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Abstract

The affordability of next-generation genomic sequencing and the improvement of medical

data management have contributed largely to the evolution of biological analysis from both

a clinical and research perspective. Precision medicine is a response to these advance-

ments that places individuals into better-defined subsets based on shared clinical and

genetic features. The identification of personalized diagnosis and treatment options is

dependent on the ability to draw insights from large-scale, multi-modal analysis of biomedi-

cal datasets. Driven by a real use case, we premise that platforms that support precision

medicine analysis should maintain data in their optimal data stores, should support distrib-

uted storage and query mechanisms, and should scale as more samples are added to the

system. We extended a genomics-based columnar data store, GenomicsDB, for ease of

use within a distributed analytics platform for clinical and genomic data integration, known

as the ODA framework. The framework supports interaction from an i2b2 plugin as well as a

notebook environment. We show that the ODA framework exhibits worst-case linear scaling

for array size (storage), import time (data construction), and query time for an increasing

number of samples. We go on to show worst-case linear time for both import of clinical data

and aggregate query execution time within a distributed environment. This work highlights

the integration of a distributed genomic database with a distributed compute environment to

support scalable and efficient precision medicine queries from a HIPAA-compliant, cohort

system in a real-world setting. The ODA framework is currently deployed in production to

support precision medicine exploration and analysis from clinicians and researchers at

UCLA David Geffen School of Medicine.

Introduction

The affordability of next-generation genomic sequencing and the improvement of medical

data management have contributed largely to the evolution of biological analysis from both a
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clinical and research perspective. Precision medicine is a response to these advancements that

aims to tailor a medical treatment to an individual based on their genetic, lifestyle, and envi-

ronmental risk factors [1]. While current medical practice is limited to using broad popula-

tions with heterogeneous characteristics, precision medicine places individuals into better-

defined subsets based on shared clinical and genetic features. This fine-tuned, cohort-based

method determines relative risk factors and potential therapeutic responses with higher accu-

racy [2]. Though a promising field, the identification of personalized diagnosis and treatment

options is dependent on the ability to draw insights from large-scale, multi-modal analysis of

biomedical datasets.

The integration of high-throughput genomic sequencing data and electronic health

record (EHR) derived, phenotypic data is at the core of precision medicine efforts. Even

before integration, genomic and clinical data each have specific bottlenecks that impede

effective utilization of these data in practical analysis. EHR data requires extensive cleaning

and restructuring for use in cohort analysis and clinical trial identification. This can be

accomplished through ETL (extract transform load) and indexing procedures to process

the data into a form that can be efficiently queried from a relational database [3]. Informat-

ics for Integrating Biology and Beside (i2b2) is a framework that enables cohort exploration

and selection on clinical attributes, such as International Classification of Disease 10th

revision (ICD10) codes [4,5]. The i2b2 framework is made up of series of components that

work together to query and analyze clinical data. One such cell is the clinical research chart

(CRC) that queries a relational database that stores ontological and clinical data with a

patient-centric, star schema [4,5]. This system has been widely deployed for clinical data

exploration in hospitals across the United States [6], and supports drag-and-drop, clinical

cohort queries that interact with the backend relational database through a browser-based

user interface.

Genomic data are large, heavily sparse, and in general, inefficiently stored in relational for-

mat. Columnar data stores can be specialized for sparse, multidimensional array representa-

tion to provide a scalable means to load, store, and query genomic variant data [7,8]. One such

columnar data store is GenomicsDB [9], which has exhibited linear import and query execu-

tion time with respect to sample size [7]. The power of GenomicsDB has warranted the use of

the database in the Genomics Analysis Toolkit (GATK) since version 4.0 [10,11] as a more effi-

cient alternative to flat files. Variant data can be visualized in GenomicsDB as a sparse, two-

dimensional matrix with genomic positions on the horizontal axis and samples on the vertical

axis (Fig 1). Under this representation, columns can maintain top-level information about the

variant, such as genomic position and reference allele. Cells of the matrix store data about the

sample for the given position, such as genotype call, read depth, and quality scores. A single

matrix instance has several vertically partitioned segments, called arrays, which support con-

tiguous storage of genomic regions on disk. These arrays can be split into several partitions,

thus providing support for data distribution [7].

To understand how clinical and genomic data can be combined for use in cohort selec-

tion, consider a use case from UCLA David Geffen School of Medicine. Prior to the efforts

discussed later in this paper, UCLA had an existing i2b2 system deployed for the purposes

of performing clinical queries and retrieving a patient set count. Requirements for this sys-

tem include a rolling update of clinical data, the processing and storage of associated geno-

mic sequencing data, and patient consent to share such data. The ultimate goal was to query

the genomic data from within the i2b2 interface along side the clinical attributes. The geno-

mic and clinical data would be accessible to both clinicians and researchers for de-identified,

cohort exploration and selection. At the outset of the efforts discussed in this paper, genomic

data were stored as individual flat files that were siloed from the i2b2 system. UCLA
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download from the International Genome Sample

Resource (https://www.internationalgenome.org/

data-portal/data-collection/phase-3). At this time,

AtLAS data cannot be shared publicly in an

unrestricted fashion due to institutional restrictions

related to UCLA’s investigations review board

(IRB). For further information, follow up inquiries

can be made to CLajonchere@mednet.ucla.edu.

