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Abstract

A common approach to improving probabilistic forecasts is to identify and leverage the fore-

casts from experts in the crowd based on forecasters’ performance on prior questions with

known outcomes. However, such information is often unavailable to decision-makers on

many forecasting problems, and thus it can be difficult to identify and leverage expertise. In

the current paper, we propose a novel algorithm for aggregating probabilistic forecasts

using forecasters’ meta-predictions about what other forecasters will predict. We test the

performance of an extremised version of our algorithm against current forecasting

approaches in the literature and show that our algorithm significantly outperforms all other

approaches on a large collection of 500 binary decision problems varying in five levels of dif-

ficulty. The success of our algorithm demonstrates the potential of using meta-predictions to

leverage latent expertise in environments where forecasters’ expertise cannot otherwise be

easily identified.

1. Introduction

The fact that judgments can be improved by aggregating predictions across forecasters in a

crowd has been well-known for over a century [1]. Simple averaging is a common approach to

aggregating probabilistic forecasts and works well when forecasters have the same level of

expertise. However, in practice, expertise is rarely constant across forecasters [2, 3]. A number

of aggregation approaches have been developed to identify and leverage differences in exper-

tise using forecasters’ past performance on questions with known outcomes [4, 5] and forecast-

ers’ past contributions to the crowd forecast [6]. Unfortunately, information regarding past

performance may often be unavailable because collecting forecasters’ responses to a set of rele-

vant questions can be very time-consuming, costly, or otherwise impractical.

In a recent paper, Prelec, Seung, and McCoy [7] developed an innovative algorithm that

uses meta-predictions—predictions about what others will predict—to correct for biases in the

crowd where information regarding past performance is unknown. Their surprisingly popular

(SP) algorithm predicts that the outcome that is more popular than the crowd expects (i.e., the

surprisingly popular outcome) to be the correct answer.
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In the current paper, we explore an alternative way of using meta-predictions to improve

probabilistic forecasts. We propose the meta-probability weighting (MPW) algorithm, which

weights the probabilistic forecasts of each forecaster by using the absolute difference between

their prediction and their meta-prediction of the average prediction of others. As shown in

our theoretical model discussed in the S1 Appendix, the weight assigned to each forecaster in

the MPW algorithm is proportional to the absolute difference between the forecaster’s prior

and the forecaster’s posterior in a Bayesian framework where forecasters receive private signals

and share a common prior. Thus, forecasters with more informative private signals will be

weighted more in the algorithm than those with less informative signals. Although this

reweighting does not guarantee that the probabilistic forecast generated by the meta-probabil-

ity weighting algorithm is closer to the truth than the simple average on a question-by-ques-

tion basis, it does ensure that experts—individuals who have access to a more informative

information system—will have higher expected weights than novice in crowds containing both

types of individuals. Since experts will have better forecasts than novices on average, we

hypothesize that the MPW algorithm will yield better probabilistic forecasts in the aggregate

across many problems.

We test the performance of an extremised version of our algorithm against three current

forecasting approaches in the literature—the extremised simple average, an extremised version

of the minimal pivoting procedure of Palley and Soll [13], and the p@cs aggregator of Satopää,

Pemantle, and Ungar [8]—using a large collection of 500 binary decision problems varying in

five levels of difficulty. As discussed below, these alternative algorithms aim to improve the

aggregate forecasts by correcting for the sharing or overlap in common information between

forecasters. We find that the new algorithm outperforms all three alternative algorithms. We

find that this outperformance is driven by improved performance on more difficult questions

where there is likely to be heterogeneity in expertise.

The rest of this paper is organized as follows. In Section 2, we provide a formal definition of

the MPW algorithm and discuss the theoretical properties of the algorithm. In Section 3, we

describe our experimental design, the analyses we plan to conduct, and formally define each

alternative aggregation approach. In Section 4, we examine the performance of each aggrega-

tion approach both generally and at the dataset level. Finally, in Section 5, we review the impli-

cations of these findings and the contribution it provides to the literature. The S1 Appendix

contains our theoretical model while the S2 Appendix contains a comparison of the MPW

algorithm and alternatives using the NCAA Men’s basketball dataset of Palley and Soll [13].

