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Abstract

In this study, we proposed a novel convolutional neural network (CNN) architecture for clas-

sification of benign and malignant breast cancer (BC) in histological images. To improve the

delivery and use of feature information, we chose the DenseNet as the basic building block

and interleaved it with the squeeze-and-excitation (SENet) module. We conducted exten-

sive experiments with the proposed framework by using the public domain BreakHis dataset

and demonstrated that the proposed framework can produce significantly improved accu-

racy in BC classification, compared with the state-of-the-art CNN methods reported in the

literature.

Introduction

Breast cancer (BC) is the most common type of cancer in women worldwide and has very high

mortality. According to a recent report from the American Cancer Society, the number of new

BC cases in the USA is about 268,600 in 2019. Early detection and diagnosis can make treat-

ment more successful and help improve the BC survival rate [1]. Despite the extensive screen-

ing programs based on mammography worldwide, the histopathological image classification

of BC is still very important for BC diagnosis and dictates the use of potentially curable ther-

apy. However, diagnostic disagreements among different pathologists can be remarkably high,

especially for the preinvasive lesions. Recently, Convolutional Neural Network (CNN) has

attracted much attention for the analysis of histopathological images, because of its steadily

improving performance that is nearly as accurate as or better than human experts [2]. Bayra-

moglu et al. [3] proposed a scalable and magnification independent CNN approach to improve

the generalizability and speed of learning. Spanhol et al. [4] used pre-trained Alexnet to extract

features and fed them into a task-specific classifier to improve CNN classification. They tested

further a Deep Convolutional Activation Feature for Generic Visual Recognition (DeCAF)

model and reported somewhat mixed results in comparison with the Alexnet approach [5].

Wei et al. [6] considered class and sub-class labels of breast cancer as prior knowledge and uti-

lized GoogLeNet as their basis networks. Song et al. [7] used the VGG-VD model to extract
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image feature and designed a new adaptation layer for BC classification. Nahid et al. [8] com-

bined CNN with a long short-term memory (LSTM) architecture for feature extraction and in

the classification stage they used softmax and support vector machine (SVM) layers for deci-

sion-making of the BC categories. Araújo et al. [9] proposed recently a CNN architecture

designed to retrieve information at different scales and achieved an accuracy of 83.3% for car-

cinoma/non-carcinoma classification and a sensitivity of 95.6% for BC cases.

To reduce the error rate in object recognition, Densely Connected Convolutional Networks

(DenseNet) was introduced firstly by Huang et al. [10], in which each layer is directly con-

nected to every layer in front of it. This network alleviates the vanishing-gradient problem,

strengthens feature propagation, encourages feature reuse, and substantially reduces the num-

ber of parameters. To enhance the representational quality of a network by modeling channel-

wise relationships in a computationally efficient manner, Hu et al. [11] proposed a Squeeze-

and-Excitation Network (SENet) with lightweight gating mechanism, with this approach the

network learns to use global information to selectively emphasize informative features and

suppress less useful ones.

The Breast Cancer Histopathological Database (BreakHis) has been widely used in some of

the CNN based classification studies [12]. We also used this dataset in the current study. The

histopathological images of the BreakHis dataset have fine-grained appearances and are diffi-

cult to classify. In order to improve the classification accuracy, it is necessary to emphasize the

details of the images and more local information. Therefore, we propose an architecture based

on interleaved DenseNet with SENet (IDSNet) to tackle the problem. Since the DenseNet can

enhance the feature delivery and SENet can boost effectiveness on feature selection, the pro-

posed IDSNet does not only utilize the deeper information with higher complexity, but also

merges the shallow information. Moreover, the IDSNet architecture uses global average pool-

ing in the classification network to mitigate the lack of computing resources and network

over-fitting caused by the large number of parameters.

In this study, we used the public domain BreakHis dataset to conduct experiments with the

proposed IDSNet framework. The whole dataset were divided into training, validation and

testing sets. As the standard method in the field of deep learning [13], the data augmentation

method was used for the training set. In the following sections, we provide more experimental

details and summarize the classification performance of the proposed framework in compari-

son with the other state-of-the-art methods reported in the literature [4, 5].

