to GABAergic neuron differentiation and migration, we performed qPCR. One

way ANOVAs confirmed that developmental disruption significantly alters the expression of

Dlx 1 (F22 = 10.34, p<0.05), Dlx 5 (F22 = 15.65, p<0.05), Lhx6 (F22 = 16.78, p<0.05) and

Nkx2.1 (F22 = 14.54, p<0.05). The Holm-Sidak post-hoc analysis found that Dlx 1, Dlx 5 and

Nkx2.1 expression were all significantly decreased in the Low Protein and MAM treatment

groups, as compared to saline-treated controls (p<0.05). Lhx6 expression was decreased by all

three developmental disruptions (p<0.05).

Discussion

In the current experiments, we used an unbiased transcriptional analysis of the developing hip-

pocampus and found consistent and overlapping alterations in gene expression across three

distinct developmental models of schizophrenia. Because the hippocampus is hyperactive at

baseline in schizophrenia patients, we chose to examine baseline transcription in the three

developmental models. In the MAM model, a DNA methylating agent, methylazoxymethanol
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acetate (MAM), is administered to pregnant female rats on gestational day 17. This model has

been shown to produce anatomical (e.g. reduced cortical thickness and hippocampal area

[45]), physiological (e.g. hippocampal hyperactivity[24,30,31] and increased dopamine cell

population activity[24]), and behavioral changes (e.g. stimulant-induced hyperlocomotion

[24,45], prepulse inhibition deficits[45,46], latent inhibition deficits[31,47], decreased social

interaction[31,46], working memory impairments[46,48], and cognitive inflexibility[31,47])

that model schizophrenia (for review, see [32]). Viral infection during pregnancy has been

associated with an increased risk of schizophrenia in humans[5,49–51] and administration of

the viral mimetic, polyriboinosinic-polyribocytidilic acid (Poly I:C), on gestational day 17 has

also been shown to produce anatomical (e.g. enlarged ventricles and reduced hippocampal vol-

ume[52,53]), physiological (e.g. increased dopamine cell population activity[54] and increased

striatal dopamine release[53]), and behavioral (e.g. stimulant-induced hyperlocomotion

[53,55], prepulse inhibition deficits[55], latent inhibition deficits[53], decreased social interac-

tion time[56,57], working memory impairments[57,58], and cognitive inflexibility[56]) deficits

that resemble schizophrenia (for review, see [33,59]). Epidemiological evidence also suggests

that dietary deficiencies during pregnancy is a major risk factor for schizophrenia[9,13,60–62].

Fig 2. Transcriptional analysis identified consistent and overlapping changes in gene expression across three

developmental models of schizophrenia. (A) Venn Diagram showing the number of genes that were differentially expressed in

each schizophrenia model compared to control animals. Of these, 33 genes were differentially expressed in all three models. (B)

The differentially expressed genes that were affected by all three prenatal manipulations, were ranked. (C) Venn Diagram

depicting the pathways differentially altered by all three conditions. (D) Those pathways that showed overlap between at least 2

treatment groups are ranked.

https://doi.org/10.1371/journal.pone.0232200.g002
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Although this rodent model has been less extensively validated than MAM or Poly I:C, evi-

dence suggests that prenatal protein malnutrition can produce anatomical (e.g. decreased pre-

frontal cortical volume[63]) and behavioral changes (e.g. prepulse inhibition deficits[64],

decreased social interaction[65], cognitive inflexibility[66]) that model schizophrenia.

Our meta-analysis identified 33 genes that were altered consistently across the three rodent

models. However, of these 33 genes, some have already been implicated in the pathology of

schizophrenia. For example, the LHX2 gene encodes the Lim homeobox protein 2, a cortical

selector gene that is expressed in cortical precursor cells[67]. LHX2 regulates processes such as

axon guidance[68] and is required for normal hippocampal development[67]. LHX2 is down-

regulated in the hippocampus of schizophrenia patients[69], while our data suggest that it is

upregulated in the same region during gestation, a discrepancy that is likely explained by the

developmental time point at which the gene was measured. Regardless, implication of this

gene in both animal models and human patients reinforces the developmental nature of

schizophrenia, and the role of the hippocampus in the pathology of this disorder[32].