2. The MPW algorithm

Let X be the event space with events X1,X2,. . .XK where K is the total number of events. Let Pi,k
be the probability forecast of the ith forecaster for the kth event and let MP

i;k be this forecaster’s

meta-prediction of the average forecast of others. Then, the probabilistic forecast made by the

MPW algorithm, TMPW(Xk), is given by

TMPWðXkÞ ¼
XNk

i¼1

Wi;kPi;k ð1Þ

where Nk is the total number of forecasters for the kth event and

Wi;k ¼
jPi;k � MP

i;kj
PNk

i¼1
jPi;k � MP

i;kj
: ð2Þ

Note that by construction, the weights for each event k sum up to 1.
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The weights for the MPW algorithm are informed by our theoretical model developed in

the S1 Appendix. In our theoretical model, individuals share a common prior about the likeli-

hood that the answer is true and receive private signals from one of two information systems

that are ranked in terms of their informativeness. We allow the prior to be biased—as might be

the case if forecasters receive a commonly observed public signal and update their beliefs to an

informed common prior before receiving their private signals—but assume that signals are

independent after conditioning on the state. We also assume all forecasters have common

knowledge about the likelihood of a randomly selected forecaster receiving each potential sig-

nal in the true state and the false state. This assumption implies that two forecasters who

receive the same private signal will have the same meta-prediction about the reports made by

others.

We define an expert as an individual who receives a signal from the more informative infor-

mation system and a novice as an individual who receives a signal from the less informative

one. We show that under our theoretical assumptions, the weight of an individual is zero if the

individual’s prior is equal to his or her posterior and that individual weights are increasing lin-

early in the distance between a forecaster’s prior and his or her posterior. In this sense, individ-

uals with more informative private signals will be weighted more than individuals with less

informative private signals. Since experts have a more informative signal than a novice on

average, we can use Blackwell’s Theorem [21–25] to show that the expected weight of an expert

is greater than the expected weight of a novice. We predict that the overweighting of experts in

the algorithm will improve probabilistic forecasts in the aggregate.

3. The experiment

To test the MPW algorithm, we conducted an online experiment where we presented partici-

pants with US grade school true-or-false general science statements varying on five predefined

levels of difficulty. We selected problems which varied systematically in difficulty because they

provide a natural environment in which the level of expertise in the crowd varies accordingly.

Our theoretical model predicts that the MPW algorithm is likely to offer the greatest improve-

ment over simple averaging on moderate-difficulty and high-difficulty forecasting problems,

where crowds are likely to contain forecasters with latent expertise. In contrast, the MPW algo-

rithm is likely to provide little-to-no benefit over simple averaging on low-difficulty problems,

where most forecasters are likely to be experts.

3.1 Experimental design

We generated 500 science statements at a US primary and secondary grade school level. Ques-

tions and content were adapted from worksheets on the Education Quizzes website (http://

www.educationquizzes.com/us), and then converted into true or false statements. Approxi-

mately 2–3 questions were taken from each worksheet from the Biology, Chemistry, Geogra-

phy, Physics, and General Science categories, spanning from grades 1 to 12, broken up into

five levels of difficulty (grades 1 and 2; grades 3, 4, and 5; grades 6, 7, and 8; grades 9 and 10;

and grades 11 and 12). We coded “difficulty 1” as the lowest difficulty level, and “difficulty 5”

as the highest difficulty level. We treated each set of 100 questions of the same difficulty as an

individual dataset. An example of a statement in difficulty 1 was “Omnivores only eat meat”.

In contrast, difficulty 5 contained statements such as “Sound waves and electromagnetic waves

are examples of longitudinal waves”. The full set of experiment questions, participant

responses, and analysis code (for the MATLAB program, please see https://www.mathworks.

com/products/matlab.html) are included in the supplementary information files.
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The experiment was approved by the Melbourne School of Psychological Sciences Human

Ethics Advisory Group (Ethics ID: 1647855.1) and all experiments were performed in accor-

dance with the relevant guidelines and regulations. We recruited 500 respondents from Ama-

zon Mechanical Turk; only respondents inside the US were able to participate in the

experiment. Participants were paid a flat fee of USD $4.00 for completing the survey and all

participants provided their written informed consent before completing the survey. The survey

was conducted on the Qualtrics platform. Before beginning the experiment, participants were

first required to answer three basic logic questions to deter any non-human agents from

responding to the survey. Participants were then asked to answer each question as honestly as

they could and without cheating (e.g., by looking up any of the questions online). Forty-one

individuals who reported cheating at the task were excluded from the analyses; analyses were

conducted on the data of the remaining 459 participants.

