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Abstract

In this paper, we develop a generator to propose new continuous lifetime distributions.

Thanks to a simple transformation involving one additional parameter, every existing lifetime

distribution can be rendered more flexible with our construction. We derive stochastic prop-

erties of our models, and explain how to estimate their parameters by means of maximum

likelihood for complete and censored data, where we focus, in particular, on Type-II, Type-I

and random censoring. A Monte Carlo simulation study reveals that the estimators are con-

sistent. To emphasize the suitability of the proposed generator in practice, the two-parame-

ter Fréchet distribution is taken as baseline distribution. Three real life applications are

carried out to check the suitability of our new approach, and it is shown that our extension of

the Fréchet distribution outperforms existing extensions available in the literature.

Introduction

The modeling and analysis of lifetime phenomena is an important aspect of statistical work in

a wide variety of scientific and technological fields. The field of lifetime data analysis has

grown and expanded rapidly with respect to methodology, theory, and fields of application. In

the context of modeling the real life phenomena, continuous probability distributions and

many generalization or transformation methods have been proposed. These generalizations,

obtained either by adding one or more shape parameters or by changing the functional form

of the distribution, increase the flexibility of the distributions and model the phenomena more

accurately. Extensive developments in software have made it possible to focus less on computa-

tional details and hence simplified the methods of estimation.

The following are prominent and highly cited generators or transformations proposed over

the past years in the statistical literature for modeling lifetime distributions. [1] transform the

survival function by adding an extra shape parameter. The exponentiated family of distribu-

tions, which adds a shape parameter as exponent to an existing cumulative distribution func-

tion (cdf), is presented by [2]. The beta-generated family by [3] is based on both Beta type-I

and Beta type-II distributions, while the Kumaraswamy-generated family by [4] uses the
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Kumaraswamy distribution instead of the Beta distribution. [5] pioneered a versatile and flexi-

ble gamma-G class of distributions based on the Generalized Gamma distribution.

Let F(x; z) be the cdf of a given random variable depending on some real-valued parameter

(s) z. Our approach in this paper consists in enriching this cdf by transforming it into

Gðx; xÞ ¼
log f2 � e� lFðx;zÞg
log f2 � e� lg

; ð1Þ

where ξ = (λ, z) for some positive real-valued shape parameter λ and the parameter z from the

baseline distribution. We call this transformation the log-expo transformation (LET). It is

aspired from [6] who considered the less versatile transformation

Gðx; xÞ ¼ 1 �
log f2 � Fðx; zÞg

log 2
: ð2Þ

While their approach only allows modulating the shape of distributions in a fixed way, ours is

more flexible since it contains the extra shape parameter λ to regulate the transformation. To

evaluate the suitability of the new proposed transformation, we will take the Fréchet distribu-

tion by [7] as example of baseline distribution throughout the rest of this paper.

The remaining paper is organized in the following order. The density function of the pro-

posed method is defined and its basic statistical properties are derived. Next, we discuss,

parameter estimation via maximum likelihood for complete and censored data, together with

submodel likelihood ratio test. Monte Carlo simulation study to show the consistency of our

estimation procedures. The fitting abilities of our new approach is illustrated by means of

three real data sets. Finally, we give concluding remarks, and the Appendix collects densities of

distributions used in the real data analysis.

The proposed density and its properties

The probability density function (pdf) corresponding to Eq (1) is given by

gðx; xÞ ¼
lf ðx; zÞe� lFðx;zÞ

log f2 � e� lgf2 � e� lFðx;zÞg
; x � 0; ð3Þ

where F(x; z) and f(x; z) are the arbitrary cdf and pdf of the baseline distribution. The cdf and

pdf given in Eqs (1) and (3), respectively, will be more readable for a given expression of F(x;
z) and f(x; z) of any baseline distribution. The flexibility of the proposed family of distributions

is increased by adding shape parameter λ. Hereafter, we say that the random variable X having

density Eq (3) is a log-expo transformed random variable.