In addition, we found that the Syp gene was down-regulated in all three rodent models of

schizophrenia. Synaptophysin, an integral synaptic vesicle membrane protein, is encoded by

Fig 3. Pathway analysis identified expression changes in genes associated with Neuroactive Ligand-Receptor

Interactions and GABAergic Synapses. The unbiased pathway analyses identified pathways with relevance to

schizophrenia, including GO terms ‘Neuroactive Ligand-Receptor Interactions’ (ranked 5th) and ‘GABAergic

Synapses’ (Ranked 15th) (A) Graph showing the differentially expressed genes in the Neuroactive Ligand-Receptor

Interaction pathway. (B) Graph showing the differentially expressed genes in the GABAergic Synapse pathway.

https://doi.org/10.1371/journal.pone.0232200.g003
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the Syp gene. This result is in line with multiple human studies that have found decreased

synaptophysin expression in the hippocampus and prefrontal cortex of schizophrenia patients

[70–72]. Further, one study found that schizophrenia patients were more likely than controls

to have rare single nucleotide polymorphisms in the Syp gene[73]. Schizophrenia patients have

decreased hippocampal volumes[74], without a concomitant decrease in neuronal cell loss

[75,76], leading some to hypothesize that the volume decrease is a result of reduced synaptic

levels[77]. Results derived from our neurodevelopmental model of schizophrenia that show a

decrease in Syp gene expression, along with similar findings in human studies, are in line with

this hypothesis, as synaptophysin is a major synaptic vesicle protein and one of the most widely

used markers of synaptic density.

In addition to a loss of synapses, schizophrenia has also been associated with alterations in

neurotransmission. The pathway analysis performed in the current experiments identified

consistent alterations (across at least 2 conditions) in genes associated with ‘Neuroactive

Ligand-Receptor Interactions’ (Ranked 5th). Some of the genes in this pathway have already

been associated with schizophrenia in humans. For example, we found that both Low-Protein

Fig 4. Alterations in genes associated with GABAergic development. In addition to the independent pathway analyses, we had an a
priori hypothesis that genes involved in interneuron development and migration would be altered in these groups. Specifically, those

genes associated with MGE-derived interneurons were downregulated (Arx, Dlx1, Dlx5, Lhx6, & Nkx2.1) whereas markers of CGE-

derived interneurons (Sox6, Gsx1, & Mash1) were not significantly affected.

https://doi.org/10.1371/journal.pone.0232200.g004
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and Poly I:C decreased expression of Adra2c and Adra2a, genes that encode two forms of the

G-protein coupled alpha-adrenergic receptor. In humans, positive symptoms are exacerbated

by noradrengergic agonists and reduced by antagonists[78]. Further, targeting the alpha 2 nor-

adrenergic receptor has been shown to improve cognitive and negative symptoms in schizo-

phrenia[79]. In addition, schizophrenia has also been linked to glutamatergic dysfunction. For

example, antagonists of the ionotropic NMDA glutamate receptor, such as phencyclidine and

ketamine, produce psychosis in humans[80]. We also found that both Poly I:C and Low-Pro-

tein treatments decreased expression of Grin1, the gene that encodes one form of the NMDA

receptor. Gene association studies have identified Grin1 as a candidate gene for schizophrenia

and there is a strong association between the G1001C polymorphism on the Grin1 gene pro-

moter and schizophrenia[81]. Our results support the hypothesis that schizophrenia symptoms

are associated with disruptions in neurotransmission, even during early stages of

neurodevelopment.

