
RESEARCH ARTICLE

Mechanics of walking and running up and

downhill: A joint-level perspective to guide

design of lower-limb exoskeletons

Richard W. NuckolsID
1*, Kota Z. Takahashi2, Dominic J. Farris3, Sarai Mizrachi4,

Raziel Riemer4, Gregory S. Sawicki5*

1 School of Engineering and Applied Sciences, Harvard University and Wyss Institute, Cambridge,

Massachusetts, United States of America, 2 Department of Biomechanics, University of Nebraska at Omaha,

Omaha, Nebraska, United States of America, 3 Department of Sport and Health Sciences, University of

Exeter, St Luke’s Campus, Exeter, United Kingdom, 4 Department of Industrial Engineering and

Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 5 School of Mechanical Engineering

and Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America

* rnuckols@g.harvard.edu (RWN); gregory.sawicki@me.gatech.edu (GSS)

Abstract

Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand

in healthy populations. To help enable real-world use, we sought to examine how assistance

should be applied in variable gait conditions and suggest an approach derived from knowl-

edge of human locomotion mechanics to establish a ‘roadmap’ for wearable robot design.

We characterized the changes in joint mechanics during walking and running across a range

of incline/decline grades and then provide an analysis that informs the development of lower-

limb exoskeletons capable of operating across a range of mechanical demands. We hypoth-

esized that the distribution of limb-joint positive mechanical power would shift to the hip for

incline walking and running and that the distribution of limb-joint negative mechanical power

would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed

five walking (1.25 m s-1) trials at -8.53˚, -5.71˚, 0˚, 5.71˚, and 8.53˚ grade and five running

(2.25 m s-1) trials at -5.71˚, -2.86˚, 0˚, 2.86˚, and 5.71˚ grade on a treadmill. We calculated

time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we

examined how individual limb-joints contributed to total limb positive, negative and net power

across grades. For both walking and running, changes in grade caused a redistribution of

joint mechanical power generation and absorption. From level to incline walking, the ankle’s

contribution to limb positive power decreased from 44% on the level to 28% at 8.53˚ uphill

grade (p < 0.0001) while the hip’s contribution increased from 27% to 52% (p < 0.0001). In

running, regardless of the surface gradient, the ankle was consistently the dominant source

of lower-limb positive mechanical power (47–55%). In the context of our results, we outline

three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs

1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing

negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait

phase and then injecting it in another phase (i.e., regenerative braking).

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231996 August 28, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nuckols RW, Takahashi KZ, Farris DJ,

Mizrachi S, Riemer R, Sawicki GS (2020)

Mechanics of walking and running up and downhill:

A joint-level perspective to guide design of lower-

limb exoskeletons. PLoS ONE 15(8): e0231996.

https://doi.org/10.1371/journal.pone.0231996

Editor: Pei-Chun Kao, University of Massachusetts

Lowell, UNITED STATES

Received: April 3, 2020

Accepted: August 3, 2020

Published: August 28, 2020

Copyright: © 2020 Nuckols et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available from Dryad (DOI: 10.5061/dryad.

ns1rn8pqc).

Funding: Supported by Grant 2011152 from the

United States-Israel Binational Science Foundation

(https://www.bsf.org.il/) to G.S.S. and R.R and U.S.

Army Natick Soldier Research, Development and

Engineering Center (http://nsrdec.natick.army.mil/)

(W911QY18C0140) to G.S.S. The funders had no

role in study design, data collection and analysis,

http://orcid.org/0000-0002-6543-2424
https://doi.org/10.1371/journal.pone.0231996
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231996&domain=pdf&date_stamp=2020-08-28
https://doi.org/10.1371/journal.pone.0231996
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.ns1rn8pqc
https://doi.org/10.5061/dryad.ns1rn8pqc
https://www.bsf.org.il/
http://nsrdec.natick.army.mil/


Introduction

Lower-limb robotic exoskeletons can apply assistive torque to reduce the metabolic energy

used by biological muscles to produce the force and work for locomotion [1]. A majority of

these successful exoskeletons have focused on providing assistance at the ankle within a labora-

tory setting [2–10]. More recently, devices have begun to move outside of laboratory confine-

ment. Fully-autonomous, portable devices have been demonstrated to reduce metabolic cost

by 10% during walking [4], by 14.9% with additional load [11], and by 14.6% during running

[12]. To receive benefit from a device, users must learn to interact effectively with their wear-

able robot [8, 13].

Researchers have dedicated significant time and effort to understanding the interaction

between exoskeleton control strategies and the physiological response of the human user. The

high-level method for generating control commands [14, 15]; the shape, the timing and mag-

nitude of the torque assistance profile [16–18]; and the lower-limb joint where assistance is tar-

geted [18–21] can all influence how well the user responds. To date, most exoskeleton research

studies have focused on optimizing controllers for a single gait at a fixed speed on level ground.

Exhaustive parameter sweeps and human-in-the loop optimization have been very effective for

determining torque profiles on an individual basis [7, 8, 22, 23], but discovering an optimal

policy can take many hours. Furthermore, it is unknown how well control policies established

for one condition can be generalized for the diverse gait conditions expected in the real-world.

As exoskeletons become increasingly mobile, a clear problem arises: How can engineers

deliver systems that can assist in natural environments where locomotion involves adjusting

speed, changing gait from walk to run, and moving uphill or downhill? Few exoskeleton stud-

ies have focused on incline/decline walking [5, 24] or compared assistance strategies across

speeds [10] in which mechanistic explanations for performance outcomes were provided.

Injection of positive power has been shown to be a promising approach for achieving meta-

bolic cost reduction [25]; however, whether this approach is effective across all leg joints or if it

is effective across different grades or gaits is unknown. We suggest that a bio-inspired mecha-

nistic understanding of how people move and exchange energy between their lower-limb

joints and the external environment is crucial for successful designs that make exoskeletons

truly effective in real-world conditions. These insights may be directly incorporated into assis-

tance profiles or may be used to seed optimization parameters.