The survival function S(x; ξ) = 1 − G(x; ξ) is of the simple form Sðx; xÞ ¼ 1 �
log f2� e� lFðx;zÞg

log f2� e� lg

and the hazard function hðx; xÞ ¼ gðx;xÞ
Sðx;xÞ reads hðx; xÞ ¼ lf ðxÞe� lFðx;zÞ

f2� e� lFðx;zÞg½log f2� e� lg� log f2� e� lFðx;zÞg�, and the

reverse hazard function h0ðx; xÞ ¼ gðx;xÞ
Gðx;xÞ becomes h0ðx; xÞ ¼ lf ðx;zÞe� lFðx;zÞ

f2� e� lFðx;zÞg log f2� e� lFðx;zÞg. The explicit

form of the υth quantile of the LET family of distributions is given by the simple expression

x ¼ F� 1 � 1

l
log f2 � eulog f2� e� lgg; z

� �
. Consequently, random number generation from the LET

family of distributions turns out to be a straightforward task.

Now, for the sake of illustration, we will briefly present three submodels of the proposed

family of distributions, based on the baseline Fréchet, Exponential and Lomax distributions.

LET-Fréchet (LET-F) distribution. Consider the Fréchet distribution with respective cdf

and pdf Fðx; a; bÞ ¼ e�
b
xð Þ
a

and f ðx; a;bÞ ¼ abax� a� 1e�
b
xð Þ
a

. The cdf and pdf of the
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LET-Fréchet distribution then correspond to

Gðx; l; a; bÞ ¼ ½log f2 � e� lg�� 1log 2 � e� le
�

b
xð Þ
a� �

, λ> 0, α> 0, β> 0, and

gðx; l; a;bÞ ¼ labax� a� 1e
�

b
xð Þ
a

e� le
�

b
xð Þ
a

log f2� e� lg 2� e� le
�

b
xð Þ
a

� �. Fig 1 illustrates the possible shapes of the pdf and cdf of

the LET-F distribution.

Since the LET-F distribution is our red thread example, we also provide some moment

expressions. In Table 1, we give the first four moments u0n, n = 1,. . .,4, the standard deviation

(SD), coefficient of skewness (CS) and coefficient of kurtosis (CK) for different combinations

of parameters. These values are calculated via Mathematica.

LET-Exponential (LET-E) distribution. Consider the Exponential distribution with

respective cdf and pdf F(x; α) = 1 − e−ax and F(x; α) = αe−ax. The cdf and pdf of the LET-Expo-

nential distribution then correspond to Gðx; l; aÞ ¼ ½log f2 � e� lg�� 1log f2 � e� lð1� e� axÞg, λ>
0, α> 0, and gðx; l; aÞ ¼ lae� axe� lð1� e

� axÞ

log f2� e� lgf2� e� lð1� e� axÞg : Fig 2 illustrates the possible shapes of the pdf

and cdf of the LET-E distribution.

LET-Lomax (LET-L) distribution. Consider the Lomax distribution with respective cdf

and pdf F(x; α, β) = 1 − (1 + αx)−β and f(x; α, β) = αβ(1 + αx)−β−1. The cdf and pdf of the

LET-Lomax distribution then correspond to Gðx; l; a; bÞ ¼ ½log f2 � e� lg�� 1log

f2 � e� lð1� ð1þaxÞ� bÞg, λ> 0, α> 0, β> 0 and gðx; l; a; bÞ ¼ labð1þaxÞ� b� 1e� lð1� ð1þaxÞ
� bÞ

log f2� e� lgf2� e� lð1� ð1þaxÞ� bÞg
. Fig 3 illus-

trates the possible shapes of the pdf and cdf of the LET-L distribution.

Lifetime data analysis and parameter estimation

The data encountered in survival analysis and reliability studies are often censored. This is

why, besides classical maximum likelihood estimation, we also show how to estimate the

parameters of our new family of distributions when the data are censored. More precisely, we

consider Type-II, Type-I and random (right) censoring. These censoring schemes have been

Fig 1. Pdf and cdf plots of the LET-F distribution.

https://doi.org/10.1371/journal.pone.0231908.g001
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employed in numerous fields, especially for crash rates on roads which are based on censored

data. Such data can be handled by using tobit, multinomial logit, mixed logit, ordered logit

probit/logit models. for example, see the articles [8–15]. Finally, we develop likelihood ratio

tests for testing the suitability of the baseline distributions against our LET extension.