We have made a version of the i2b2 plugin

available under the MIT license, and the

GDBSparkAPI and gdb-mapping database available

for academic use. These components can be found

at https://github.com/OmicsDataAutomation/i2b2-

oda-framework. All GenomicsDB components are

available at: https://github.com/GenomicsDB/

GenomicsDB for free academic use under the MIT

license. I2B2 patient querying related components

are available at https://www.I2B2.org/software/

index.html.
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projected an accrual of up to 1000 new samples per week that would need to be imported

into and accessible from this system.

Given the systematic use case described above, we can now consider the types of queries

that would be proposed to such a system. A user may be interested in exploring genotype

information for patients who have been diagnosed with a mental health disorder. The user

would like to look at reference and alternate allele counts for two genes that have previously

shown association to a mental health disorder (Fig 2). Alternatively, a user may be interested

in creating clinical subgroups based on various medications prescribed at the hospital. This

user is further interested in patients diagnosed with malignant breast neoplasms, and requests

to zone in on two point mutations previously known to associate with breast cancer (Fig 3).

Such queries can be submitted to the system as an exploratory tool for clinicians to dive deeper

into genotype-phenotype associations, explore targeted-treatment options, or estimate sample

size for a proposed clinical trial. These queries can enable hypothesis exploration for research-

ers, who will then switch to an advanced interface for detailed analysis.

I2b2 has a modular design that makes the framework easy to extend with backend fea-

tures. Plugins have been developed previously that enable querying of genomic data from

within i2b2 for datasets with hundreds of samples [6,12]. Given the projected accrual of up

to 1000 new samples per week noted above, a scalable genomics database as well as an effi-

cient processing environment was required to manage and analyze the data at UCLA. Since

clinical data and genomic data are optimally stored in databases natural for their specific

data structures, a scalable solution to clinical-genomic data integration should leave the data

in the respective optimal data store and provide the mechanisms to perform efficient aggre-

gate queries from these sources. Given this, we built a system that would (i) integrate geno-

mic sequencing data with the existing i2b2 instance at UCLA, (ii) maintain the data sources

in their respective data stores, and (iii) support efficient and scalable integrative analysis by

means of a distributed processing environment.

Distributed processing platforms, such as Apache Spark [13,14], are becoming increasingly

popular for large-scale, genomic data analysis [15,16,17]. Spark provides a powerful, program-

matic interface that abstracts the distribution from the user. A Spark cluster consists of a

Fig 1. Conceptual view of GenomicsDB. Variant data is represented as a sparse two-dimensional matrix, and can be

split into multiple, vertically partitioned arrays for distribution.

https://doi.org/10.1371/journal.pone.0231826.g001
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Fig 2. Allele counts i2b2 workflow. User starts by building a patient set (1) that includes patients diagnosed with

mental, behavioral, and neurodevelopmental disorders (ICD-10-CM, F01-F99). The user also selects to return patients

who have consented to share genotype information. The query goes on to request total allele counts across SIRT1 and

LHPP genes (2). The total allele counts are returned in report format for each gene (3). The user can switch between

gene views and change the type of plot.

https://doi.org/10.1371/journal.pone.0231826.g002
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Fig 3. Genotype by concept i2b2 workflow. User starts by building a patient set (1) that includes patients diagnosed with

malignant neoplasm of breast (ICD-10-CM, C50). The user also selects to return patients who have consented to share

genotype information. The query goes on to request genotype distributions for two mutations (rs16942, rs1799966). The

query specifies to group by various medications prescribed (2). The genotype distributions are returned in report format

for each genomic position, and for each clinical subgroup (3). The user can switch between genomic positions, clinical

subgroups, and change the type of plot.

https://doi.org/10.1371/journal.pone.0231826.g003
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master node and a set of worker (slave) nodes. The master node delegates tasks to the worker

nodes, which will execute relevant tasks over the distributed datasets. In the event that a

worker fails, Spark uses a data structure known as Resilient Distributed Datasets (RDDs),

which will reallocate data to other nodes and ensure nothing is lost (fault-tolerance) [18]. Dis-

tributed file systems, such as the Hadoop Distributed File System (HDFS) [19] and Amazon

Elastic MapReduce File System (EMRFS) [20], are often used in conjunction with such plat-

forms to maintain data integrity and high data throughput. In contrast to distributed file sys-

tems, a local file system does not allow worker nodes to have centralized access to all the data

required for the application. Similarly, network file systems provide limitations since all data is

physically stored on a single machine and not distributed.