Materials and methods

The proposed IDSNet

DenseNet-121 was used in our proposed network architecture, in which each layer was directly

connected to every other layer in a feed-forward fashion. As shown in Fig 1, it consists four

dense blocks, three transition layers and a total of 121 layers (117-conv, 3-transition, and

1-classification). As described in the original DenseNet paper [10], each conv layer corre-

sponds to a composite sequence of operations consisting of batch normalization (BN)-Relu-

Conv. The Classification subnetwork includes 7 × 7 global average pooling, 1000D fully-con-

nected layer, and softmax.

We fine-tuned the DenseNet-121 architecture to better fit the BreakHis dataset. The last

pooling and linear layer following Dense Block 4 were removed and the feature-maps

extracted from each transition layers and the output of Dense Block 4 were feed into their con-

nected SENet module followed by the classification sub-networks for BC classification. The

proposed IDSNet architecture is schematically shown in Fig 2.
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The initial convolution layer in this proposed CNN architecture corresponds to the sequence

of a batch normalization (BN) [14] with a rectified linear unit (ReLu) [15] and a convolution

(Conv). The Conv layer used a filter of 7 × 7 matrix with stride 2. The output from the convolu-

tion layer is used as input to the Dense Block of the DenseNet to further improve the informa-

tion flow between layers. The transition layer consists of a convolution and a pooling layer. The

output of the convolution goes through the SENet module to extract more channel information

and is further classified in the classification sub-network. To extract more feature information,

we stacked sequentially four copies of the basic building blocks consisted of Dense Blocks, tran-

sition layer, SENet module and classification sub-network. Outputs from each of the building

block were concatenated and fed into the final fully connected layer. The detailed features of the

proposed IDSNet framework will be discussed in the following sections.

Fig 1. The DenseNet-121 architecture.

https://doi.org/10.1371/journal.pone.0232127.g001

Fig 2. Overview of the proposed IDSNet architecture.

https://doi.org/10.1371/journal.pone.0232127.g002
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The dense block

The Dense Block is an important part of the DenseNet for improving the information flow

between layers. It is composed of BN, ReLu and 3 × 3 Conv. The specific formula is shown as

follows,

x1 ¼ Hlð½x0; x1; . . . ; xl� 1�Þ ð1Þ

where ½x0; x1; . . . ; xl� 1� refers to the concatenation of the feature-maps produced in layers

0,1,. . .,l−1, Hl(�) is defined as a composite function of three consecutive operations on the

input of lth layer. The structure of Dense Block is shown in Fig 3.

The transition layer. As illustrated in Fig 2, between two dense blocks, a transition layer

is used for changing the size of the feature maps. It consists of a BN, a ReLu, a 1 × 1 conv and a

2 × 2 average pooling layer. Its specific structure is shown in Fig 4.

The convolution is responsible for the study of features by extracting features from the pre-

vious layer’s output. The extracted features share a convolution kernel, also called a filter,

which includes a set of weights. All local weight values need to be passed through an activation

function (such as ReLU, sigmoid) to increase their nonlinearity. The convolution process can

be expressed as,

zl ¼Wl � f1ðz
ðl� 1ÞÞ þ b

l
ð2Þ

where zl is the lth -layer neuron status, fl(�) the activation function. wl and bl are the weight

matrix and bias from (l−1)th to the lth, respectively.

The pooling layer reduces the dimensionality of each feature map but retains the most

important information. Max pooling and average pooling are used in our work. In case of max

pooling, a spatial neighborhood (for example, a 2 × 2 window) is defined and the largest ele-

ment is taken from the rectified feature map within that window. Instead of taking the largest

element we take the average of all elements in that window in case of average pooling. In our

experiments, we used a 3 × 3 window for max pooling and a 2 × 2 window for average pooling.

The strides for both pooling layers are 2.

The SENet architecture

In the proposed IDSNet architecture, the extracted feature-maps from DenseNet are fed into

SENet modules for receiving more channel wise information. It uses global information to

selectively emphasize informative features and suppress less useful ones. It introduces weights

to each feature map in the layers. This is a composite function of five consecutive operations: a

channel wise global average pooling [16], a fully connected (FC) layer, a ReLU, a fully con-

nected layer followed by a sigmoid. The sigmoid activations function as channel weights

adapted to the input-specific descriptor. There is a minor increase in terms of the number of

parameters and computation loads because of the extra layers like FC and pooling operations.