Maximum likelihood estimation

We derive sample estimates of the unknown parameters of the LETmodel by using the maxi-

mum likelihood estimation technique. Let x1, x2, . . ., xn be the observations of a random sam-

ple of size n from the LETmodel. The likelihood function is given by

LðxÞ ¼
Yn

i¼1

lf ðxi; zÞe� lFðxi ;zÞ

log f2 � e� lgf2 � e� lFðxi ;zÞg

� �

;

and the log-likelihood function by

llðxÞ ¼ nloglþ
Xn

i¼1

logff ðxi; zÞg � l
Xn

i¼1

Fðxi; zÞ� nlog½log f2 � e
� lg�

�
Xn

i¼1

log f2 � e� lFðxi ;zÞg:

Table 1. Moments of the LET-F model for combinations of parameters.

λ = 3, α = 6, β = 2 λ = 3, α = 6, β = 1 λ = 3, α = 5, β = 2 λ = 5, α = 6, β = 2 λ = 5, α = 6, β = 3

u01 1.8825 0.9413 1.8655 1.7847 2.6770

u02 3.6429 0.9107 3.6324 3.2324 7.2729

u03 7.3439 0.9180 7.6159 5.9719 20.1550

u04 15.9440 0.9965 19.3117 11.3993 57.7088

SD 0.0988 0.0247 0.1522 0.0473 0.1065

CS 3.6626 3.6627 4.5784 3.3122 3.3122

CK 43.6080 43.6086 86.1270 47.6170 47.6170

https://doi.org/10.1371/journal.pone.0231908.t001

Fig 2. Pdf and cdf plots of the LET-E distribution.

https://doi.org/10.1371/journal.pone.0231908.g002
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Differentiating the log-likelihood with respect to λ and z and equating to zero, we get the

score equations

@llðxÞ
@l
¼
n
l
�
Xn

i¼1

Fðxi; zÞ�
ne� l

f2 � e� lg log f2 � e� lg
�
Xn

i¼1

Fðxi; zÞe� lFðxi ;zÞ

2 � e� lFðxi;zÞ

� �

¼ 0; ð4Þ

and

@llðxÞ
@z
¼
Xn

i¼1

f zðxi; zÞ
f ðxi; zÞ

� �

� l
Xn

i¼1

Fzðxi; zÞ � l
Xn

i¼1

Fzðxi; zÞe� lFðxi ;zÞ

2 � e� lFðxi ;zÞ

� �

¼ 0; ð5Þ

where f zðxi; zÞ ¼
df ðxi ;zÞ
dz and Fzðxi; zÞ ¼

dFðxi ;zÞ
dz . Solving Eqs (4) and (5) gives the maximum likeli-

hood estimates of the unknown parameters λ and z. Typically, this requires numerical optimi-

zation techniques such as Newton-Raphson methods as given in [16 and 17].

Parameter estimation under various types of right censoring

Let x1, x2, . . ., xn be the observations of a random sample of size n from the LETmodel. In

what follows, we explain how to perform maximum likelihood estimation in our LETmodel

for three types of right censoring.

Type-II censoring

In case of Type-II right censoring, t observations out of the n are censored from the right side.

The likelihood function then becomes

LðxÞ ¼
n!

t!
½
Yn� t

i¼1

gðxðiÞ; xÞ�½Sðxðn� tÞ; xÞ�
t
;

where x(i) is the order statistic of order i, and the log-likelihood function, expressed in terms of

Fig 3. Pdf and cdf plots of the LET-L distribution.

https://doi.org/10.1371/journal.pone.0231908.g003
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the original baseline distribution, reads

llðxÞ ¼ log
n!

t!