Participants completed 100 trials each, with each trial comprising one statement that was

either true or false. Half the statements at each level of difficulty were true, and the other half

were false. Participants were asked to provide their predictions about (a) whether the state-

ment was more likely to be true or false, (b) what percentage of other forecasters would predict

the statement to be true, (c) the probability that the statement was true, and (d) what the aver-

age probability estimated by other forecasters would be. Participants who provided votes that

were inconsistent with their probability forecasts (i.e., voting “true” but predicting a probabil-

ity <50% of the statement being true, or voting “false” but predicting a probability >50% of

the statement being true) were excluded from the analysis from that particular question. Each

participant saw 20 statements from each level of difficulty, and statements were presented in

one of five randomized orders. Participants who took part in any of our previous experiments

were excluded from participating.

3.2 Alternative algorithms and planned analyses

Our main algorithm of interest is the meta-probability weighting (MPW) algorithm, which

weights forecasters’ probability forecasts by the normalized absolute difference between their

probability forecasts and their meta-predictions about the average probability forecasted by

others. Our comparison set also includes three other approaches from the literature: the simple

average, the p@cs aggregator [8], and the minimal pivoting procedure [13]. The details of each

aggregation approach used are shown in Table 1.

Table 1. Details of each aggregation approach used. The name, formula, and description for each probabilistic

aggregation approach used in this paper. The notation for each aggregation approach is explained in the main text

above, excluding the p@cs aggregator, for which, due to its complexity, we refer readers to the original paper by Satopää

et al. [8].

Aggregation approach Formula Description

Simple average
Tm Xkð Þ ¼

XNk

i¼1

Pi;k
Nk

Simple unweighted average of all individual forecasts in

the crowd.

p@cs
Tp@cs

Xkð Þ ¼ F
1

ðN� 1Þlþ1

PN

i¼1
XBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Nd
ðN� 1Þlþ1

p

 !
Revealed Aggregator for the Gaussian Model under

compound symmetry–see Satopää et al. [8] for details.

Minimal Pivoting
TMP Xkð Þ ¼

XNk

i¼1

Pi;kþðPi;k � MP
i;kÞ

Nk

Simple average corrected by the minimal pivoting

procedure [13].

Meta-probability

Weighting (MPW) TMPW Xkð Þ ¼
XNk

i¼1

jPi;k � MP
i;k jPi;kPNk

j¼1
jPj;k � MP

j;k j

Weighted average of forecasters’ probability forecasts,

where weights are calculated from the normalized

absolute difference between their probability forecasts and

their meta-predictions about the average probability

forecasted by others.

https://doi.org/10.1371/journal.pone.0232058.t001
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The p@cs aggregator of Satopää, Pemantle, and Ungar [8] was designed to correct for the con-

servative bias that is consistently seen in probabilistic forecasting [9, 10, 11, 12]. As discussed

in detail in [8], the algorithm is informed by a partial information framework that models the

amount of information overlap in forecasters. While estimation of the parameters of the full

model is possible with records of forecasters’ past performance, a simpler model—the p@cs
aggregator—can be applied by assuming that the information available to forecasters is com-

pound symmetric, such that forecasters’ information sets have the same size and the amount

of pairwise overlap is constant. Assuming compound symmetry, the p@cs aggregator is able to

estimate the amount of overlap in information between forecasters and therefore correct for

this overlap by extremizing probability forecasts such that forecasts of low probabilities are

shifted closer to 0 and forecasts of high probabilities are shifted closer to 1. Empirically, the

authors found that the p@cs aggregator outperformed simple averaging and also both log-odds

and probit aggregators on a large dataset of real-world geopolitical forecasting problems from

the ACE forecasting tournament.

Palley and Soll [13] utilized a different approach, the minimal pivoting procedure, to correct

for bias in the aggregated crowd forecast due to the sharing of information by adjusting the

average forecast using forecasters’ meta-predictions about the average forecast of others. The

authors showed that the optimal correction (or pivot) for this bias depends on the structure of

shared information between forecasters. For example, the optimal amount of pivoting for a

crowd of laypeople will differ to the optimal amount of pivoting for a crowd of experts. As the

structure of shared information for a given problem may be unknown to the decision-maker

beforehand, the authors proposed the use of a minimal pivoting procedure, which provides a

conservative correction relative to the optimal pivoting procedure when the information struc-

ture is known. The authors tested the minimal pivoting procedure across four studies and

found that minimal pivoting outperformed simple averaging on both a cost-estimation task

and sports prediction problems.