GABA is the primary inhibitory neurotransmitter in the brain and pathway analysis identi-

fied specific changes in gene expression associated with GABAergic synapses. This is not sur-

prising as deficits in GABAergic function have also been consistently observed in

schizophrenia patients. For example, GABA is synthesized by the enzymes glutamic acid

decarboxylase 1 and 2 (GAD1 and GAD2) and decreases in GAD expression have been

observed across multiple brain regions, including the hippocampus and cortex[82]. This is in

line with our finding that both Low-Protein and MAM treatments decreased Gad1 expression.

Further, schizophrenia has been associated with altered expression of multiple GABAergic

receptors. For example, a decrease in the metabotropic GABAB receptor has been observed in

the hippocampus of schizophrenia patients[83]. In the current experiments, we found that

both Low Protein and MAM produce a decrease in expression of Gabbr1, the gene for subunit

1 of the GABAB receptor. In addition, other aspects of GABAergic function are affected by

schizophrenia, including transport and maintenance[84]. We also identified additional genes

Fig 5. qPCR confirmation of genes associated with GABAergic development. qPCR confirmed that the expression

of genes associated with the development and migration of GABAergic interneurons (Dlx1, Dlx5, Lhx6, and Nkx2.1)

were decreased by developmental disruption models of schizophrenia. � is p<0.05 compared to saline-treated controls.

n = 5–6 per group.

https://doi.org/10.1371/journal.pone.0232200.g005
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that were decreased by at least one of the schizophrenia models examined, including slc6a1

and slc32a1, two genes that encode GABAergic transporters, and slc12a5, the gene for the

potassium-chloride cotransporter 2, which regulates intracellular chloride levels and thus

GABAergic inhibition. It should be noted that in the current experiments, the dissections were

not limited to the hippocampus but also included regions of the neocortex. However, the inter-

neuron dysfunction in schizophrenia patients has been observed both in hippocampal [26,27]

and cortical[85–88] regions.

Fig 6. Pathway analysis identified expression changes in ribosomal proteins. The most significant pathway identified was that of

Ribosomal function. (Top) Cartoon depicting proteins in the large (left) and small (right) subunits of the ribosome. (Bottom) Both Low-

Protein and MAM caused changes in the expression of genes associated with ribosomal proteins. For each treatment group, an increased

expression of genes encoding ribosomal proteins are highlighted in red while decreased expression is shown in blue.

https://doi.org/10.1371/journal.pone.0232200.g006
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We have previously demonstrated that aberrant interneuron function can induce a schizo-

phrenia-like phenotype[28], and that transplantation of specific interneuron subtypes, derived

from the MGE, can reverse neurophysiological and behavioral deficits associated with schizo-

phrenia, in the MAM rat[30,31]. For this reason, we had an a priori hypothesis that develop-

mental disruptions may alter interneuron development and migration. During development,

GABAergic interneurons are born in the subpallial forebrain in progenitor regions called gan-

glionic eminences before migrating tangentially into hippocampal and cortical regions[89]. In

these progenitor regions, the cellular fate of interneuron precursors is determined by activa-

tion of a series of morphogen-regulated transcription factors. Some of the first of these tran-

scription factors to be activated are the Dlx homeobox genes, including Dlx1/2 and Dlx5/6.

Dlx1 and Dlx2 are activated in all interneurons downstream of early patterning genes and play

an important role in the generation, specification, and migration of interneurons (for review

see [90]). In humans, reduced Dlx1 mRNA has been observed in the OFC[91] and thalamus

[92] of schizophrenia patients. Downstream, Dlx 5/6 are direct targets of Dlx1/2, and have

been shown to play a role in interneuron maturation. In the current experiments, we also

found that all three prenatal manipulations decreased Dlx1 and Dlx5 gene expression, suggest-

ing that these transcription factors may be one mechanism by which prenatal disruptions can

lead to alterations in interneuron development. Specificity for the MGE developing interneu-

rons (including PV and SST) come from the early expression of NK2 homeobox 1 (NKX2.1).