� �

þ tlog 1 �
log f2 � e� lFðxðn� tÞ ;zÞg

log f2 � e� lg

� �

þ
Xn� t

i¼1

log
lf ðxðiÞ; zÞe

� lFðxðiÞ ;zÞ

log f2 � e� lgf2 � e� lFðxðiÞ ;zÞg

" #

:

Differentiating this log-likelihood with respect to λ and z yields the score equations

@llðxÞ
@l
¼
n � t
l
� k1ðk2 � k3Þ �

Xn� t

i¼1

FðxðiÞ; zÞ þ
e� l

f2 � e� lg log f2 � e� lg
þ
FðxðiÞ; zÞe

� lFðxðiÞ ;zÞ

2 � e� lFðxðiÞ ;zÞ

" #

¼ 0; ð6Þ

where k1 ¼
t

log f2� e� lg½log f2� e� lg� log f2� e
� lFðxðn� tÞ ;zÞg�

, k2 ¼
log f2� e� lgFðxðn� tÞ;zÞe

� lFðxðn� tÞ ;zÞ

2� e
� lFðxðn� tÞ ;zÞ

and

k3 ¼
log f2� e

� lFðxðn� tÞ ;zÞge� l

2� e� l , and
@llðxÞ
@z
¼

� tlFzðxðn� tÞ ;zÞe
� lFðxðn� tÞ ;zÞ

f2� e
� lFðxðn� tÞ ;zÞg½log f2� e� lg� log f2� e

� lFðxðn� tÞ ;zÞg�
þ
Xn� t

i¼1

f zðxðiÞ; zÞ
f ðxðiÞ; zÞ

" #

�

l
Xn� t

i¼1

FzðxðiÞ; zÞ
FðxðiÞ; zÞ

" #

� l
Xn� t

i¼1

FzðxðiÞ; zÞe
� lFðxðiÞ ;zÞ

2 � e� lFðxðiÞ ;zÞ

" #

¼ 0: ð7Þ

Expressions (6) and (7) give the maximum likelihood estimates of the unknown parameters

λ and z for type-II right censored data. It is clear that their solution cannot be obtained analyti-

cally, and numerical techniques used in [16 & 17] are required.

Type-I censoring

Suppose that a random sample of n units from G(x; ξ) is processed for a predefined time xc and

then the process terminate. We observed the lifetime of δ observations before terminating the

process and the remaining n − δ observations will be censored. Thus, the lifetimes are observed

only if xi� xc for i = 1, 2, . . ., n.

Defining Ii ¼
1; if Xi � xc
0; if Xi > xc

(

and d ¼
Xn

i¼1

Ii, the likelihood function can be written as

LðxÞ ¼
Yn

i¼1

gðxi; xÞ
Ii

" #

Sðxc; xÞ
n� d

and the log-likelihood function is given by

llðxÞ ¼ ðn � dÞlog 1 �
log f2 � e� lFðxc;zÞg
log f2 � e� lg

� �

þ
Xn

i¼1

Ii log
lf ðxi; zÞe� lFðxi ;zÞ

log f2 � e� lgf2 � e� lFðxi ;zÞg

� �

:

The score equations, and associated maximum likelihood estimates, are obtained along the

same lines as in the previous sections. Their solution cannot be obtained analytically, and

numerical techniques given in [16 & 17] are required.

Random censoring

Suppose a random sample consists of n observations T1, T2, . . ., Tn from a continuous failure

distribution G(t; ξ) and consider other random censoring variables C1, C2, . . ., Cn drawn inde-

pendently from a censoring distribution H(c; ξ). The observations for right censored data are

presented as (Xi, Ii), i = 1, 2, . . ., n, where Xi =Min(Ti, Ci), and

Ii ¼
1; if Ti � Ci

0; if Ti > Ci :

(
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The likelihood function for random censored data x1, x2, . . ., xn can be written as

LðxÞ ¼
Yn

i¼1

gðxi; xÞ
Ii Sðxi; xÞ

1� Ii which yields the log-likelihood function

llðxÞ ¼
Xn

i¼1

Ii log
lf ðxi; zÞe� lFðxi ;zÞ

log f2 � e� lgf2 � e� lFðxi ;zÞg

� �

þ
Xn

i¼1

ð1 � IiÞlog 1 �
log f2 � e� lFðxi ;zÞg
log f2 � e� lg

� �

:

The score equations, and associated maximum likelihood estimates, are obtained along the

same lines as in the previous sections. Their solution cannot be obtained analytically, and

numerical techniques such as used in [16 & 17] are required.