Prior to the work described in this paper, GenomicsDB supported querying of genomic

data from Spark [7], but did not support the reading and writing of genomic data from geno-

mic arrays stored on a distributed file system (legacy mode). Without support for a distributed

file system, the process of querying GenomicsDB from Spark meant that arrays had to be man-

ual organized across the worker nodes. The worker could only access the genomic data that

existed physically on that node. Under the organization of legacy mode, a query would be

broadcast to each worker node, executed, and then a single RDD partition would be loaded

with all the genomic variant data available to that worker.

There are several restrictions with this configuration that impact both genomic data storage

and the Spark distribution abilities. First, a worker node is required to store the genomic data

locally meaning the node needs enough space to store the genomic data and write out tempo-

rary work files from Spark. The addition of more genomic data to the system could require a

resizing of the worker nodes and lead to system downtime. Second, a worker node can only

query one GenomicsDB array and can only load data from this array into a single RDD parti-

tion. This limits the distribution power of Spark since the number of RDD partitions should at

least equal the number of cores available to an application to take full advantage of the available

resources. Finally, if a worker node fails in legacy mode, the data must be reloaded or copied

back to the node from an archive. This reduces the fault tolerance power of Spark and makes

auto scaling the cluster a difficult task. Auto scaling is the ability to increase or decrease the

number of worker nodes according to application load and is an important feature for resource

management in Spark. Fortunately, the issues associated with Spark and legacy mode of Geno-

micsDB can be addressed by extending GenomicsDB to work with a distributed file system.

In response to the issues described above, we have extended GenomicsDB to support read-

ing and writing to/from a distributed file system, such as HDFS and Amazon Simple Storage

Service (Amazon S3) [21]. This setup better utilizes the distributed power of both Apache

Spark and GenomicsDB, reduces the space requirements for a worker node, and maintains

the fault-tolerant behavior of an RDD. These extensions, together termed the Omics Data

Automation (ODA) framework, have been used to create a precision medicine platform that

enables integration and distributed aggregation of EHR-based clinical data and associated

genetic data.

In this paper, we show that the ODA framework enables GenomicsDB to exhibit worst-case

linear scaling for array size (storage), import time (data construction), and query time. We go

on to show that the ODA Framework also exhibits worst-case linear time for both import of

clinical data and aggregate query execution time within a distributed environment. This work

highlights the integration of a distributed genomic database with a distributed compute envi-

ronment to support scalable and efficient precision medicine queries from a HIPAA-compli-

ant (Health Insurance Portability and Accountability Act of 1996), cohort system in a real-

world setting. The ODA framework is currently deployed in production for use by both
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clinicians and researchers at UCLA David Geffen School of Medicine and the extended version

of GenomicsDB is openly available at www.genomicsdb.org.

Materials and methods

The ODA framework is responsible for genomic variant data storage in GenomicsDB, main-

taining mapping information to a clinical data store, and enabling users to perform Spark-

based queries to the platform from a graphical interface or a programmatic interface. Queries

executed on the framework (i) consolidate the requested clinical and genomic data (Geno-

micsDB) in a distributed environment (Apache Spark), (ii) perform the aggregate calculation

within the distributed environment, and (iii) return the results to the user. Based on the UCLA

use case, these components were integrated with an i2b2-based, cohort system in a HIPAA-

compliant, protected subnet. The UCLA implementation is deployed on Amazon Web Ser-

vices (AWS) [22], which leverage AWS provided subnets and Amazon’s Elastic MapReduce

(EMR) instances [20]. Fig 4 presents a synergistic view of the ODA framework and i2b2 within

a protected subnet. Focus on AWS services is attributed to the UCLA implementation, and it

should be noted that the ODA framework is designed to be agnostic to any cloud provider or

local hardware.

Data storage

GenomicsDB was augmented to enable writing and reading of arrays on HDFS-compliant file

systems, in addition to existing POSIX (Portable Operating System Interface) support. Genomic

variant data read from Variant Call Format (VCF) [23] files are imported into GenomicsDB

arrays residing on a distributed file system through the standard GenomicsDB VCF import pro-

cess. The import process uses a set of configuration files and Samtools HTSLib (High-through-

put sequencing library) [24] to read block-compressed and indexed VCF files. This process

writes to several GenomicsDB arrays at once with the use of GNU parallel [25], which maintains

an independent import process for each array. Performance for parallel import of GenomicsDB

arrays is dependent on 1) the number of arrays produced, and 2) the resources available to the

ETL process, such as the number of cores, memory and network throughput. Once the arrays

are loaded, the VCF files are no longer needed and can be moved to a cold storage archive. For

the UCLA import process, the genome was split into 1000 evenly sized sections to produce 1000

GenomicsDB arrays. These arrays are stored on Amazon S3 and are accessed from an Amazon

EMR instance via AWS EMRFS distributed file system. The HDFS-compliant additions to Gen-

omicsDB have been integrated into the GenomicsDB github repository.