This mechanistic approach has been previously applied to exoskeleton development and

logically helps explain why the field has so heavily focused on the ankle as a target for assis-

tance in level walking [3, 26, 27]. The ankle provides the majority of power on level ground

[28] and disrupted ankle mechanics common in clinical populations make it a good target for

assistance [29, 30]. Guidance from baseline human gait data has motivated a bioinspired

approach to borrow ‘best’ concepts from the biological system to guide design of wearable

devices. For example, our previous work to design and test a clutch-spring ankle ‘exo-tendon’

[23, 26, 27] was inspired by the efficient interaction between the triceps surae muscles and the

Achilles tendon within the ankle plantarflexors during walking [31, 32].

The same mechanistic approach can be applied towards the development of exoskeletons in

non-level gait. When moving on inclines and declines, fundamental physics shape the

mechanical demands on the legs. Muscles must add or remove net mechanical energy lost or

gained according to changes in height of the center of mass (COM) [33, 34] and numerous

studies have contributed to our understanding of the dynamics of uphill and downhill gait at

various speeds [35–45]. Joint level mechanical analyses through inverse dynamics have pro-

vided more detailed insight into the sources of mechanical energy generation/dissipation mov-

ing uphill/downhill, respectively. In general, the magnitude of hip extension moments
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increase during incline walking to inject net mechanical work; and magnitude of knee exten-

sion moments increase during decline walking to extract net mechanical work [36, 41, 42]. In

incline running, the required increase in energy also results from a shift in net power output to

the hip [35, 42]. Inverse dynamics analysis has also been used to evaluate the effect of aging on

the joint kinematics and kinetics of uphill walking and reveals that older adults perform more

hip work and less ankle work in both level ground and incline walking [38]. Other studies

have demonstrated that individual joint dynamics can be used as a predictive tool for estimat-

ing the metabolic cost of walking, with 89% of the added metabolic cost of incline walking

explained through changes in joint kinematics and kinetics [37].

The purpose of this study was to characterize changes in lower-limb joint mechanics during

both walking and running across a range of incline/decline grades and then provide an analy-

sis that informs lower-limb exoskeleton development (Fig 1). We hypothesized that the distri-

bution of limb-joint positive mechanical power would shift to the hip for incline walking and

running. For decline walking and running, we hypothesized that the distribution of limb-joint

negative mechanical power would shift to the knee. In our analysis we sought to add an applied

twist to current basic science understanding by focusing interpretation of the measured

changes in human joint mechanics to guide the development of versatile exoskeleton systems

with the ability to inject (net positive work), extract (net negative work) and transfer (net zero

work) mechanical energy to meet variable mechanical demands of real-world environments.

Methods

Eight adults (6M,2F, age: 23.38±4.10 yrs; mass 75.39±11.57 kg; height 177±0.07 cm) partici-

pated in the study. All subjects were healthy and gave written informed consent to participate

Fig 1. Schematic of experimental design and analysis. (A) Representation of gait conditions for characterizing changes in lower-limb mechanics

during walking and running across incline and decline grades. (B) Example of energy cycle and potential mechanisms for how physiological

mechanisms may provide a roadmap for informing lower-limb exoskeleton development.

https://doi.org/10.1371/journal.pone.0231996.g001
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in the study. The protocol and all testing were approved by the University of North Carolina at

Chapel Hill Institutional Review Board.

Subjects completed five walking (1.25 m s-1) and five running (2.25 m s-1) trials over a

range of incline and decline grades (Fig 1). Walking trials were at -8.53˚, -5.71˚, 0˚, 5.71˚, and

8.53˚ (-15%, -10%, 0%, 10%, and 15% grade) and running trials were at -5.71˚, -2.86˚, 0˚,

2.86˚, and 5.71˚ (-10%, -5%, 0%, 5%, and 10% grade). The grade for running was reduced due

to the high demand on individuals at steep grade. The ranges provided an overlap at the

-5.71˚, 0˚, and 5.71˚ grade for comparison between the two gaits. All trials were completed in

the same day, and to minimize fatigue, subjects were given rest breaks in between trials. Exper-

imental trials took place on a split belt instrumented treadmill with incline and belt velocity

reversal functions (Bertec Inc., Columbus, OH, USA). Decline gait was obtained by inclining

the treadmill and reversing the belt velocity. Walking and running trials each lasted 7 minutes.

Walking and running trials were pseudorandomized, and once the treadmill incline was set,

all conditions for that grade were completed.

Joint kinematic data were recorded using an eight-camera motion capture system (Vicon

Inc., Oxford, UK, 120 Hz) to record the position of 22 reflective markers on the right lower

limb and pelvis. Raw marker positions were filtered using a 2nd order, low pass filter with a cut

off frequency of 10 Hz. Segment tracking was performed by placing rigid plates containing

clusters of 3–4 markers on the foot, shank, thigh, and pelvis. Calibration landmarks and rela-

tive location of tracking markers were identified through a standing trial that was performed

at the beginning of the trials. The tracking markers were recorded during each trial and the

orientation of the distal segment relative to the proximal segment was used to define the 3D

joint angle. Ground reaction force (GRF) data were captured through the force plates embed-

ded in the instrumented treadmill (Bertec Inc., Columbus, OH, USA, 960 Hz). GRF data were

filtered with a 2nd order low pass Butterworth filters with a cut off frequency of 35 Hz.

The GRF and the kinematic data from the individual limbs were used to perform an inverse

dynamics analysis. We performed inverse dynamics at the joint level using commercially avail-

able software (Visual 3D, C-motion Inc., USA). Calculations of the time-varying moment and

power were performed at the ankle, knee, and hip for a stride. A stride was defined from heel

strike to heel strike of the right foot. We analyzed the entire stride due the importance of cap-

turing the power that is performed by the hip and knee in the swing phase. Average positive

and negative power (W kg-1) was calculated for each joint at each condition. Average positive

power for each joint over the stride was calculated by integrating periods of only positive joint

power with respect to time. This positive joint work (J kg-1) was then averaged across all of the

strides. Average joint positive mechanical power was calculated by dividing the average joint

positive work by the average stride time for the trial. The total limb average positive power was

calculated by summing the average positive power at each joint (total = hip + knee + ankle).