The unique structure of this “Squeeze-and-excitation” (SE) Net is illustrated in Fig 5 and it can

be used with any standard architecture. SENet introduces intrinsically dynamics conditioned

on the input to boost feature discriminability.

The squeeze. The SENet achieves the squeezing operation by global average pooling to

generate channel-wise statistics Z 2 RC. The kth element of Z, zk, is calculated as

zk ¼ FsqðukÞ ¼
1

H�W

XH

i¼1

XW

j¼1

ukði; jÞ; ð3Þ
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Where Fsq(�) is the operation of squeezing, uk is the kth feature map with spatial dimension

H×W, and k = 1,2,. . .,C.

The excitation. The excitation operation can help capture channel-wise dependencies

and greatly reduce the number of parameters and calculations. Excitation mainly consists of

two FC layers and two activation functions, which can be written as

S ¼ FexðZ;WÞ ¼ sðgðZ;WÞÞ ¼ sðW2dðW1ZÞÞ; ð4Þ

where S ¼ fs1; s2; . . . ; sCg, sk 2 RH�Wðk ¼ 1; 2; . . . ;CÞ, Fex (�) is the operation of excitation.

W1 2 RC
r�C, W2 2 RC�C

r and r is a hyper-parameter ratio which can vary the capacity and

computational cost. δ(x) = max(0,x) refers to the ReLU for reducing the probability of the van-

ishing gradient [17] and sðxÞ ¼ 1

ð1þe� xÞ sigmoid function. The final output ~xkðk ¼ 1; 2; . . . ;CÞ,
is obtained by multiplying the input channels with their respective weights,

~xk ¼ Fscaleðuk; skÞ ¼ uk � sk; ð5Þ

Where ~xk 2 RH�W , Fscale(uk, sk) refers to channel-wise multiplication between the scalar sk and

the feature map uk.

Fig 3. The dense block.

https://doi.org/10.1371/journal.pone.0232127.g003

Fig 4. The transition layer.

https://doi.org/10.1371/journal.pone.0232127.g004
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The classification sub-network

The classification sub-network is used to reduce parameters and distinguish the categories of

BC. As shown in Fig 6, it consists of a global average pooling, a BN and a softmax function.

The global average pooling. The Global average pooling sums out the spatial informa-

tion, so it is more robust for the input spatial translation. Feature maps shrink to a statistic and

over fitting is avoided at this layer. The following BN is used to speed up the training process

and make training more stable.

The softmax classifier. The softmax function takes an input vector K of real number and

normalizes the outputs so that they sum to 1 and can be directly treated as probabilities pro-

portional to the exponentials of the input numbers. The standard (unit) softmax function s :

RK ! RK is defined by the formula:

sðzÞj ¼
ezj

XK

k¼1
ezk

j ¼ 1; . . . ;K z ¼ ðz1; . . . ; zKÞ 2 RK: ð6Þ

The loss function. We use the cross-entropy as the loss function. Cross-entropy loss mea-

sures the performance of a classification model whose output is a probability value between 0

and 1. It increases as the predicted probability diverges from the actual label and can be calcu-

lated in binary classification,

loss ¼ � ðy logðpÞ þ ð1 � yÞlogð1 � pÞÞ ð7Þ

Fig 5. The SENet architecture.

https://doi.org/10.1371/journal.pone.0232127.g005

Fig 6. The classification sub-network.

https://doi.org/10.1371/journal.pone.0232127.g006
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where y is the correct classification and p is the predicted probability. We aim to reduce the

loss value through continuous learning of the network.

The BreaKHis dataset

In this study, we used the images from the BreakHis dataset [12], which contains 7909 images

from 82 patients with four different magnifications (40×, 100×, 200×, 400×). The dataset was

collected at Pathological Anatomy and Cytopathology (P&D) Lab, Brazil. It contains micro-

scopic biopsy images of benign and malignant breast tumors. Slides of biopsy specimens for

breast tissue were stained with hematoxylin and eosin (H&E). To cover the whole region of

interest (ROI) identified by pathologist, samples were captured using the lowest magnification

factor (40×) and the interested areas from initial ROI were manually magnified to a higher fac-

tor (100×). This process was repeated for 200× and 400× magnifications. Images are in 3-chan-

nel RGB (Red-Green-Blue), 8-bit depth in each channel, PNG (Portable Network Graphics)

format without compression and dimension of 700 × 460 pixels. A typical set of images from

the BreakHis dataset are shown in Fig 7. The details of the dataset in terms of the magnification

and lesion types are summarized in Table 1. In the study, the BC images were adjusted to

224 × 224 pixels and normalized before being fed as input to the convolution layer and used to

extract feature maps.