Clinical data is maintained in a database and application chosen, or already in-use, by the

medical institution. To ensure HIPAA-compliance, the ODA framework acquires clinical data

by enforcing encryption at REST (Representational State Transfer) with SSL (Secure Sockets

Layer) for all network-based database communication. Mapping information is used to associ-

ate clinical data to samples stored in GenomicsDB. The mapping information constructs a

relationship between a de-identified patient id and the relative genomic sample information.

The patient identifier is sourced from the clinical data store, such as i2b2. This information,

along with the configuration files used in the GenomicsDB ETL process, is used to load a map-

ping database. This mapping database also maintains metadata on GenomicsDB arrays. In

essence, the mapping database provides a global view over the relevant data sources required

to perform an integrative query over the clinical and genomic information. The mapping data-

base (PostgreSQL [26]) comes with a core relational schema and a python interface for ease of

database construction and maintenance. The UCLA implementation uses i2b2 with a
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PostgreSQL backend as their clinical data store and stores mapping information in a separate

PostgreSQL mapping database.

Apache spark

To support distributed queries and processing, the majority of the query and analytical compo-

nents reside on the master of the Spark cluster. For the UCLA implementation, the Spark clus-

ter is an AWS Elastic Map Reduce (EMR) instance. The EMR instance contains a Spark master

that delegates tasks to worker nodes. The master node serves as the entry point to queries that

are sent out to the worker nodes and in the process, loads data from each of the GenomicsDB

arrays into Spark RDD partitions. Since GenomicsDB arrays are made available to the worker

via a direct connection to a distributed file system, any of the GenomicsDB arrays are accessi-

ble to all worker nodes in the cluster. The master node is responsible for delegating query tasks

to the workers and these query tasks are responsible for loading of genomic variant data into

Spark RDDs.

When a user submits a query to the ODA framework, the Spark master decomposes the

query into a list of smaller queries that are distributed to the worker nodes as query tasks. The

worker nodes perform the query tasks assigned to them, which is some subset of the whole

query list. The number and size of query tasks is proportional to the number of GenomicsDB

arrays, such that each query task will query one GenomicsDB array and load the result into an

Fig 4. ODA framework diagram. System is deployed in a HIPAA-compliant AWS environment, including the connections with the clinical data store (i2b2). The

dotted lines are conceptual links between the relative data stores.

https://doi.org/10.1371/journal.pone.0231826.g004
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RDD partition. The collection of RDD partitions across all workers collectively contains all the

genomic information queried from GenomicsDB. This means the number of GenomicsDB

arrays produced during the import process also helps balance the query workload. The optimal

distribution of genomic variant is determined by balance of file open and read operations as

well as RDD partition size. More distribution will lead to an increase in open and read opera-

tions and smaller RDD partitions, where as less distribution can cause more overhead for

smaller query regions by creating large RDD partitions.

Programmatic access

The GDBSpark API is an integral component of the ODA framework that provides support

for distributed querying, loading, and aggregating clinical, genomic, and relevant mapping

data sources. Clinical data accessed through the API will require a data handler to tell the API

how to interact with the source data. For the UCLA implementation, the API contains an i2b2

data handler that supports the import of an i2b2 XML (eXtensible Markup Language) file

received from the CRC cell. The GDBSpark API is implemented in Scala 2.11. This API repre-

sents genomic variant data as a VariantContext object provided from HTSLib [24] as specified

in the GenomicsDB Java Native Interface (JNI). The API acts as an intermediate layer between

Spark, GenomicsDB, and the mapping database to query genomic data, load Spark RDDs, and

associate to the clinical dataset for downstream computation. In general, the clinical data from

the CRC cell of i2b2 and the aggregation of the clinical data with genomic information in Var-

iantContext RDDs are distributed across the worker nodes. The API also provides a genomic

toolkit to perform pre-defined aggregate statistics for genomic and clinical data.

User interfaces

There are two analytical interface components that interact with the ODA framework to sup-

port distributed analytics, an Apache Zeppelin interactive notebook environment [27] and

an i2b2 plugin, VariantView. The VariantView plugin (Figs 2 and 3) is designed to perform

aggregate clinical and genomic queries from within the i2b2 interface. A user first creates an

i2b2 patient set from the “Find Patients” window. This patient set is then referenced in the

VariantView plugin Generate Report Tab along with additional clinical attributes (i.e. ICD10

code), and genomic regions (dbSNP rs-identifiers and attributes from the Sequence Ontology).