While we could have applied these aggregation approaches directly, many previous studies

have highlighted the consistent need for extremisation in the probabilistic forecasting domain

[9, 10, 11, 14, 15, 16]. We therefore considered two versions of each algorithm: the standard

version and a version augmented using the extremisation function used by Baron et al. [9] and

others before them [10, 11]:

t pð Þ ¼
pa

pa þ ð1 � pÞa
ð3Þ

where p is the original aggregated probability forecast, t(p) is the recalibrated probability, and

a is the recalibration parameter, which determines the strength of the transformation. This

function extremises probability forecasts when a> 1 and anti-extremises when 0< a< 1.

Baron et al. [9] conducted a large-scale study where over 2,000 people were asked to estimate

the probabilities of outcomes to international events such as political elections occurring a

future date. Baron et al. [9] found that the optimal parameter value for this function was

approximately a = 2.5 in crowds containing expert forecasters, who, on average, were under-

confident and therefore needed to be extremised to become optimally calibrated. For this

reason, we selected this parameter value in advance and applied it to each aggregation

approach. Extremisation improved forecasts for the simple average, MPW algorithm, and

minimal pivoting procedure, but not for the p@cs aggregator, which already produced extre-

mised forecasts [8]. In our results, we report the comparison between the extremised version

of the MPW algorithm and both the standard and extremised versions of each other aggrega-

tion approach.
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In line with Budescu and Chen [6] and Chen et al. [17], we compare the performance of the

MPW algorithm and other probabilistic aggregation approaches using a transformed Brier

score:

Si ¼ 100 � 100
XK

k¼1

ðDðokÞ � TðXi;kÞÞ
2

K
; ð4Þ

where Si is the score of the ith forecaster (or algorithm) averaged across K total events, D(ok) is

the outcome variable for the kth event (equals 1 if the event is true and 0 if false), and T(Xi,k) is

the probability assigned to that outcome being true by that forecaster (or algorithm). This scor-

ing rule has a straightforward interpretation where scores range from 0 to 100, with 100 being

a perfect forecast over all events. Importantly, this linear transformation of the Brier score

retains the same functional form as the original and is strictly proper [18]. Strictly proper scor-

ing rules are conventional measures of performance in probabilistic forecasting and are useful

because they ensure that performance of the probability forecasts, measured as some sort of

score, is optimized only by forecasts of the true probability. The use of scoring rules in assess-

ing forecasts thus encourages forecasters to be careful and truthful in making their forecasts, in

order to maximize their score.

We assess statistical significance between predictions of different aggregation approaches

using 95% confidence intervals (CIs), which indicate, firstly, a significance difference when the

null hypothesis value (H0 = 0) is not contained within the interval, and secondly, a plausible

range for the size of the effect. We compute 95% confidence intervals for paired differences in

transformed Brier score between the MPW algorithm and each other approach using the

empirical bias-corrected and accelerated (BCa) bootstrap [19] using 10,000 bootstrap samples.

Confidence intervals were computed using the standard bootci function in the MATLAB pro-

gram. We have included the experimental data and MATLAB code for the analyses and plots

from this paper in the supplementary information files.

4. Results

Fig 1 shows the mean performance for each aggregation approach across the 500 problems.

After extremisation, the MPW algorithm generated significantly better predictions overall

than: the standard mean individual by 14.22 points (bootstrap 95% CIs for paired mean differ-

ence in score: [13.04, 15.36]), the extremised mean individual by 18.20 points (95% CI: [16.86,

19.57]), the standard simple average by 6.64 points (95% CI: [5.61, 7.63]), the extremised sim-

ple average by 6.23 points (95% CI: [4.91, 7.62]), the standard p@cs aggregator by 5.04 points

(95% CI: [3.83, 6.44]), the extremised p@cs aggregator by 7.24 points (95% CI: [5.40, 9.33]), the

standard minimal pivoting procedure by 4.21 points (95% CI: [3.37, 4.98]), and the extremised

minimal pivoting procedure by 3.43 points (95% CI: [2.47, 4.47]). The MPW algorithm was

therefore highly effective at generating probabilistic forecasts across a range of low-difficulty to

high-difficulty decision problems.