Training & testing protocol

We used a workstation based on Ubuntu 16.04.3 LTS system and a NVidia GeForce GTX

Titan X 12GB GPU to carry out the study. Python and TensorFlow frameworks were the devel-

opment environments. The network implementation was based on the Adam optimization

algorithm, which is known to be fast and effective for computer vision related problems.

In this work, we combined transfer learning with fine-tuning method. We utilized the pub-

lic domain dataset ImageNet [18] to pre-train DenseNet121 and used the obtained weight val-

ues as initialization weight values for our experiments. We used 50% of the patient data in a

randomized fashion for training, 20% for validating and 30% for testing. The division of the

dataset was not subject or magnification specific. In other words, the images of different mag-

nification factors from the different patients were mixed in the process of constructing the

datasets for training, validating and testing. There was no overlap among these three sets of

imaging data. The training set was used to train the model and optimize the connection

parameters for the different neurons. The validation set was used to select the model, while the

test set was only used to test classification accuracy and model reliability. In order to reduce

the contingency of the experiment, we repeated the experiment for three times with random-

ized inputs each time.

Besides the default configuration parameters, other adjusted hyperparameters for the net-

work training included the followings: 60 epochs with a batch size of 64, momentum = 0.9,

transformation rate = 0.05, training sample size = 3954, validation sample size = 2370, the

growth rate of the DenseNet k = 12, and reduction rate r = 8. We adopted different values of

learning rate into five stages. The initial learning rate was 3×10−3 to accelerate the training of

the network. The learning rate was lowered by a factor of 2 at epochs 25 to 30. To avoid miss-

ing the best point, the learning rate was set up to 3×10−5 at epoch 35 and 1×10−5 at epoch 40.

In order to improve the performance of classification, prevent over-fitting and enhance the

robustness of the network, fine-tuning with data augmentation method was used for the train-

ing dataset. We adopted rotation (90˚/180˚/270˚) and flipping (horizontal mirror/vertical mir-

ror) to expand the original training data by 5 times.
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The evaluation metrics. There are two ways to evaluate the effectiveness of machine

learning on medical data sets [12]. In our experiment, the accuracy of different magnification

factors is calculated. Firstly, we evaluated the accuracy on patient level and assessed the patient

recognition rate (PRR). Assume the number of cancer images of patient Np, Nrec is the cancer

images classified correctly and N the number of total patients, then the PRR is defined as

PRR ¼

X
patient score

N
; ð8Þ

in which Patient score ¼ Nrec
Np

.

We also evaluated the recognition rate at the image level to provide assessment for the

image classification accuracy. Let Nall be the number of cancer images in the testing set, Nr the

images correctly classified, then the image recognition rate (IRR) is

IRR ¼
Nr

Nall
ð9Þ

To assess the effectiveness of the DenseNet for BC classification, we compared the perfor-

mances of the proposed DenseNet with VGG16 [19] and Resnet50 [20] networks using the

BreakHis dataset. Furthermore, to evaluate the performance of SENet and classification sub-

network, we conducted the following three cases of experiments: 1) the complete IDSNet

Fig 7. Image samples from BreakHis dataset. (a)~(d) benign tumor and (e)~(f) malignant tumor with the magnification factor of 40×, 100×, 200×, 400×.

https://doi.org/10.1371/journal.pone.0232127.g007

Table 1. Image distribution by magnification factor and class.

Magnification Benign Malignant Total

40× 625 1370 1995

100× 644 1437 2081

200× 623 1390 2013

400× 588 1232 1820

Total 2480 5429 7909

Patients 24 58 82

https://doi.org/10.1371/journal.pone.0232127.t001
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based on DenseNet interleaved with SENet and classification sub-network; 2) DenseNet com-

bined with classification sub-network only; 3) DenseNet combined with SENet module only.