Users have the ability to filter by genotype specified in the form: rs### (is | is not) (homref |

homvar | het | nocall). The aggregate queries are predefined as reports, which specify the aggre-

gate calculation to perform when the Spark application is submitted. There are three kinds of

reports are available in the UCLA instance: total allele counts (Fig 2), genotype distribution by

clinical attribute (Fig 3), and genomic-only based cohorts. The results from these reports are

displayed in the View Results tab.

The VariantView i2b2 plugin consists of two main components: a frontend, graphical user

interface that exists within the i2b2 browser, and a backend that extends the i2b2 hive with an

additional service (cell). The frontend uses the i2b2 JavaScript API to communicate with the

backend through plugin-specific, XML messages supported by the i2b2 REST API. The back-

end of the VariantView plugin is responsible for submitting a Spark application to the ODA

framework with SparkLauncher. SparkLauncher enables i2b2 to run spark-submit, sending

the application jar and associated parameters to the AWS EMR instance that houses the ODA

framework. The incoming job requests from i2b2 are scheduled with Hadoop YARN [19].

Once the application finishes aggregating the results of both queries, the results are written

back to MongoDB [28] using SSL with a unique identifier. The backend of VariantView is

notified of the success or failure of the spark job. On success, the plugin backend will query
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MongoDB for the results using the unique identifier. The results are then formatted into a

plugin-specific, XML response message and sent to the frontend. The frontend accesses the

required information from the response and plots the results using a JavaScript plotting library

(d3.js) [29]. If the spark application reports failure, the response will contain error information

that will then be displayed to the user. The backend of VariantView is written in Scala 2.11 and

is based on a tutorial plugin provided by the i2b2 [30].

Fig 5 shows the flow of a query originating from the VariantView plugin. This entry point

could be any Spark-based application that submits to the ODA framework with the GDBSpark

API, such as the Zeppelin notebook environment. This notebook environment was added to

the framework to enable users to develop code and execute distributed queries to GenomicsDB

without having to be concerned about the configuration of a Spark cluster. The Zeppelin

instance at UCLA comes with several notebooks that support use cases proposed from clinical

geneticists, clinicians, and bioinformaticians at David Geffen School of Medicine. Users are

able to create their own notebooks and develop their own analysis within this environment.

The analyses and potential additional system requirements for optimizing these workloads are

beyond the scope of this work, so we omit further discussion about the Zeppelin interface in

the rest of the paper.

Fig 5. Query timeline. Query starts when a user makes a query form the VariantView i2b2 frontend for clinical

attributes. Plugin submits a Spark job with the clinical info and requested analysis from the user. Master delegates to

workers, which collate mapping information, query GenomicsDB, and load variants into RDDs. User-specified report

is performed in Spark. Results are written to MongoDB and a return code is simultaneously sent to the VariantView

plugin and visualized in i2b2 browser.

https://doi.org/10.1371/journal.pone.0231826.g005
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Results

The following describes the results of a set of experiments designed to highlight efficient vari-

ant data loading, storage, and querying of genomic data, stored in GenomicsDB, to/from the

distributed platform for an increasing number of samples. The timing to import clinical data

as well as the time to aggregate the clinical and genomic data is also reported. All experiments

were performed in AWS EMR- 5.7.0, with Spark 2.1.1, and Scala 2.11. Two datasets are refer-

enced throughout the experiments: the Phase III 1000 Genomes Whole Exome Sequencing

(WES) dataset [31] and the AtLAs target sequencing data [32]. The AtLAs dataset was gener-

ated using a microarray technology to interrogate approximately 600,000 genomic loci. The

AtLAs dataset is the UCLA patient data that has associated clinical data stored in i2b2. By con-

trast, the 1000 genomes data was generated using a high-throughput, whole exome sequencing

platform that targets all the protein coding regions in each patient’s genome. These datasets

will be referred to as 1000g and AtLAs, respectively.

Linear-scale distributed import

To test the performance of importing genomic variant data (VCF files) into GenomicsDB,

we carried out the ETL process for an increasing number of samples for both the 1000g and

AtLAs datasets. The ETL process wrote 1000 GenomicsDB partitions to Amazon S3 with the

following GenomicsDB loader configurations: 1) column based partitioning, 2) disabled

synced writes, 3) 20 parallel VCF files, 4) 1000 cells per tile, 5) compress genomicdb array, 6)

1048576 segment size, 7) ping pong buffering, 8) treat deletions as intervals, 9) size per column

partition 43581440, 10) discard missing genotypes, and 11) offload VCF output processing for

both datasets. END and GT fields were loaded from AtLAs VCFs. Whole exome sequencing

contains additional attributes that are not generated in microarray genotype assays. END and

GT fields as well as DP, GQ, AD, and PL fields were loaded for 1000g. These additional fields

are found in whole exome sequencing datasets, but not in microarray genotype assays. This

process was repeated on four different AWS instance types in order to evaluate the effects of

resources on import time. We used two general-purpose instances m4.2xlarge (2 cores, 8G

memory) and m4.4xlarge (16 cores, 64G memory) and two memory-optimized instances

r4.2xlarge (8 cores, 61G memory) and r4.4xlarge (16 cores, 122G memory) [32].