Submodel testing

Our LET extension paves the way for submodel testing of the baseline distribution by means of

likelihood ratio tests. For each parameter ξ, we denote by x̂ the unconstrained maximum likeli-

hood estimate and by x̂r the maximum likelihood estimate under the restricted submodel. For

example, testing for the Fréchet distribution against the LET − Fmodel can be achieved by the

test statistic TFr�echet ¼ � 2ðllðâr; b̂rÞ � llðl̂; â; b̂ÞÞ, rejectingH0: λ = 0 at asymptotic level α
againstH1: λ 6¼ 0 whenever TFréchet exceeds w2

1;1� a
, the α-upper quantile of the chi-squared dis-

tribution with one degree of freedom.

Monte Carlo simulation results of the LET-F model

We perform a Monte Carlo simulation study in order to evaluate the behavior of maximum

likelihood estimates of the proposed LET-F distribution for complete and censored data. The

data were censored 10% from the right by using the Type-II and Type-I schemes. We calculate

means, biases and mean-squared errors (MSEs) of each parameter of the LET-Fmodel for dif-

ferent sample sizes n. To obtain the results, the process is replicated N = 10,000 times for

n = 20, 30, 50 and 100 for censored data, and we added the sample sizes 200 and 300 for the

complete data. The simulated means, biases andMSEs for complete and censored data are pro-

vided in Tables 2 and 3, respectively. We observe that, overall, the estimation procedure works

well and that the estimates become better with increasing sample size, as should be the case. It

is noteworthy to remark that close-to-zero values of λ are more difficult to estimate, which is

probably due to the fact that such small values only slightly trigger our transformation as com-

pared to the baseline model.

Real data analysis

In this section, the fitting potential of our new procedure is evaluated by means of three real

data sets, of which the last one is censored. In each case, we compare our LET-Fmodel with

competitors from the literature.

Non-censored data

The first data set shows the failure stresses (in GPa) of 64 bundles of carbon fibres and is also

used by [18]. The second data set is presented by [19] and concerns the survival time counted

in days of guinea pigs with infected virulent tubercle bacilli.

The proposed LET-Fmodel is compared with the basic Fréchet (F) distribution as well as

other extensions of it, such as the logarithmic transformed Fréchet (LTF) of [6], the Exponen-

tiated Fréchet (EF) as initiated by [2], the Marshall-Olkin Fréchet (MOF) of [1], and the

Kumaraswamy Fréchet (KF) according to the construction of [4]. We use the Kolmogorov–

Smirnov (KS), Cramer–von Mises (W�), Anderson-Darling (A) and Deviance Information
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Criterion (DIC), goodness-of-fit tests for the comparison. The DIC is a generalized form of

AIC and is widely used for model adequacy (see, [20 and 21]). The best model exhibits the

smallest value of these statistics. The results are obtained by using R. In the Appendix, we give

the respective pdfs of the above mentioned distributions.

In Table 4, we provide the value of the KS test together with the related p-value. As we can

see, our LET-Fmodel exhibits twice the lowest KS value and, consequently, largest p-value. For

the second data set, the LTFmodel (2), which we try to improve on in particular, is clearly

rejected by the KS test statistic. To further corroborate the strength of our LET-Fmodel, we

provide in Table 5 the corresponding values of theW�, the DIC and the A statistics. They also

reveal that the LET-Fmodel is very appropriate for these data sets as it outperforms its compet-

itors. For the sake of illustration, the histogram of both data sets and fitted pdfs of all

Table 2. The simulated means, biases and MSEs of the LET-F model for complete data.