Next, each individual joint’s percent contribution to the total limb average positive power for

the stride was calculated by dividing that joint’s average positive power by the total limb aver-

age positive power. The same process was followed to compute stride average negative power,

where only the contribution of negative work at each joint was used. The average net power

for each joint and for the limb was then calculated by summing the positive and negative aver-

age power values at each joint and for the limb.

For each gait (walk and run), we performed a repeated measures ANOVA (rANOVA, main

effect: grade) to test the effect of grade on stride average joint power of the ankle, knee, and

hip. (α = 0.05; JMP Pro, SAS, Cary, NC). In addition, for each gait (walk and run), we per-

formed a repeated measures ANOVA (rANOVA main effect: joint) to evaluate the relative

contribution of each joint at each grade. We applied a post-hoc Tukey HSD (HSD) test to eval-

uate for significance between conditions (either grade or joint). Finally, we performed
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matched pair t-test to evaluate the effect of gait (walk, run) on the stride average joint power

contributions for similar grades (-5.71˚, 0˚, and 5.71˚).

Results

Mechanical power in walking

Net power. The joint moments and powers were affected by grade (Fig 2). Average net

mechanical power delivered by the ankle, knee, and hip all increased with grade (Fig 2B). The

average net power of the ankle increased with grade (rANOVA, p< 0.0001), was negative for

decline conditions, and positive for level ground and incline grades. The average net power of

the knee was negative in all conditions except the +8.53˚ grade. The knee was the largest source

Fig 2. Lower-limb joint kinetics for walking at 1.25 m s-1 over a range of grades. (A) Joint moment and power over a stride for each grade. (B)

Average net power of each joint across grade. (C) Percent distribution of average positive and negative lower-limb joint power. The diameter of each pie

is normalized to the average positive power at level grade for walking (1.02 W kg-1).

https://doi.org/10.1371/journal.pone.0231996.g002
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of net negative power in all conditions, and the magnitude increased as grade decreased

(rANOVA, p< 0.0001). The average net power of the hip was positive in all conditions and

increased with grade (rANOVA, p< 0.0001). As incline increased, we observed an increased

reliance on the hip for the required net positive power.

Positive power. The average positive power of the limb (ankle + knee + hip) increased

with increasing grade (rANOVA, p< 0.0001) (Table 1; Fig 2C) from 1.02 W kg-1 at level to

1.70 W kg-1 (HSD, p< 0.0001) and 2.60 W kg-1 (HSD, p< 0.0001) at 5.71˚ and 8.53˚ grades

respectively. Limb positive power was not significantly different from level at -5.71˚ and -8.53˚

grades respectively. The positive power of all three joints also increased individually with

increased grade (rANOVA, p< 0.0001) (Table 1). However, the relative contribution of the

ankle, knee, and hip to the total positive power of the limb changed with grade due to the

unequal modulation of positive power at each joint for each grade (Table 2; Fig 2C). In level

walking, the ankle was the largest contributor to positive mechanical power at 44%, followed

by 37% from the hip, and 19% from the knee (rANOVA, p = 0.0001; HSD, p< 0.0001). As

grade increased, the percent contribution of the ankle decreased (rANOVA, p< 0.0001) to

34% at 5.71˚ grade (HSD, p = 0.0095) and 28% at 8.53˚ grade (HSD, p< 0.0001) relative to

level. Conversely, the percent contribution of the hip increased with grade (rANOVA,

p< 0.0001) from 37% at level to 47% at 5.71˚ grade (HSD, p = 0.0233) and 52% at 8.53˚ grade

(HSD, p< 0.0001). For incline grades, the relative contribution of the knee to positive power

was the smallest (19%) and did not change as the power was redistributed primarily between

ankle and hip. For decline grades, the only significant shift in percent contribution to positive

power was a decrease in the ankle contribution from 44% at level to 34% at -8.53˚ grade

(rANOVA, p< 0.0001; HSD, p = 0.0167). There was no significant difference in the contribu-

tion to positive power among the joints at -8.53˚ grade.

Negative power. The magnitude of stride average limb negative power decreased with

increasing grade (rANOVA, p< 0.0001) from -1.03 W kg-1 in level to -0.73 W kg-1 at 5.71˚

grade (HSD, p = 0.1918) and -0.62 W kg-1 at 8.53˚ grade (HSD, p = 0.0305) (Table 1; Fig 2C)

Negative limb power was significantly larger in magnitude at -1.60 W kg-1 at -5.71˚ grade

(HSD, p = 0.0015) and -2.60 W kg-1 at -8.53˚ grade (HSD, p< 0.0001). The knee contributed

>50% to limb negative power, and the percent contribution was greater than that of the hip in

Table 1. Lower-limb joint average mechanical power for walking and running at multiple grades.

Grade (deg) Joint Positive Power (W kg-1) Joint Negative Power (W kg-1)

Ankle## Knee## Hip## Total## Ankle## Knee## Hip## Total##

Walk

(1.25 m s-1)

-8.53 0.30 (0.04) 0.24 (0.03) 0.32 (0.02) 0.86 (0.04) -0.70 (0.06) -1.62 (0.14) -0.28 (0.04) -2.60 (0.13)

-5.71 0.41 (0.06) 0.22 (0.03) 0.30 (0.03) 0.94 (0.07) -0.60 (0.06) -0.84 (0.14) -0.16 (0.04) -1.60 (0.15)

0 0.45 (0.02) 0.19 (0.01) 0.38 (0.04) 1.02 (0.04) -0.39 (0.03) -0.53 (0.06) -0.11 (0.03) -1.03 (0.07)

5.71 0.58 (0.04) 0.32 (0.02) 0.81 (0.07) 1.71 (0.08) -0.18 (0.01) -0.45 (0.06) -0.08 (0.01) -0.71 (0.07)

8.53 0.74 (0.04) 0.50 (0.04) 1.36 (0.05) 2.60 (0.08) -0.15 (0.02) -0.37 (0.02) -0.10 (0.01) -0.62 (0.03)

Grade (deg) Joint Positive Power (W kg-1) Joint Negative Power (W kg-1)