We found linear-scale ETL times for 1000g (Fig 6) and better than linear-scale ETL times

for AtLAs (Fig 7) as the number of samples increase. The import times for AtLAs suggest log-

scale potential, although more samples would be required to determine this with confidence.

The import times for both 1000g and AtLAs suggest that m4.4xlarge and r4.4xlarge instances

result in shorter import times with increasing sample size in comparison to the m4.2xlarge

and r4.2xlarge instances. This result is expected since the m4.4xlarge and r4.4xlarge have more

processing power than the m4.2xlarge and r4.2xlarge instances. A less expected result was that

there were no significant advantages to using the memory-optimized nodes for ETL. This

result suggests that the lower cost, general-purpose nodes provide sufficient resources to per-

form the ETL process efficiently with the provided configurations.

Linear-scale database partition size

To evaluate how total GenomicsDB array size grows as the number of samples in the database

increases, we measured the total partition size of the databases resulting from the ETL pro-

cesses described above (sum of 1000 partitions). Storage size increased linearly with the num-

ber of samples for both 1000g and AtLAs, with the storage size for 1000g increasing at a faster

rate (Fig 8). This observation is expected since the 1000g dataset is importing more fields from

the VCF files and has more coverage of the genome, as compared to the AtLAs dataset.
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Linear-scale genotype query time

To test the performance of Spark-based GenomicsDB queries, we queried variable-sized

regions across the genome of both datasets using the GDBSpark API. Regions include a large

chromosome (chromosome 1—add # bp), a medium sized chromosome (chromosome 10—

add # bp), a small chromosome (chromosome 22—add #bp), a set of 3 genes on 3 different

chromosomes, a single gene, and two point mutations. The smaller regions (mutations and

genes) were chosen to mimic query functionality that is likely to come from a targeted explora-

tion (ie. within i2b2). The larger regions (chromosomes) were chose to reflect variables sizes of

genomic regions that would come from more general exploration, such as genome wide

Fig 6. Whole exome import times. Time to write 1000 GenomicsDB partitions to Amazon S3 from 1000 genomes

VCF file inputs. Measurements were taken for an increasing sample size, and for four types of AWS instance types

(m4.2xlarge, r4.2xlarge, m4.4xlarge, and r4.rxlarge).

https://doi.org/10.1371/journal.pone.0231826.g006

Fig 7. Microarray import times. Time to write 1000 GenomicsDB partitions to Amazon S3 from AtLAs VCF file

inputs. Measurements were taken for an increasing sample size, and for four types of AWS instance types (m4.2xlarge,

r4.2xlarge, m4.4xlarge, and r4.rxlarge).

https://doi.org/10.1371/journal.pone.0231826.g007
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association studies. Similar to the above experiments, query times were measured for an

increasing number of samples in the database. Each query requested data for all samples in

the respective GenomicsDB instance. Queries were performed five times and the average was

reported. A query within the GDBSpark API is the time it takes for data to be retrieved from

GenomicsDB, imported into an RDD in VariantContext format, perform a user-specified

analysis, and return the result. The reported times are the total time to query GenomicsDB,

load the data into an RDD, count the number of variants, and return both the data and the

count.

For 1000g dataset, smaller regions exhibit worst-case linear scaling and chromosomes dis-

play near-linear scaling (Fig 9). This result is consistent with previously reported results in the

GenomicsDB white paper [7]. When more data is read into memory, the number of cache

Fig 8. Samples by partition size. Total partition size (sum) as total number of samples in the database increases.

Results are shown for both 1000 genomes and AtLAs datasets.

https://doi.org/10.1371/journal.pone.0231826.g008

Fig 9. Whole exome query time. Time to query varying size GenomicsDB instances for the 1000g dataset. Queries

requested all samples in the database and were measured for varying size genomic regions.

https://doi.org/10.1371/journal.pone.0231826.g009
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misses leads to in-memory bandwidth saturation and causes an increase in read times. The

AtLAs queries appear to be reporting near log-scale query times with smaller regions, small

chromosomes, and even medium size chromosomes (Fig 10). The larger chromosome for the

AtLAs dataset is close to linear, but still exhibits a trend that is suggestive of the memory-satu-

ration behavior of GenomicsDB.