n α = 5 β = 3 λ = 0.2 α = 7 β = 2 λ = 1

20 Mean 7.4202 7.4202 7.4202 6.1623 2.5125 44.1802

Bias 2.4202 2.4202 2.4202 -0.8377 0.5125 43.1802

MSE 5.8575 5.8575 5.8575 0.7018 0.2626 1864.528

30 Mean 6.7879 3.0651 2.9379 6.3019 2.2937 13.1648

Bias 1.7879 0.0651 2.7379 -0.6981 0.2937 12.1648

MSE 3.1967 0.0042 7.4960 0.4874 0.0863 147.981

50 Mean 5.9997 3.0253 0.9445 6.2938 2.1755 3.7590

Bias 0.9997 0.0253 0.7445 -0.7062 0.1755 2.7590

MSE 0.9994 0.0006 0.5543 0.4987 0.0308 7.6118

100 Mean 5.3205 3.0377 0.5552 6.5032 2.1016 2.1361

Bias 0.3205 0.0377 0.3552 -0.4968 0.1016 1.1361

MSE 0.1027 0.0014 0.1261 0.2468 0.0103 1.2907

200 Mean 5.0338 3.0558 0.5266 6.6136 2.0674 1.7273

Bias 0.0338 0.0558 0.3266 -0.3864 0.0674 0.7273

MSE 0.0011 0.0031 0.1067 0.1493 0.0045 0.5290

300 Mean 4.9616 3.0579 0.4994 6.7025 2.0501 1.5386

Bias -0.0384 0.0579 0.2994 -0.2975 0.0501 0.5386

MSE 0.0015 0.0033 0.0896 0.0885 0.0025 0.2901

https://doi.org/10.1371/journal.pone.0231908.t002

Table 3. The simulated means, biases and MSEs of the LET-F model under Type-II and Type-I censoring schemes.

Type-II (10%) Type-I (10%)

n α = 4 β = 1.5 λ = 0.5 α = 5 β = 3 λ = 0.2

20 Mean 7.1319 1.4222 1.3084 5.1853 3.2814 1.5743

Bias 3.1319 -0.0778 0.8084 0.1853 0.2814 1.3743

MSE 9.8089 0.0060 0.6535 0.0344 0.0792 1.8886

30 Mean 6.0671 1.4452 0.4424 5.0811 3.2572 1.4502

Bias 2.0671 -0.0548 -0.0576 0.0811 0.2572 1.2502

MSE 4.2729 0.0030 0.0033 0.0066 0.0662 1.5631

50 Mean 5.0600 1.4898 0.4147 4.9503 3.2324 1.2883

Bias 1.0600 -0.0102 -0.0853 -0.0497 0.2324 1.0883

MSE 1.1235 0.0001 0.0073 0.0025 0.0540 1.1843

100 Mean 3.9939 1.5588 0.5707 4.8597 3.1896 1.0618

Bias -0.0061 0.0588 0.0707 -0.1403 0.1896 0.8618

MSE 0.0000 0.0035 0.0050 0.0197 0.0359 0.7428

https://doi.org/10.1371/journal.pone.0231908.t003
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considered models are provided in Fig 4, while Fig 5 exhibits the corresponding PP-Plots. The

better fit of the LET-Fmodel for both the data sets included in this study can thus also be rec-

ognized visually.

Finally, our likelihood ratio test yields a p-value of 0.027 for the first data set and 0.000 for

the second data set. Thus, the Fréchet distribution is rejected in favour of the LET-Fmodel for

data set 2 at any level, while it is rejected at the classical 5% level for the first data set but no lon-

ger at, the 2% level. The maximum likelihood estimates (MLEs), Bayes estimates (BEs), and

their corresponding standard errors (SEs) and posterior standard deviations (SDs), respec-

tively, for the parameters of the LET-F and the competitor models are given in Table 6.

Table 4. KS and P-values of the considered models.