Ankle## Knee Hip## Total## Ankle Knee## Hip# Total##

Run

(2.25 m s-1)

-5.71 1.28 (0.11) 0.61 (0.07) 0.75 (0.13) 2.64 (0.23) -1.12 (0.20) -2.40 (0.1) -0.37 (0.08) -3.88 (0.2)

-2.86 1.54 (0.15) 0.69 (0.13) 0.91 (0.09) 3.14 (0.18) -0.98 (0.12) -1.98 (0.20) -0.29 (0.06) -3.25 (0.30)

0 2.01 (0.09) 0.64 (0.08) 1.02 (0.10) 3.66 (0.13) -1.13 (0.08) -1.83 (0.10) -0.15 (0.03) -3.12 (0.13)

2.86 2.05 (0.17) 0.66 (0.13) 1.39 (0.20) 4.09 (0.18) -1.14 (0.10) -1.57 (0.17) -0.16 (0.04) -2.86 (0.20)

5.71 2.11 (0.23) 0.79 (0.11) 1.63 (0.09) 4.53 (0.19) -1.07 (0.05) -1.52 (0.05) -0.21 (0.03) -2.81 (0.07)

A repeated measures ANOVA (main effect: grade ##p < 0.0001, #p = 0.0281) tested the effect of grade on average joint power. Values reported as mean (s.e.m).

https://doi.org/10.1371/journal.pone.0231996.t001
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all conditions and that of the ankle in all conditions but the -5.71˚ grade (rANOVA,

p< 0.0001; HSD, p< 0.05) (Table 2; Fig 2C). The percent contribution of the knee to negative

limb power increased with incline (rANOVA, p = 0.0038) from 51% at level to 63% at 5.71˚

grade (HSD, p = 0.0433) and 60% at 8.53˚ grade and coincided with a decrease in ankle contri-

bution (rANOVA, p = 0.0007). Ankle negative power contribution was maximized for -5.71˚

grade at 41%. Hip contribution to negative power did not change with grade and was 12% on

average.

Mechanical power in running

Net power. Joint moments and powers were affected by running grade (Fig 3). Similar to

walking, the stride average net power of each joint increased from negative to positive grade

(rANOVA, p< 0.0001) (Fig 3B). The average net power of the ankle and hip was positive in all

conditions and increased in magnitude with increasing grade (rANOVA, p< 0.0001). In con-

trast, the average net power of the knee was negative in all conditions and became more nega-

tive in large downhill grades (rANOVA, p< 0.0001).

Positive power. The average positive power of the limb (ankle + knee + hip) increased

with increasing grade (rANOVA, p< 0.0001) (Table 1; Fig 3C) from 3.66 W kg-1 at level to

4.12 W kg-1 and 4.53 W kg-1 (HSD, p = 0.0005) at 2.86˚ and 5.71˚ grades respectively. Limb

positive power decreased to 3.14 W kg-1 at -2.86˚, and to 2.64 W kg-1 (HSD, p< 0.0001) at

-5.71˚ grade. The ankle was the dominant source of positive mechanical power (>46%) in all

conditions and was significantly different from the knee (rANOVA, p< 0.0001; HSD,

p< 0.0001) in all conditions and for the hip in all but the 5.71˚ grade (rANOVA, p< 0.0001;

Table 2. Percent contribution of each joint to total limb power in walking at 1.25 m s-1.

Joint Positive Power (%)

Grade Ankle Knee Hip Pairwise HSD

(deg) ##p< 0.0001 ##p = 0.0203 ##p< 0.0001 Ank:Knee Ank:Hip Hip:Knee
-8.53 34 (3) 28 (3) 38 (2)

#p = 0.0167

-5.71� 43 (4) 25 (3) 32 (3) p = 0.0031
0�� 44 (3) 19 (1) 37 (3) p< 0.0001 p = 0.0003

5.71�� 34 (2) 19 (1) 47 (2) p = 0.0001 p = 0.0009 p< 0.0001
#p = 0.0095 #p = 0.0233

8.53�� 29 (2) 19 (1) 52 (1) p = 0.0001 p< 0.0001 p< 0.0001
#p< 0.0001 #p< 0.0001

Joint Negative Power (%)

Grade Ankle Knee Hip Pairwise HSD

(deg) ##p = 0.0077 ##p = 0.0038 ## - Ank:Knee Ank:Hip Hip:Knee
-8.53�� 28 (3) 62 (3) 11 (1) p< 0.0001 p = 0.0009 p< 0.0001
-5.71�� 41 (6) 50 (5) 9 (2) p = 0.0004 p< 0.0001

0�� 38 (2) 51 (4) 11 (2) p = 0.0115 p< 0.0001 p< 0.0001
5.71�� 27 (2) 62 (2) 11 (1) p< 0.0001 p< 0.0001 p< 0.0001

#p = 0.0433

8.53�� 24 (3) 60 (2) 16 (2) p< 0.0001 p< 0.0001

A repeated measures ANOVA (main effect: grade##) tested the effect of grade on stride average joint power distribution of the ankle, knee, and hip (# indicates HSD

post-hoc comparison to 0˚ grade). In addition, a repeated measures ANOVA (main effect: joint�) evaluated the relative contribution of each joint at each grade. (main

effect: joint �p = 0.0043; ��p< 0.0001). Pairwise HSD was used to evaluate significant differences between joints. Values reported as mean (s.e.m).

https://doi.org/10.1371/journal.pone.0231996.t002
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HSD p< 0.0171) (Table 3; Fig 3C). With increasing incline, ankle positive power percent con-

tribution decreased (rANOVA, p = 0.04) from 55% at level to 46% at 5.71˚ grade (HSD

p = 0.0263) while hip contribution increased (rANOVA, p = 0.0032) from 28% to 36% in the

level versus 5.71˚ grade condition (HSD, p = 0.0051). For decline grades, there was no signifi-

cant shift in the joint positive power distribution.