Linear-scale genotype-phenotype query time

To test the performance of clinical and genomic data integration within the framework, we

measured the time to import clinical datasets for an increasing number of patients and the

time to perform an aggregate query. Clinical datasets were generated from the clinical infor-

mation associated to the AtLAs variant data associated to over 12,000 patients in the UCLA

i2b2 CRC cell. These datasets were created by selecting patients who consented to sharing

genomic information and were classified in one of the following cohorts: i) C50 malignant

neoplasms of breast (754 samples), ii) consenting patients with ICD-10 C00-D49 neoplasms

(1989 samples), iii) all consenting male patients (5105 samples), iv) patients in the diagnosis

class of J00-J99 diseases of the respiratory system who have been prescribed some throat prepa-

ration medication (8942 samples), v) K00-K95 diseases of the digestive system (9839 samples),

and patients who have recorded information for “Various” medications (10405 samples).

Requests were sent from the web browser of i2b2 for a subset of ICD10 ontological terms and

the response was saved to an XML file. The time to import this XML file into Spark and count

the number of patients in the set, collectively, was recorded five times for each query and the

average was reported. Worst-case linear time was observed for an increasing number of

patients (Fig 11).

The time required to associate this clinical set to the genomic data, query GenomicsDB,

collate the integrated set into the distributed environment, and perform a simple aggregate

(count) calculation, collectively, was also recorded. We use a subset of the genomic regions

queried above for these queries, and report these regions based on the number of variants

returned. Each query was performed five times and the average was reported. Again, we

observe worst-case linear query response time for the aggregation of the clinical and genomic

Fig 10. Microarray query time. Time to query varying size of GenomicsDB instances for the AtLAs dataset. Queries

requested all samples in the database and were measured for varying size genomic regions.

https://doi.org/10.1371/journal.pone.0231826.g010

PLOS ONE Advancing clinical cohort selection with genomics analysis on a distributed platform

PLOS ONE | https://doi.org/10.1371/journal.pone.0231826 April 23, 2020 14 / 20

https://doi.org/10.1371/journal.pone.0231826.g010
https://doi.org/10.1371/journal.pone.0231826


data for an increasing number of regions queried (Fig 12). The number of patients in the

query had less of an effect on query time, but still exhibited linear scaling (Fig 13) with respect

to the number of patients queried. This result suggests that response time is affected only mini-

mally by the size of the patient set query.

These queries were performed for a subset of samples in a constant size GenomicsDB

instance. This is in contrast to the previously presented experiment, which queried all the sam-

ples in a given instance. It is important to note that during the short time between performing

these two experiments, the number of samples in the system had nearly doubled in size. These

results show that the worst-case linear performance is preserved even for clinical-genomic

Fig 11. Patients by clinical dataset import time. Time required to import i2b2 derived clinical datasets into

distributed environment for an increasing number of patients.

https://doi.org/10.1371/journal.pone.0231826.g011

Fig 12. Variants by genotype-phenotype query time. Time to aggregate the clinical information from the

i2b2-derived file, associate to the samples in the genomic database, load genomic variant data into distributed

environment, and count the number of variants. Results are shown for an increasing number of variants queried for

varying sets of patient sizes.

https://doi.org/10.1371/journal.pone.0231826.g012
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aggregate queries for over 10,000 patients. The results also show that the number of variants

queried will have more of an effect on response time than the number of patients referenced in

the query. This means that more patients could be included in an analysis without having a sig-

nificant impact on query response time.

Discussion

Throughout this paper we present a distributed analytics framework for performing precision

medicine queries. We use a real-world use case from UCLA to drive the development of the

framework and confirm scalability and efficiency of distributed loading, storage, access, and

aggregate queries for an increasing number of samples. The results have shown linear query

times from distributed GenomicsDB instance with an HDFS-compliant file system. These

results were made possible by extending GenomicsDB to support reading and writing to a

distributed file system, which has resulted in a more Spark friendly version of GenomicsDB.

Despite network latencies associated with HDFS and Spark, the results show that the distribu-

tive power maintains, and often improves upon, previously reported GenomicsDB results that

use a native file system for both microarray and whole exome sequencing data. If processing

samples are to be expected to be thousands weekly, then scalability with increasing patient

data added to the system is of great importance for import, storage, and query times. Further,

the ODA platform maintains scalability in the downstream analytics environment to scale at

all points of the analysis pipeline.

Our extensions to GenomicsDB have several maintenance and cost related advantages in

addition to those noted in the above results section, which we have observed from utilizing

AWS. First, the ability to read and write from a distributed file system means the GenomicsDB

arrays can be stored and queried from cost-effective Amazon S3 buckets rather than requiring

each slave node to have an additional EBS mount to store the data locally. Second, our exten-

sions allow for an increase in the number of RDD partitions per worker without adding new

slave nodes which requires a smaller and more cost effective EMR instance than the setup that

allowed for only one RDD partition per worker. By persisting GenomicsDB arrays on Amazon

S3, we are able to maintain data integrity and fault tolerance in the event of a failed worker

Fig 13. Patients by genotype-phenotype query time. Clinical and genomic aggregation time as the number of

patients increases, displayed for varying sets of genomic regions.

https://doi.org/10.1371/journal.pone.0231826.g013
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node. These extensions to GenomicsDB allow for better, more on-demand resource balancing.