We examined whether the improvement offered by the MPW algorithm over simple averag-

ing varied across different problem difficulties. As the MPW algorithm leverages latent exper-

tise, we would expect it to offer the greatest improvement over simple averaging on moderate-

difficulty and high-difficulty forecasting problems, where the crowd is likely comprised of both

experts and novices. Fig 2 shows the mean performance of the best-performing versions of each

aggregation approach separately for each of the five difficulty levels. Table 2 shows the mean dif-

ference in transformed Brier score between the extremised MPW algorithm and each other

approach for each difficulty. While the extremised MPW algorithm outperformed all other
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Fig 1. Overall performance of the standard vs. extremised versions of each aggregation approach. The mean

transformed Brier score over a total of 500 US grade school problems spanning five levels of difficulty. Error bars

indicate the standard error. The standard version of each approach generates probabilistic forecasts according to their

formulae shown in Table 1. The extremised version of each approach transforms these predictions using a simple

extremisation function [9]. The extremised MPW algorithm significantly outperforms both the standard and

extremised versions of every other aggregation approach.

https://doi.org/10.1371/journal.pone.0232058.g001

Fig 2. Performance of each aggregation approach on each level of difficulty. The mean transformed Brier score for

each level of difficulty of US grade school problems. Error bars indicate the standard error. The extremised MPW

algorithm (blue bar) outperforms the best-performing version of all other aggregation approaches on problems from

difficulties 2 to 5. The 95% CIs for mean difference in score between the extremised MPW algorithm and each other

aggregation approach is shown in Table 2.

https://doi.org/10.1371/journal.pone.0232058.g002
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approaches on the problem sets from difficulties 2 to 5, this improvement was only significant

for all comparisons from difficulty 2, 3, and 5.

The extremised MPW algorithm performed particularly well relative to other approaches

on the problems in the highest difficulty level. For example, the extremised MPW algorithm

outperformed simple averaging by approximately 9 points in score, which was approximately

three times as large an improvement compared to that offered by the next best approach, the

extremised minimal pivoting procedure. Consistent with our predictions, the extremised

MPW algorithm also performed equally well as other aggregation approaches on the lowest

difficulty level. Our empirical findings are thus highly consistent with the predictions of our

theoretical model. These results provide strong evidence for the MPW algorithm’s mechanism

to leverage latent crowd expertise, a mechanism that is most effective on moderate-difficulty to

high-difficulty forecasting problems where the crowd is likely to be comprised of both experts

and novices.

One explanation for our results is that the parameter values chosen for the extremisation

function were simply better suited for the extremised MPW algorithm than these other aggre-

gation approaches. Although we based our choice of parameter values from previous results

from other authors [9], it could be the case that these values were simply optimized for the

MPW algorithm and not the other aggregation approaches. To address this concern, we con-

ducted additional post-hoc analyses to investigate whether optimally recalibrating these other

aggregation approaches could allow them to outperform the extremised MPW algorithm. We

optimally recalibrated each other aggregation approach using that approach’s responses to

other forecasting problems (i.e., using cross-validation when past performance is known). For

each approach, we used leave-one-out cross-validation to estimate the optimal parameter (a)

in the recalibration function adapted from Baron et al. [9]. For each training set, we tested a

range of values for a from 0 to 10 in increments of 0.01 and selected the value that maximized

the score of that approach, which we then applied to the training event. We repeated this pro-

cess separately for each of the 500 questions in the dataset, and for each of the five aggregation

approaches. For statistical inference, we used the BCa bootstrap [19] with 10,000 bootstrap

samples to compute 95% CIs for the mean paired difference in score between aggregation

approaches.

Fig 3 shows the performance of these other aggregation approaches once they have been

optimally recalibrated. While optimizing the recalibration function for these other approaches

improved their performance, the extremised MPW algorithm, which was not optimally recali-

brated, still offered significantly better predictions than any other approach. Comparing the

Table 2. 95% Confidence intervals for the mean difference in the transformed Brier score between the extremised MPW algorithm and the standard and extremised

versions of each other aggregation approach. Asterisks indicate where the difference in score was statistically significant at the α = .05 level according to the paired mean

difference in transformed Brier score using the BCa bootstrap [19].