Negative power. The magnitude of limb negative power in running decreased with grade

(rANOVA, p< 0.0001) from -3.12 W kg-1 at level to -2.86 W kg-1 and -2.81 W kg-1at 2.86˚

and 5.71˚ grade (Table 1; Fig 3C). The limb negative power magnitude increased to -3.25 W

kg-1 for -2.86˚ and to -3.88W kg-1 for -5.71˚ grade (HSD, p = 0.0002). Similar to walking,

each joint contributed different amounts to total limb average negative power (rANOVA

p< 0.0001) (Table 3; Fig 3C). The knee was the dominant source of negative power, producing

Fig 3. Lower-limb joint kinetics for running at 2.25 m s-1 over a range of grades. (A) Joint moment and power over a stride. (B) Average net power

of each joint across grade. (C) Percent distribution of average positive and negative lower-limb joint power. The diameter of each pie is normalized to

the average positive power at level grade for running (3.66 W kg-1).

https://doi.org/10.1371/journal.pone.0231996.g003
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>54% for all conditions and contributed significantly more than the ankle or hip (HSD

p< 0.0001). The ankle contributed approximately 35% of the stride average negative power

across all grades and the hip contribution was minimal (~7%).

Comparisons between walking and running

The average limb positive power was greater in running than walking. Compared to walking,

running on level ground resulted in an increase in the ankle’s percent contribution from 44%

to 55% (paired t-test p = 0.0024) and a decrease in the hip’s percent contribution from 37% to

28% (paired t-test p = 0.0196). The trend was similar at 5.71˚ grade, where compared to walk-

ing, running resulted in an increase in the ankle’s percent contribution from 34% to 46%

(paired t-test p = 0.0024) and a decrease in the hip’s percent contribution from 47% to 36%

(paired t-test p = 0.0196). While the ankle was the dominant contributor to positive power in

walking at 5.71˚ grade, the hip was the dominant contributor to positive power for running at

5.71˚ grade. For negative power at the 5.71˚ grade, compared to walking, running resulted in

an increase in the ankle’s percent negative contribution from 27% to 38% (paired t-test

p = 0.001) and a decrease in the knee’s percent contribution from 62% to 54% (paired t-test

p = 0.0338).

Additional text and data regarding participants metabolic energy consumption are pro-

vided in S1 File. Similar to Margaria et al. [34], we found the greatest efficiency of positive

work at -5.71˚ slope for both walking and running. Additionally, the efficiency of positive

work during walking at the extreme uphill (+8.53˚) was ~0.25 reflecting the efficiency of mus-

cle-tendons during tasks exhibiting predominantly positive work [33, 46–49].

Discussion

Our aim in this study was to measure and analyze human biomechanical response during

walking and running on sloped surfaces in order to build a roadmap to help guide

Table 3. Percent contribution of each joint to total limb power in running at 2.25 m s-1.

Joint Positive Power (%)

Grade Ankle Knee Hip Pairwise HSD

(deg) ##p = 0.04 ##p = 0.1468 ##p = 0.0032 Ank:Knee Ank:Hip Hip:Knee
-5.71�� 48 (3) 23 (2) 28 (4) p< 0.0001 p = 0.0002
-2.86�� 49 (4) 22 (4) 29 (3) p< .0001 p = .0023

0�� 55 (3) 17 (2) 28 (2) p< .0001 p< .0001 p = .0197
2.86�� 50 (4) 16 (3) 33 (4) p< .0001 p = .0171 p = .0186
5.71�� 46 (4) 18 (3) 36 (2) p< .0001 p = .0013

#p = 0.0263 #p = 0.0051

Joint Negative Power (%)

Grade Ankle Knee Hip Pairwise HSD

(deg) ##p = 0.0027 ##p = 0.0094 ##p = 0.1109 Ank:Knee Ank:Hip Hip:Knee
-5.71�� 28 (3) 62 (3) 10 (2) p< .0001 p = .0003 p< .0001
-2.86�� 31 (4) 60 (3) 9 (2) p< .0001 p< .0001 p< .0001

0�� 36 (2) 59 (2) 5 (1) p< .0001 p< .0001 p< .0001
2.86�� 41 (5) 54 (4) 5 (1) p = .0495 p< .0001 p< .0001
5.71�� 38 (1) 54 (2) 8 (1) p< .0001 p< .0001 p< .0001

A repeated measures ANOVA (main effect: grade##) tested the effect of grade on stride average joint power distribution of the ankle, knee, and hip (# indicates HSD

post-hoc comparison to 0˚ grade). In addition, a repeated measures ANOVA (main effect: joint�) evaluated the relative contribution of each joint at each grade. (main

effect: joint ��p< 0.0001). Pairwise HSD was used to evaluate significant differences between joints. Values reported as mean (s.e.m).

https://doi.org/10.1371/journal.pone.0231996.t003
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development of lower-limb wearable exoskeletons capable of adjusting to changing mechanical

demands in real-world environments. We characterized the distribution of positive and nega-

tive mechanical power output across the lower-limb joints for incline and decline grades dur-

ing walking and running. Our results confirm and are supported by previous studies

demonstrating that the required mechanical power from the lower limbs is heavily dependent

on both ground slope and gait [35–45, 50–53]. Energy must be injected or extracted to raise or

lower the potential energy of the center of mass (COM) for incline/decline walking [33, 34].

Our data confirm that in both walking and running gait, the stride average total limb (ankle +

knee + hip) power changes from net negative on decline grades to net positive on incline

grades (Figs 2B and 3B, Table 1). In addition, our results support the hypotheses that limb-

joint positive mechanical power would shift to the hip for incline walking (Fig 2C, Tables 1

and 2) and running (Fig 3C, Tables 1 and 3). However, the ankle remained the dominant

source of positive mechanical power in incline running for the tested grades (Fig 3C, Table 3).

For decline walking and running, our results did not support the hypothesis that the distribu-

tion of limb-joint negative mechanical power would shift even further to the knee. While there

was an increase in the magnitude of negative mechanical power produced at the knee, and the

knee was the dominant source of limb-joint negative mechanical power, there was not a signif-

icant increase in the percent contribution in decline grades (Figs 2, 3, Tables 2 and 3).