Data Statistic LET-F LTF EF MOF KF F
1 KS 0.0788 0.0972 0.0816 0.0827 0.0813 0.1006

P-Value 0.8293 0.5908 0.7953 0.7823 0.7987 0.5471

2 KS 0.1007 0.2101 0.1225 0.1207 0.1031 0.1964

P-Value 0.4582 0.0035 0.2297 0.2448 0.4283 0.0077

https://doi.org/10.1371/journal.pone.0231908.t004

Fig 4. Histogram and estimated pdf of the models for data set 1 (left) and data set 2 (right).

https://doi.org/10.1371/journal.pone.0231908.g004

Table 5. Cramer–von Mises (W�), Anderson-Darling (A) and Deviance Information Criterion (DIC) values of the considered models.

Model Statistics (Data set 1) Statistics (Data set 2)
W� A DIC W� A DIC

LET-F 0.0449 0.2697 121.9680 0.0936 0.6635 213.4680

LTF 0.1019 0.5681 130.9540 0.5152 3.2925 240.4150

EF 0.0619 0.3310 124.5210 0.1178 0.8483 213.5480

MOF 0.0736 0.3932 129.6140 0.0766 0.5873 223.6090

KF 0.0615 0.3299 122.3000 0.1156 0.8314 214.4140

F 0.1150 0.6420 134.1110 0.5261 3.3486 240.2510

https://doi.org/10.1371/journal.pone.0231908.t005
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Right-censored data

We now consider a data set presented by [22] and also used by [23]. The data is about the

recurrence of leukemia of 46 patients (per year) who received autologous marrow. The full

data set is given below where the plus sign indicates that observations are censored:

0.0301, 0.0384, 0.0630, 0.0849, 0.0877, 0.0959, 0.1397, 0.1616, 0.1699, 0.2137, 0.2137, 0.2164,

0.2384, 0.2712, 0.2740, 0.3863, 0.4384, 0.4548, 0.5918, 0.6000, 0.6438, 0.6849, 0.7397, 0.8575,

Fig 5. PP-Plots of the LET-F model for data set 1 (left) and data set 2 (right).

https://doi.org/10.1371/journal.pone.0231908.g005

Table 6. MLE, its SE and BE with posterior SD of the considered models.

Model Parameter Data 1 Data 2

MLE BE MLE BE
LET-F l̂ -0.6887 (0.0048) 0.1011 (0.1836) 51.9403 (81.9581) 21.2228 (6.5014)

â 9.8006 (1.3536) 5.2812 (0.4522) 0.4453 (0.1776) 0.5755 (0.0657)

b̂ 2.2339 (0.0744) 2.7535 (0.0855) 45.9901 (99.4069) 14.3989 (3.6077)

LTF b̂ 5.8853 (0.5330) 5.7803 (0.5487) 1.2654 (0.0884) 1.2562 (0.0912)

l̂ 2.6235 (0.0618) 2.6190 (0.0712) 0.8600 (0.0894) 0.8629 (0.0924)

EF b̂ 2.4218 (1.6970) 2.1103 (0.3117) 0.6013 (0.0755) 0.6046 (0.0576)

l̂ 4.2205 (2.4978) 4.8781 (0.6147) 8.5769 (3.8476) 9.0086 (2.2129)

â 6.6984 (13.027) 6.3642 (3.8191) 12.1029 (5.1417) 12.9036 (3.3128)

MOF b̂ 7.8946 (1.1419) 6.8401 (0.2114) 2.5532 (0.1991) 1.8941 (0.15351)

l̂ 2.2055 (0.2335) 2.3815 (1.0483) 0.1762 (0.0285) 0.3085 (0.0769)

â 10.2274 (12.2381) 5.4738 (3.5144) 223.4801 (116.671) 18.3103 (4.7330)

KF â 9.4893 (20.363) 2.7963 (3.2455) 2.6846 (0.7402) 5.3471 (2.3419)

ŷ 7.0027 (13.815) 5.4046 (2.4840) 12.8647 (4.1109) 8.1203 (2.7692)

l̂ 1.6622 (1.5250) 3.7789 (1.7130) 1.81258 (2.9768) 0.7222 (0.7542)

b̂ 2.3784 (1.6768) 2.8077 (0.7167) 0.5830 (0.0568) 0.6691 (0.0882)