Without the extensions described in this paper, the management of GenomicsDB for use on a

Spark cluster would be extremely difficult to maintain.

We have also shown performance advantages to using GenomicsDB within a distributed

processing environment. There appears to be a strong correlation between import and

query times and the amount of data involved in the process. The targeted-sequencing data-

set has shown log-scale potential for import, and near log-scale potential for query execu-

tion. For import and query operations involving a small amount of data, the setup costs

will not be fully amortized and the static-partitioning scheme used to construct Geno-

micsDB arrays could be introducing tasks that are much larger than others leading to bot-

tlenecks. All query regions, other than the largest chromosome, for the target-sequencing

data exhibit log-scale behavior, which is likely due to all the data fitting into Spark and/or

GenomicsDB cache. The linear performance for the larger dataset indicates some overhead

involved in not fitting all the data into memory. The linear import and query times exhib-

ited for whole exome sequencing data suggests that even the smaller queries have enough

data to not be burdened by setup time, and thus take full advantage of the distributed pro-

cessing environment. Given the largest query region shows linear behavior for both the

microarray data and the, much heavier, whole exome data, we would expect this trend to

continue for, even heavier, whole genome data. Though, further exploration will need to

confirm this definitively.

Future plans for GenomicsDB include extending the database to be more Spark-

friendly in terms of file system support, database distribution, and partitioning schemes.

GenomicsDB arrays are statically partitioned during the import process by splitting the

genome into a user-specified amount of chunks. The distribution of variants is not even

across the genome space, meaning that some arrays contain a lot more variant data than

others. This can lead to load imbalance across both data ingesting and querying. Proper

load balancing of a Spark application can lead to better execution times of aggregate que-

ries. More advanced ways to distribute the variant data into GenomicsDB arrays should

be considered, such as sampling the variant data before loading to understand mutation

burden across the genome. Ideally, we would like to create an array distribution that opti-

mizes load balancing and provides support for loading a variable amount of RDD parti-

tions—potentially dependent on the resources available to the application. Other areas of

exploration should include how additional data types impact the ability to scale Geno-

micsDB, such as whole genome sequencing and other genomic data modalities.

Though GenomicsDB and the interaction with Spark was the main focus of this work,

the API, mapping database, and user applications are presented as an example of how Geno-

micsDB can be used to scale out precision medicine platforms at existing hospitals. For

instance, we introduced the i2b2 VariantView plugin that enables clinicians to perform on-

demand, clinical-genomic precision medicine queries. The plugin uses the ODA Framework

to submit a distributed, aggregate query inside a HIPAA-compliant, virtual private network

at UCLA David Geffen School of Medicine. The application loads clinical data from i2b2,

queries distributed GenomicsDB partitions that reside on Amazon S3, performs a specified

analysis report within the distributed environment, and write the results back for visualiza-

tion in the i2b2 browser interface. Previous efforts to support genomic-based queries in i2b2

have reported linear scaling only up to 500 samples [12]. Our results have exhibited worst-

case linear scaling with over 2400 samples from the 1000 genomes whole exome sequencing

data and over 10,000 patients with targeted-sequencing data. Further, to the best of our

knowledge this is the first effort to extend i2b2 to run Spark-based, distributed queries and

processing from within the i2b2 interface.
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The prototype system described in this paper is currently designed to support generic anal-

ysis applications from the i2b2 front end. However, the applications available to front end

users are limited to simple proof of use allele and clinical concept distribution charts. The vali-

dation and usability of these applications will only be proven with use of the system by both

clinicians and researchers. We anticipate integrating more complex analytical tools into the

system that will improve cohort selection through means of more advance statistics and

machine learning techniques. Many of the claims made about scalability should be continu-

ously validated as more samples and more data is added to the system for both microarray

and more large-scale, next generation sequencing data.

Conclusion

The power of precision medicine is dependent on the ability to combine data across multi-

ple types and sources to enable quick and scalable joint analyses that support cohort selec-

tion and analysis. We have presented an efficient and scalable means for genomic-based

cohort exploration and analysis using an optimized genomics database. We show that data

can reside in optimal data stores, while still supporting scalable, distributed analytics. Our

extensions to GenomicsDB provide support with a distributed file system to provide ease of

interaction from a distributed compute environment as well as cost advantages for hosting-

related, hardware requirements. The ODA framework can be integrated into existing code

for advanced usage, or can be used to extend a HIPPA compliant clinical interface (EHR or

cohort system) to execute distributed aggregate queries. Scalable and efficient data process-

ing platforms and databases, such as the framework described in this paper, will be neces-

sary to drive precision medicine forward as data grows and analysis becomes more complex.
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