Limb-joint contributions in walking and running

Walking positive power. The 44% contribution of the ankle towards positive power that

we measured for level walking at 1.25 m s-1 (Fig 2, Table 2) was greater than the 40% found by

Farris and Sawicki [54] but less than the 51% and 55% measured by Montgomery and Grabow-

ski [42] and Alexander et al [55]. Our methodology was more similar to Farris and Sawicki

[54]. A point to consider is that Montgomery and Grabowski [42] and Alexander et al [55]

analyzed joint work while we analyzed average joint power. This may affect direct comparisons

of trends in joint work (J kg-1) and joint power (J s-1 kg-1) across grades as stride time can

change. However, for comparing percent contribution, they should be identical as the effect of

stride time is negated in dividing the joint power/work by limb power/work. The walking

grades in our study (±5.71˚ (10%) and ±8.53˚ (15%)) were similar to the steeper grades used

by Montgomery and Grabowski [42] (±3˚ and ±6˚) and the 6˚ grade in Alexander et al [55].

Alexander et al [55] studied a slightly slower overground speed of 1.1 m s-1.

Our findings agree with previous studies demonstrating that for incline walking the hip

becomes an important source of positive mechanical power generation [24, 36, 38, 39, 42]. We

found that the ankle contribution decreased with increasing grade, and similar to Montgomery

and Grabowski [42], the hip contribution increased with grade and was the dominant source

of positive power at all the incline grades (Fig 2C, Tables 1 and 2).

Walking negative power. Our data are is agreement with previous studies that demon-

strated that in decline walking the knee is the primary source of negative mechanical power

generation [39, 55] and that the contribution increases with larger declines [55] (Fig 2C, Tables

1 and 2). These findings are however in contrast with Montgomery and Grabowski [42] which

showed that the ankle contributed more to negative power at level and up to -6˚ grade and no

effect of decline on knee negative power.

Running positive power. The 55% contribution of the ankle towards positive power that

we measured for level running at 2.25 m s-1 (Fig 3, Table 3) was greater than the 45% found by

Farris and Sawicki [54]. We again found evidence of a redistribution of positive work to the

hip and away from the ankle during uphill running. However, in running, the ankle still pro-

duced 46% of the positive power at 5.71˚ uphill grade and there was not a significant difference
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between ankle and hip (Fig 3C, Table 3). This finding seems to be in slight contrast to previous

study which showed that the hip contributed most to the increase in work for incline running

[35]. However, our results may differ due to the different grade (6˚ and 12˚), faster speed (3.0

and 3.5 m s-1), and lack of treadmill use in [35].

Running negative power. Our data are is agreement with previous studies that demon-

strated that the knee is the primary source of negative mechanical power generation (Fig 3C,

Table 3) [40].

Relationship between structure and function across task demand

The functional role of the ankle and the hip across grades aligns with the physiological struc-

ture of each joint’s muscle-tendon units (MTs). The hip MTs have short tendons and long

muscle fascicles with low pennation [56]. In contrast, the structure of the ankle plantarflexor

MTs, comprises relatively short, pennate muscle fibers in series with long compliant tendons.

Added compliance in distal MTs make them ideal for storage and return of elastic energy dur-

ing the gait cycle [56–58]. In incline gait, mechanical energy must be added to the body. Prior

studies suggest that the structure of the MTs in the more proximal joints (i.e., hip) may be bet-

ter suited to performing work on the COM because short, stiff tendons can directly transmit

the work of the muscles to the joint [56]. Furthermore, long muscle fascicles allow for produc-

tion of force over a relatively larger range of motion and are important in incline walking due

to larger joint range of motion [42].

In line with the idea that structure drives function, our walking data demonstrate a shift to

power output in more proximal joints with an increase in incline (Fig 2C). This finding is simi-

lar to prior studies which also show the dominant source of positive mechanical power shifts

from the ankle to the hip in uphill walking [24, 36, 42]. Unlike walking, in running the ankle

continues to be the dominant producer of positive power up to 5.71˚ and there is almost no

change in negative joint power at the ankle (Fig 3C). This trend suggests that energy cycling

through elastic mechanisms may still be an important feature retained in uphill running [59].

Due to the need for faster acceleration of the body in uphill running, ankle joint elasticity may

facilitate higher peak powers and more net work output from the plantarflexors [56] by

decreasing the required shortening velocity of the muscle fascicles of the ankle. Indeed, in vivo
studies where ultrasound images of the triceps surae were taken in running and walking

showed series elastic tissues allow the muscles to operate at lower average shortening velocities

and that elastic recoil contributes substantially to positive work [32]. Additional in vivo studies

of human muscle function, especially at proximal joints, in uphill and downhill walking and

running would shed light on how MT architecture interacts with task demand for mechanical

power generation /dissipation.

Balance of positive/negative power varies across limb-joints and grades

Net mechanical power production of the limb was governed by a balance between positive and

negative power output that varied from joint to joint (Figs 2B and 3B). The hip’s contribution

to walking and running on sloped surfaces was net positive across all grades and gaits we tested

and was modulated predominantly by changes in production of positive power (Figs 2 and 3,

Tables 1–3). Despite producing net positive power output across grades, the hip was not the

largest absolute contributor of positive power in most conditions (except incline walking).

This was because the hip contributes mostly positive power and very little negative power

across conditions. In comparison, the ankle produces large amounts of both positive and nega-

tive power which offset and results in lower net power.
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Conversely, the change in the knee net power seen across grades was affected heavily by

changes in knee negative power and less so by changes in positive power. The knee was the

dominant contributor (>50%) to negative power across all grades in both walking and run-

ning (Figs 2C and 3C, Tables 1–3). In all except the highest incline walking grade, the knee

produced more negative than positive power, resulting in negative net power (Figs 2B and 3B,

Table 1).

At the ankle, lower-limb joint power production across grade/gait was more evenly distrib-

uted between positive and negative power in comparison to the hip (positive work modulated)

and knee (negative work modulated). The average net power of the ankle was generated by

adjustments to both positive and negative power across grade and gait. (Figs 2 and 3 Table 1)

In level walking, the net power from the ankle was smaller than the hip despite the larger con-

tribution to positive power from the ankle (Fig 2, Tables 1 and 2). During incline walking, the

ankle’s percent contribution to both positive and negative power decreased, potentially reflect-

ing a reduced capacity for energy recycling. In decline walking, we observed the opposite trend

where ankle net power was negative reflecting an increased capacity to store energy. In run-

ning, the ankle was the dominant source of positive mechanical power across all grades and

the net power of the ankle was positive for all grades. (Fig 3, Tables 1 and 3).