F b̂ 5.4351 (0.5078) 5.3630 (0.5342) 1.1721 (0.0842) 1.1620 (0.0855)

l̂ 2.7207 (0.0667) 2.7202 (0.0791) 1.0589 (0.1133) 1.0617 (0.1142)

https://doi.org/10.1371/journal.pone.0231908.t006
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0.9096, 0.9644, 1.0082, 1.2822, 1.3452, 1.4000, 1.5260, 1.7205+, 1.9890+, 2.2438+, 2.5068+,

2.6466+, 3.0384, 3.1726+, 3.4411, 4.4219+, 4.4356+, 4.5863+, 4.6904+, 4.7808+, 4.9863+,

5.0000+.

This data set is random censored, see [22]. Here we compare our LET-Fmodel with three

models proposed recently by [22], namely, the long term Fréchet (LTF), the long term Weibull

(LTW) and long term weighted Lindley (LTWL) distributions. The general form of a long

term survival function is S�(x) = p + (1 − p) S(x), where S(x) is the survival function of any dis-

tribution and p denotes the probability of being cured. The corresponding distributions and

pdfs can then be deduced from this mixture survival function.

This time, we use the Akaike information criterion (AIC) and the DIC as model compari-

son; the smaller its values, the better the fit (of course, the same tests as in the previous section

can also be run here). Table 7 contains the maximum likelihood and Bayes estimates of the

parameters. For quantification of variability of the estimates, SEs of theMLEs (in parenthesis)

and SDs (in parenthesis) of the posterior distributions are reported. The log-likelihood (L)

value and AIC of the proposed LET-Fmodel are almost the same as those of the LTFmodel,

and clearly smaller than for the other two models. While considering the DIC value, our pro-

posed LET-F performs better than all other competitive models. Additionally, we present in

Fig 6 the empirical survival function adjusted by the Kaplan-Meier estimator (KME) for our

LET-F and the other three LT survival distributions.

Conclusion

In this paper, we have proposed a new general construction of flexible lifetime distributions by

rendering any existing baseline distribution more versatile through a simple transformation.

We have discussed properties of the new models and explained how to estimate the parameters

for complete and censored data sets. A Monte Carlo and hit-and-run Metropolis-Hasting sim-

ulations studies has revealed that the classical and Bayesian estimation procedures work well.

On the basis of three distinct real data sets, we could see that the LET-Fmodel, based on the

Fréchet distribution as baseline distribution, is a very good competitor to existing distribu-

tions, especially to existing generalizations of the Fréchet. These good fitting capacities,

Table 7. The MLE, its SE and BE with posterior SD for different parameters, together with the log-likelihood (L), Akaike Information Criterion (AIC) and Deviance

Information Criterion (DIC).

Distribution Parameter MLE BE L AIC DIC
LET-F â 0.4430 (0.314) 0.5156 (0.0714) -45.52 97.03 94.661

b̂ 1.2010 (3.999) 0.6475 (0.3851)

l̂ 1.1990 (4.328) 0.2161 (0.4856)

LTF â 0.6570 (0.1410) 0.5958 (0.0792) -45.33 96.66 94.837

l̂ 0.3140 (0.1240) 0.3612 (0.0993)

p̂ 0.1250 (0.1260) 0.0483 (0.0613)

LTW ĉ 0.9012 (0.2117) 0.8834 (0.1543) -46.56 99.12 101.439

l̂ 1.7857 (0.4495) 0.8228 (0.3328)

P̂ 0.2721 (0.0676) 0.2357 (0.0863)

LTWL â 0.9452 (0.1363) 0.8855 (0.2218) -46.15 98.3 100.434

l̂ 0.6888 (0.1363) 1.7482 (0.4483)

P̂ 0.2689 (0.0683) 0.2614 (0.0669)

https://doi.org/10.1371/journal.pone.0231908.t007
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combined with the simplicity of our proposal, make a strong case for using our construction

in several practical situations.
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