Aggregation approach Version Difficulty 1 Difficulty 2 Difficulty 3 Difficulty 4 Difficulty 5

Mean individual Standard [11.22, 15.58]� [14.44, 19.65]� [12.79, 18.19]� [7.93, 13.89]� [12.04, 16.79]�

Extremised [12.97, 18.48]� [17.32, 23.78]� [16.90, 23.08]� [13.16, 19.23]� [16.49, 22.04]�

Simple average Standard [3.62, 6.95]� [6.25, 10.44]� [5.63, 10.23]� [1.06, 6.78]� [5.24, 9.59]�

Extremised [-0.85, 3.03] [3.54, 9.75]� [5.86, 11.57]� [3.23, 9.38]� [5.79, 12.72]�

p@cs Standard [0.47, 6.11]� [3.02, 8.98]� [3.66, 8.49]� [0.53, 6.75]� [5.42, 12.03]�

Extremised [-1.01, 6.63] [2.32, 11.16]� [5.07, 13.25]� [3.73, 12.41]� [7.69, 18.29]�

Minimal pivoting Standard [1.44, 3.94]� [3.61, 6.80]� [3.20, 6.89]� [-0.17, 4.53] [3.68, 7.22]�

Extremised [-2.23, 0.47] [0.80, 5.11]� [2.88, 6.88]� [1.87, 6.50]� [3.75, 9.47]�

� indicates where p< .05

https://doi.org/10.1371/journal.pone.0232058.t002
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mean performance of the fixed version of the extremised MPW algorithm to the other opti-

mally recalibrated approaches, we find that the extremised MPW algorithm outperforms each

other approach even when they have been optimally recalibrated. The fixed extremised MPW

algorithm scored higher than the optimally-recalibrated simple average by 5.79 points (95%

CI: [4.66, 6.94]), the optimally-recalibrated p@cs aggregator by 5.19 points (95% CI: [3.91, 6.65]),

and the optimally-recalibrated minimal pivoting procedure by 3.15 points (95% CI: [2.33,

4.01]).

In the S2 Appendix, we also conducted a post-hoc analysis where we compared the extre-

mized version of each aggregation approach included in this paper to a dataset containing

forecasts about NCAA men’s basketball games that was collected by Palley & Soll [13]. In this

dataset we find no significant difference between the performance of the extremised MPW

algorithm, the extremised minimal pivoting mechanism, the p@cs aggregator, or the extremised

simple average. The dataset does not appear to have any experts in it, which may account for

the similar prediction of all four methods.

5. Discussion

In the current paper, we have developed a novel algorithm for leveraging forecasters’ expertise

using forecasters’ meta-predictions about what other forecasters would predict. The extre-

mised MPW algorithm allows decision-makers to generate accurate probabilistic predictions

even when the forecasters’ past performance is unavailable. The extremised MPW algorithm is

also computationally simple, which may be appealing to decision-makers that are unfamiliar

with more-sophisticated aggregation approaches that require structural estimation of latent

parameters [20]. While previous research have demonstrated how meta-predictions can be

used to correct for crowd biases [7], or used to identify the structure and extent of shared

information in the crowd [13], no studies to date have shown that forecasters’ meta-predic-

tions can be used to derive weights that quantify latent expertise. The extremised MPW

Fig 3. Performance of each aggregation approach using cross-validated recalibration parameters. This figure

shows the mean performance of each approach using the fixed parameter value a = 2.5 (orange bars) vs. optimal

recalibration parameters estimated via cross-validation (blue bars). Error bars show the standard error.

https://doi.org/10.1371/journal.pone.0232058.g003
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algorithm is therefore theoretically distinct from existing approaches such as the p@cs aggregator

[8] and the minimal pivoting procedure [13], which seek to improve forecasts by modelling

and correcting for the overlap in information between forecasters.

The current paper provides a valuable contribution in demonstrating that this empirical

quantity can be used to produce probabilistic forecasts that outperform existing aggregation

approaches in the literature. In particular, the extremised MPW algorithm outperforms other

existing aggregation approaches that can be applied on forecasting problems where the fore-

casters’ past performance is unknown: simple averaging, the p@cs aggregator [8], and the mini-

mal pivoting procedure [13]. Relative to these other approaches, the extremised MPW

algorithm performs particularly well for the more difficult forecasting problems, where

leveraging latent expertise is likely to be most effective. Decision-makers who are faced with

difficult forecasting problems may therefore find the extremised MPW algorithm an attractive

alternative over existing aggregation approaches.

Supporting information

S1 Appendix. Theory appendix for understanding how the MPW algorithm leverages

expertise [21, 22, 23, 24, 25].

(PDF)
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(PDF)
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