Implications for lower-limb exoskeleton development

How the biological system distributes power across the joints in a variety of gait conditions has

important implications for development of wearable assistive devices. To develop a roadmap

for lower-limb exoskeleton design, we first define three main modes of operation: 1) (Net +)

Energy injection–the device adds mechanical energy to the gait cycle using external sources of

energy; 2) (Net -) Energy extraction–the device removes mechanical energy from the gait cycle

to be dissipated as heat or stored (e.g., as mechanical energy in a spring or electrical energy in a

battery); 3) (Net 0) Energy transfer–the device extracts energy at one time during gait and then

injects it within or across joints at some time later (Fig 4). With these modes the energy which

is added, removed, or transferred may have different effects on the user’s biological and total

joint power outputs, and, while most studies have a goal in mind (e.g., reduce biological

moments and powers), the effects are often non-intuitive and hard to predict. Because the

effect of an assistive device on the user is heavily dependent on the individual user’s bio-

mechanical response, there are three potentially likely biomechanical outcomes resulting from

any of these modes of operation. The magnitude of the user’s biological joint power could: O1)

decrease (= replacement) O2) remain constant (= augmentation), or O3) increase (= enhance-

ment). We focus on the possible physiological response outcomes (O1-3) for devices that inject

positive power in this work, but the same principles also apply for the other device modes as

well (i.e., extraction and transfer).

Energy injection. The first mode of device operation entails adding positive mechanical

work at a joint(s) when the joint is producing positive power. This is the most prevalent strat-

egy used in exoskeletons targeting the hip, knee, and ankle with the common desired goal

being the reduction of metabolic demand in healthy individuals [4, 7, 8, 15, 18, 25, 62, 63]. The

common expectation is the outcome where the addition of mechanical power causes a con-

comitant reduction of biological power while total power mostly remains constant (O1:

replacement). While it’s been demonstrated that users will reduce biological moment such that

the total joint moment remains invariant [64, 65], reductions in biological power often do not

reflect full replacement [18, 66]. Thus, unlike what might be desired, the second physiological

response outcome is often observed. Here, the biological power is reduced by less than the exo-

skeleton injects and the magnitude of the total joint power is increased (O2: augmentation)
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Fig 4. Potential mechanisms for exoskeleton energy exchange. (A) Example of energy cycle for a joint where

negative joint power (red) is followed by positive joint power (blue) similar to the ankle power during gait. (B) The

exoskeleton (exo) (green) produces positive power and injects energy at the joint during the positive power phase of

the gait via a motor or some other energy source. (Top) The positive bio power (bio) is reduced such that the total (bio

+exo) positive power output of the joint remains the same (i.e., replacement). (Bottom) The additional energy

increases the total (bio+exo) positive power output of the joint (i.e., augmentation). This is the most common mode

employed on powered exoskeletons [4, 7, 8, 15, 18]. (C) The exoskeleton (green) produces negative power and extracts

energy from the joint during the negative power phase of the gait via a damper or some other energy sink and, in this

example, the user maintains the total (exo+ bio) negative power output of the joint, enabling a reduced biological

contribution (i.e., replacement). In this mode, the exoskeleton negative power could drive an electrical generator and

energy could be stored in a battery or used to power electronic devices [19, 60, 61]. If the negative power is normally

recycled within the body and transferred to the positive power phase, additional biological power may be required to

maintain biological positive power output (BioAdd). (D-F) The exoskeleton (green) could also operate in transfer mode

by sequencing extraction and injection phases within or across the joints over time. (D) In the simplest case the

exoskeleton stores energy during the negative power phase and returns it immediately to the same joint (e.g., with a

spring) and, in this example, the user maintains the total joint power output enabling a reduction in both biological

positive and negative power (= replacement) [26]. Other variants on transfer mode include: (E) The exoskeleton

extracts energy at one joint (similar to C) and then immediately injects it at another (similar to B) [3]. (F) The

exoskeleton extracts energy at one joint (e.g., with a spring or generator), temporarily stores it (e.g., using a battery or a

clutch) and then after some delay injects it at the same joint (e.g., using a motor powered by the battery or spring recoil

on release of a clutch).

https://doi.org/10.1371/journal.pone.0231996.g004
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(Fig 4B) [8]. [18, 66]. The third physiological response outcome is that the addition of exoskel-

eton positive power causes an enhancement of the biological power (O3: enhancement). It is

possible that when injecting positive exoskeleton power, the user actually increases their bio-

logical power output and thus enhances the total joint power beyond the exoskeleton’s contri-

bution. So far, we are not aware of cases where this physiological response has occurred, but it

would be desirable for assistive and rehabilitative technology intended to improve function in

clinical populations with baseline deficits in limb and joint power output (e.g., post-stroke)

[67]. For example, the addition of positive power during push-off may help promote the

recruitment of weak plantarflexors in stroke survivors or older adults. Studies have begun to

demonstrate the potential for enhancing performance in clinical populations by providing

positive power to the ankle [30, 68], however the actual effect on biological power is still

unclear.

The insights from this study into the biomechanical strategies used by individuals in chang-

ing gait may be used to guide strategies for assistive devices that inject positive power. The

most notable example comes from the observed shift to hip dominated positive power in walk-

ing uphill (Fig 2). Given limited power supply of the device, our data would suggest that assis-

tance should be redirected away from the ankle to the hip when transitioning to incline

walking. Conversely, for running (Fig 3), the ankle is the largest contributor to positive average

power across all slopes and thus, shifting assistance to the hip may not be as beneficial.