Results

Table 2 shows the experimental results of three previously reported CNN networks: DenseNet,

VGG16 and Resnet50. These networks are potential building stones for further development

of the study.

As shown, the DenseNet-121 can achieve more accurate BC classification than the other

two networks. The PRR metric for the DenseNet-121 is improved by about 2–8% in compari-

son with VGG16 and Resnet50, while the improvement in IRR metric for the DenseNet-121 is

varied from 2–9% depending on the magnification factor of the images.

The results for the three possible types of combination cases among DenseNet, SENet and

classification sub-network are summarized in Table 3. Compared to the results shown in

Table 2, it is clear that the combination of DenseNet with SENet module or classification sub-

network can improve significantly the BC classification accuracy for all the histological images

irrespective of the magnification factors. The proposed IDSNet has the best performance in

terms of both PRR and IRR metrics for almost all magnifications except for IRR at the zoom

factor of 100×. Overall, we observe that the IDSNet can improve further the classification accu-

racy by about 2–3% compared with the other combinations. The best PRR result showed at

least 4% increase in accuracy for the zoom factor of 100×, while the best IRR result exhibited at

least 0.5% increase in accuracy for the zoom factor of 400×.

We compared also the performance of proposed approach with other state-of-the-art meth-

ods reported in the literature [4, 5]. The results based on these methods are shown in Table 4.

It is apparent that the proposed IDSNet can improve BC recognition rate for images of all

magnification factors at patient level by about 1–7% in comparison with the reported literature

results. The least improvement is 0.9% whereas the best improvement is 6.7%. At image level,

the improvement appears to be less obvious, particularly at the worst case of low magnification

of 40×, the classification accuracy is even 0.5% lower.

Discussion

In this study, we proposed a novel CNN architecture IDSNet for BC classification in histologi-

cal images of different magnifications. To improve the delivery and usage of feature informa-

tion, we constructed the model by sequentially stacking four copies of the building blocks

consisted of the basic DenseNet, SENet module and the classification sub-network. Further-

more, we aggregate all information from the different levels of depth by concatenating the fea-

ture maps extracted from the four copies of sequentially stacked building blocks. An

additional classification sub-network was utilized to perform the binary classification task. We

Table 2. Performance of BC classification using VGG16, Resnet50 and DenseNet-121. The best performance is highlighted by boldface.

Metric Network Magnification factor

40× 100× 200× 400×
PRR VGG16 74.9 76.0 78.7 79.0

Resnet50 78.1 78.2 77.0 78.2

DenseNet-121 82.2 83.9 80.6 82.6

IRR VGG16 72.5 77.7 77.2 77.5

Resnet50 72.5 76.3 75.0 80.4

DenseNet-121 81.8 79.3 81.4 83.2

https://doi.org/10.1371/journal.pone.0232127.t002
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conducted extensive experiments with the proposed framework by using the publicly available

BreakHis dataset and demonstrated that the proposed framework can produce significantly

improved BC classification performance, compared with the state-of-art CNN methods

reported in the literature. The key finding is that appropriate integration of DenseNet, SENet,

and classification sub-network is a feasible approach to attain robustness in BC histological

image classification.

The selection of the reduction ratio

The reduction ratio r is a hyperparameter to regulate the capacity and complexity of the SE

blocks in the SENet. With the increase of r value the number of parameters in the network will

be reduced, which can lead to undesirable results. However, if the value of r is too small, the

overfit of network may occur. Therefore, there is a trade-off between the performance and

complexity. After systematic experimentations for a range of different r values 2–20, we found

that it is robust to set r = 8 for our study. However, using the same reduction ratio throughout

a network may not be optimal because of the distinct functions of the different layers. In prac-

tice, further improvements may be achievable by tuning the r value adaptively according to its

functional role in each layer.

Novelty of the architecture, pre-training and fine-tuning

When CNN networks go deeper from 10s to 1000s layers, the path from the input to the output

layer becomes so large that the input information can vanish before it can reach the other end.

DenseNets mitigate this problem by ensuring maximum information flow and connecting

every layer directly with each other. In other words, DenseNets exploit the potential of the net-

work through feature re-use instead of extracting the representation power from extremely

Table 3. Performance of BC classification by the different network combinations: Case1) the complete IDSNet

based on DenseNet interleaved with SENet and classification sub-network; Case2) the DenseNet combined with

classification sub-network only; Case3) DenseNet combined with SENet module only. The best performance is

highlighted by boldface.