Indeed, unlike the Dlx homeobox transcription factors, Nkx2.1 is absent from the LGE and

CGE [93], suggesting a specific role in MGE neurogenesis. Nkx2.1 is expressed in PV and SST

progenitors of the MGE and activates the downstream transcription factor, Lhx6, which is

required for interneuron migration and post-migratory maturation[89]. Interestingly, all three

prenatal manipulations that we examined produced a decrease in Lhx6 expression. This find-

ing is in line with results from human studies that identified deficits in Lhx6 function in

schizophrenia patients[94,95]. Further, many of the genetic cascades downstream of Lhx6

have also been implicated in schizophrenia. For example, alterations in the expression of the

chemokine receptors (CXCR4 & CXCR7) have been reported [96] and an association between

neuregulin signaling (via the Erb4 receptor) has been extensively studied [97–101]. Interest-

ingly, we did not see changes in markers of pyramidal cells (CAMKII, TBR1, MAP2), astro-

cytes (GFAP, Slc1A3, S100B, ALDH1L1), microglia (TMEM119, CX3CR1), or

oligodendrocytes (PDGFRA, OLIG2, MBP). Taken together, we posit that the decrease in

Dlx1, Dlx5, and Lhx6 expression that we observed in our schizophrenia models may lead to

the cell-specific deficits in interneuron development that are thought to play a key role in the

pathophysiology of schizophrenia.

Finally, the highest ranked pathway observed was in ribosomal function. Specifically, we

found increases in the expression of multiple genes that encode ribosomal proteins in both the

Low-Protein and MAM models. Protein abnormalities have previously been observed in

schizophrenia patients[102] but total protein levels can be affected by changes in a variety of

factors, including transcription, mRNA stability, gene regulation by microRNAs, protein sta-

bility, and ubiquitination. However, in line with our results, others have used neural progeni-

tor cells derived from human induced pluripotent stem cells to demonstrate that

schizophrenia patients have an increase in total protein levels that was the result of an increase

in translational machinery[102]. In addition, one post-mortem study demonstrated genetic

changes in ribosome and translational activity in the brain of schizophrenia patients[103].

Together with our results, this suggests that the protein abnormalities associated with schizo-

phrenia may be a direct result of increased ribosomal machinery and translation.

It should be noted, that some genes that are known to be affected in schizophrenia were not

affected by all three animal models that we examined. Further, there were zero pathways that
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were affected by all three models. In our initial analysis, we found that 127 genes were com-

monly affected by protein malnutrition and Poly I:C while MAM and protein malnutrition

only shared 70 common genes and MAM and Poly I:C only shared 47 common genes. Of

these genes, COMTD1 has been shown to be differentially methylated in schizophrenia

patients[104], which would lead to altered transcription of this gene. In the current study, we

found that COMTD1 expression was significantly down-regulated by prenatal protein malnu-

trition and Poly I:C, but not by MAM. Conversely, the Srr gene, was only downregulated by

MAM treatment. Interestingly, reduced Srr immunoreactivity has been observed in the pre-

frontal cortex of schizophrenia patients [105] and Srr mutant mice show schizophrenia-like

behavioral deficits[106]. Although prenatal MAM, Poly I:C and protein malnutrition have all

been shown to produce schizophrenia-like deficits, epidemiological evidence has only found

Poly I:C and protein malnutrition to be associated with an increased risk for schizophrenia.

Further, these two rodent models seem to produce less robust behavioral changes compared to

the MAM model. Therefore, it is possible that MAM treatment produces schizophrenia-like

deficits via a mechanism that is different than Poly I:C or protein malnutrition.

The results of the current studies are limited by the fact that only the hippocampus and neo-

cortex were examined and that both sexes were combined. In future studies, a more nuanced

approach will be used to examine transcriptomic changes across brain regions and between

sexes. In conclusion, our unbiased transcriptional analysis of the developing hippocampus

identified consistent and overlapping alterations in gene expression, especially related to neu-

rotransmission, GABAergic interneuron development, and ribosomal function. Our results

suggest that schizophrenia is associated with changes in gene expression that occur during ges-

tation, and identify potential targets for future therapeutics.
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