Energy extraction. The second mode of device operation involves removing negative

mechanical work at a joint(s) when the joint is producing negative power. The extracted

mechanical energy could be dissipated as heat (e.g., in a damper) or harvested to generate elec-

tricity which can then be stored in a battery or used to power electronic devices (Fig 4C). Addi-

tionally, an exoskeleton that effectively extracts energy from the gait cycle can potentially

reduce the negative power required from muscles which, unlike many mechanical systems,

require energy to elongate under load [69]. Similar to the effects from injecting positive power,

generating negative power with exoskeletons may have a range of effects on the biological sys-

tem that can be non-intuitive. For example, if an exoskeleton offloads a portion of the negative

biological power at a joint, and that power was derived from stored energy in elastic tissues

which can no longer be returned, it is possible that additional biological power may need to be

generated in the positive phase to make up for lost energy stores (Fig 4C). However, in the

nominal case where the negative biological power is merely dissipated as heat rather than recy-

cled, then the reduction in total power during the latter half of the cycle may not be problem-

atic as the loss of energy doesn’t need to be compensated for.

The knee has been the focus of energy harvesting exoskeletons due to its production of sub-

stantial negative power in gait, especially near the end of swing phase of walking (Fig 2). There

are several indications that if done correctly it is possible to generate electrical energy while

reducing the muscle energetic demands and whole body metabolic cost [19, 60, 70, 71]. With

consideration to changing mechanical demands on sloped surfaces, our results suggest poten-

tial for harvesting energy using a knee exoskeleton during decline walking due to large

increases in knee negative power throughout the gait cycle (Fig 2). In running, a knee exoskele-

ton may be widely versatile because the knee generates a large amount of negative power across

all slopes including on inclines (Fig 3).

Although the ankle produces substantial negative power, harvesting exoskeletons might be

ineffective in level gait because much of the joint power is recycled in elastic tissues [32], and

thus as mentioned previously, the biological system would need to replace these losses with

muscle work during a positive power phase at some joint in the limb. However, because ankle

negative power increases and positive power decreases on declined surfaces (Fig 2), energy

harvesting may be a viable candidate at the ankle for decline walking.
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Energy transfer. The third mode of device operation is to transfer energy from one phase

to another across the gait cycle either within or across joints (Fig 4D–4F). In this mode,

because the exoskeleton extracts energy in the negative phase (e.g., Fig 4C) and then injects the

same energy later (e.g., Fig 4B) in a positive phase , external power consumption of the device

can be minimized (e.g., by using passive elements like springs and clutches) [72]. In addition,

intra-joint transfer of energy from a negative power phase to a positive power phase may help

mitigate the complication of the reduced biological energy storage because the mechanical

power is returned in the latter half of the power cycle. As depicted in Fig 4D, it is possible that

the total power output of the joint (exo+bio) remains constant despite the reduction of biologi-

cal power in both the negative and positive power phases. The simplest device applying this

mode of operation is an elastic exoskeleton that uses a spring in parallel with the biological

plantarflexors to store energy (negative biological power) which is returned later in stance

(positive biological power) as done by Collins, Wiggin, and Sawicki [26]. According to our

data, while this approach of storing and returning energy at the ankle can be effective for level

ground gaits, at other grades the strategy of immediate storage and return of mechanical

energy may not be as effective. Adding a spring in parallel on inclines or declines would likely

require an additional biological energy source to inject/extract energy elsewhere in the stride.

Another option is to transfer power across joints as depicted in Fig 4E (i.e., inter-joint trans-

fer). One example is the storage of energy from knee deceleration in late swing and releasing it

at the ankle during push-off [3]. From our data, we additionally show that energy storage in

the knee during early stance and releasing it at the ankle during push-off becomes increasingly

viable with decreasing grade (Figs 2 and 3). A final scenario is that the power from the

negative phase could be temporarily stored via battery or clutch and returned at a later time–

an approach that has been used within a single gait cycle in foot-ankle prosthesis designs [73,

74]. This last approach, extraction, storage, and then delayed release (Fig 4F) opens up the pos-

sibility to store energy over multiple cycles, perhaps accumulating it, and then returning it in a

single large burst over a shorter time period to achieve power amplification that may be neces-

sary for on-off accelerations or maximum effort jumps [75].

Limitations. Our sample size (N = 8) was lower than comparable studies, (e.g., N = 20 in

Montgomery and Grabowski [42]). We were only able to compare walking and running

mechanics at 0 and ±5.71˚. The running speed we studied, 2.25 m s-1, is slow and may compli-

cate generalizing our findings to faster running speeds. However, for running on the level, a

previous study has shown that the joint power distribution does not change from 2.25 to 3.25

m s-1 [54]. Thus, for running, joint power distribution may not vary much and magnitudes

across limb-joints may scale with total limb power. In this work we focus our discussion on

how exoskeleton power injection, extraction, and transfer may influence a limb- joints locally,

but it is important to note that there may be a cascade of complicated inter-joint interactions

along the kinematic chain that could lead to unexpected limb-level outcomes that will require

advanced analysis to disentangle. Finally, we note that here we have developed a framework

for exoskeletons which operate in parallel with biological muscles and tendons. The guide for

development of prostheses, which operate in series with biological structures and aim to emu-

late or fully replace biological joint function, may differ [76].

Conclusions

Locomotion in the ‘real-world’ involves adjusting speed, changing gait from walk to run and

moving up or downhill. The purpose of this study was to characterize changes in lower-limb

joint kinetics for walking and running over a range of ground slopes. Specifically, we sought to

understand how each joint contributed to total limb positive, negative, and net power output
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in order to guide development of exoskeleton actuation schemes capable of handling ‘real-

world’ mechanical demands. Results of limb-joint level energy analyses motivated us to define

three operating modes that exoskeletons could employ: 1) Energy injection: Addition of posi-

tive power during positive joint power phases, 2) Energy extraction: Removal of negative

power (i.e., energy harvesting) during negative joint power phase. 3) Energy transfer: extract-

ing energy from one phase and injecting it in another phase at some time later. An important

next step will be to examine whether using biological patterns of joint power output as a ‘road-

map’ to apply the three exoskeleton operating modes can improve walking and running per-

formance (e.g., reduced metabolic cost) on fixed or time varying uphill and downhill slopes.
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