Metric Model Magnification factor

40× 100× 200× 400×
PRR case 1 89.5±2.0 87.5±2.9 90.0±5.3 84.6±2.1

case 2 88.9±2.4 82.3±5.1 88.0±5.6 84.0±2.9

case 3 86.9±1.9 83.5±4.19 87.1±2.0 84.7±2.0

IRR case 1 89.1±3.6 85.0±5.1 87.0±6.0 84.5±3.6

case 2 88.7±3.7 85.4±2.8 86.9±5.8 83.2±4.9

case 3 87.1±1.91 81.9±6.9 84.4±6.3 84.0±3.9

https://doi.org/10.1371/journal.pone.0232127.t003

Table 4. Performance of BC classification for the proposed IDSNet in comparison with other literature methods. The best performance is highlighted by boldface.

Metrics Methods Magnification

40× 100× 200× 400×
PRR AlexNet based [4] 88.6±5.6 84.5±2.4 83.3±3.8 81.7±4.9

DeCaF CNN [5] 84.0±6.9 83.9±5.9 86.3±3.5 82.1±2.4

IDSNet (this study) 89.5±2.0 87.5±2.9 90.0±5.3 84.6±2.1

IRR AlexNet based [4] 89.6±6.5 85.0±4.8 84.0±3.2 80.8±3.1

DeCaF CNN [5] 84.6±2.9 84.8±4.2 84.2±1.7 81.6±3.7

IDSNet (this study) 89.1±3.6 85.0±5.1 87.0±6.0 84.5±3.6

https://doi.org/10.1371/journal.pone.0232127.t004
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deep or wide architectures. On the other hand, SENet can enhance effectiveness for feature

selection. The proposed IDSNet does not only utilize the deeper information with higher com-

plexity, but also merges the shallow information. Since the shallow layers contain a lot of

detailed and local information, while the deep network layers contain rich semantic informa-

tion [21]. Therefore, with the IDSNet framework we can efficiently extract the information in

different dense blocks and send them to SENet module for obtaining more spatial information

and weighting. The features from both the shallow and deep layers are aggregated by concate-

nation and sent to the final classification sub-network to improve the classification perfor-

mance of the model.

The IDSNet architecture uses global average pooling in the classification sub-network to

mitigate the lack of computing resources and network over-fitting associated with the large

number of parameters and inflated model size. Excessive parameters will make the network’s

structure very complicated and consume computing resources. The use of the global average

pooling can lead to better integration of the spatial information and shrink of the number of

parameters. For better comparison, we summarized the number of parameters for the relevant

network structures in Table 5.

Compared with VGG16 and Resnet50, the IDSNet achieved significantly improved perfor-

mance with substantially fewer parameters and smaller model size. Compared to the Dense-

Net, our model has slightly more parameters and larger model size, which is quite acceptable

for the achieved improvement in BC classification.

Transfer learning is an effective way to solve the problem with a relatively small training

sample and use the pre-trained model to improve the training efficiency and generalization

ability of the network. If the weights in a CNN network were not pre-trained through large

datasets, the initial weight values would have to be set in a random fashion and the network

convergence would be slow. In this study, we used transfer learning to select the initialization

weights and adjusted their values through fine-tuning on basis of the actual BC histological

images. In this way, we can accelerate the network convergence for model training.

Conclusions

In this study, we configured a novel CNN architecture IDSNet by stacking multiple copies of

the basic building unit consisting of the pre-trained Dense block, SENet and classification sub-

network to extract more channel features and enhance the use of more important local infor-

mation in BC biopsy specimens with fine grain features. The experimental results obtained

from the BreakHis dataset have demonstrated that the framework can significantly improve

the BC classification accuracy without notable expansion of the model. In future studies, we

shall further explore the potential of IDSNet for classification of other types of medical images.
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Table 5. Parameter and model size for the different CNN models used to test the BreakHis dataset.

Network VGG16 Resnet50 DenseNet-121 IDSNet

Parameters 14,765K 23,788K 7,138K 7,664K

Model size 169.1Mb 272.6Mb 82.6Mb 88.65Mb

https://doi.org/10.1371/journal.pone.0232127.t005
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