
RESEARCH ARTICLE

Game theoretical approach for load balancing

using SGMLB model in cloud environment

R. Swathy1, B. Vinayagasundaram1, G. Rajesh2, Anand Nayyar3,

Mohamed AbouhawwashID
4,5*, Mohamed Abu Elsoud6,7

1 Computer Center, MIT Campus, Anna University, Chennai, Tamil Nadu, India, 2 Department of Information

Technology MIT Campus, Anna University, Chennai, Tamil Nadu, India, 3 Graduate School, Duy Tan

University, Da Nang, Vietnam, 4 Department of Mathematics, Faculty of Science, Mansoura University,

Mansoura, Egypt, 5 Department of Electrical and Computer Engineering, Michigan State University, East

Lansing, MI, United States of America, 6 Computer Science Department, Faculty of Computers and

Information, Mansoura University, Mansoura, Egypt, 7 Computer Science Department, University of Tabuk,

Tabuk, Saudi Arabia

* abouhaww@msu.edu

Abstract

On-demand cloud computing is one of the rapidly evolving technologies that is being widely

used in the industries now. With the increase in IoT devices and real-time business analytics

requirements, enterprises that ought to scale up and scale down their services have started

coming towards on-demand cloud computing service providers. In a cloud data center, a

high volume of continuous incoming task requests to physical hosts makes an imbalance in

the cloud data center load. Most existing works balance the load by optimizing the algorithm

in selecting the optimal host and achieves instantaneous load balancing but with execution

inefficiency for tasks when carried out in the long run. Considering the long-term perspective

of load balancing, the research paper proposes Stackelberg (leader-follower) game-theoret-

ical model reinforced with the satisfaction factor for selecting the optimal physical host for

deploying the tasks arriving at the data center in a balanced way. Stackelberg Game Theo-

retical Model for Load Balancing (SGMLB) algorithm deploys the tasks on the host in the

data center by considering the utilization factor of every individual host, which helps in

achieving high resource utilization on an average of 60%. Experimental results show that

the Stackelberg equilibrium incorporated with a satisfaction index has been very useful in

balancing the loading across the cluster by choosing the optimal hosts. The results show

better execution efficiency in terms of the reduced number of task failures by 47%,

decreased ‘makespan’ value by 17%, increased throughput by 6%, and a decreased front-

end error rate as compared to the traditional random allocation algorithms and flow-shop

scheduling algorithm.

Introduction

Cloud Computing platform consists of several remote servers that provide a large number of

cloud-based services like Infrastructure Service, Platform Service, and Software Service [1–3].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Swathy R, Vinayagasundaram B, Rajesh

G, Nayyar A, Abouhawwash M, Abu Elsoud M

(2020) Game theoretical approach for load

balancing using SGMLB model in cloud

environment. PLoS ONE 15(4): e0231708. https://

doi.org/10.1371/journal.pone.0231708

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: December 20, 2019

Accepted: March 30, 2020

Published: April 20, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

in the Supporting Information files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-2846-4707
https://doi.org/10.1371/journal.pone.0231708
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0231708&domain=pdf&date_stamp=2020-04-20
https://doi.org/10.1371/journal.pone.0231708
https://doi.org/10.1371/journal.pone.0231708
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

These platforms provide storage and computing capabilities as a subscription-based service in

the pay-as-you-go model. Cloud data center provides storage and computing facilities on the

internet through a large number of physical hosts. Each physical host has resources like CPU,

memory to provide service to the users. The available resource of the physical host changes

continuously based on the tasks submitted to the host. The performance of the data center

depends on the tasks deployed on the host. If the host in the data center has a sufficient

amount of resources to deploy the tasks submitted, the performance of the host will be high

that it can execute the task successfully and respond with the result on time to the user. The

host with an insufficient resource cannot deploy the task resulting in performance degradation

and failure of the task. The challenge lies in allocating appropriate tasks to optimal hosts in a

load-balanced way that improves the performance of the data center, thus decreases the failure

number of tasks.

Load balancing in the cloud environment is an important issue to be considered in recent

days. Load balancing is a method to distribute the load evenly to the entire host in the cloud

dynamically. There are many methods designed to support load balancing in the ‘Local Area

Network,’ but very few strategies exist to perform load balancing in the cloud environment.

Load balancing based on task scheduling, probabilistic approach, and other optimized algo-

rithms exist to improve the load balancing metrics. The various performance metrics consid-

ered for load balancing are makespan, throughput, latency, response time, resource utilization,

degree of imbalance and cost [4, 5]. Various methods perform load balancing, which is suitable

for a short duration. A novel game-theoretical based approach has been proposed for load bal-

ancing task which performs well in the long run.

Game theory is a mathematical model that can be used for decision making among firms

that sell different products. The firms are treated as the players of the game. In a game, one of

the players makes their first move and the other players make the next move based on the first

player. Thus, the decision of a player influences the outcome model of the other player. In

Game theory, each player makes a move by choosing their best strategy such that every player

in the game is benefitted. Game theory is modeled by the players, strategies, outcomes, and

payoff. The players are the decision makers, strategies are the course of action that a player

may choose to follow, outcome is the results based on the strategy chosen by the player, and

finally, payoff is the cost that the players receive for a particular outcome. There exist different

categories of the game. First, the game is categorized based on the number of players as one

player game, two-player games, or n-player games. Second, based on the rationality of the

player, the game is categorized in two ways as one in which the players make an intelligent or

rational move while in other the players make the random move. Third, is cooperative game in

which players make their decisions jointly and non-cooperative game in which the players

make their individual move. Finally, we have zero-sum and non-zero-sum games in which the

sum of payoffs of all the players is equal to zero. Equilibrium is a concept of game theory

where each player in the game arrives at their optimal outcome. Considering the advantage,

the mathematical model based on game theory strategy has been utilized for balancing tasks

load among physical hosts in Cloud Data Center such that every host and users are benefitted.

The proposed model is independent of the cloud models and can be applied on public, private,

and hybrid clouds as long as enough security controls relevant for the respective cloud models

are implemented. Among the various game-theoretical approaches available, we use the Stack-

elberg Game theoretical Model for task load balancing.

Stackelberg Model is a leadership model, i.e., it has a leader who chooses its best strategy

based on which other followers choose their strategy to maximize their benefit. Stackelberg’s

model is also named as the leader-follower game. In this model, the decisions are made

sequentially, i.e., the leader firm makes the first decision, and then the follower firm makes

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 2 / 22

https://doi.org/10.1371/journal.pone.0231708

their next decision. Thus the leader firm gets the maximum profit by contributing the follow-

ers, which is defined as the Stackelberg equilibrium. Equilibrium is the state where the players

have made their decision, and the desired outcome arrives. SGMLB—Stackelberg Game

Model for Load Balancing algorithm has been provided to balance the task load among the

physical host in the cloud data center. The Stackelberg leader-follower game model is a central-

ized load balancing strategy for task deployment in Cloud Data Center. Here the centralized

approach is considered in contrast to the decentralized approach as synchronizing many

nodes in a decentralized approach is a costly affair and may lead to suboptimal decisions. The

cloud environment is simulated with ‘n’ number of hosts in a data center with a single load bal-

ancer to handle the incoming load to the data center. The load balancer receives the available

load of the data center and the request load of the task. The load balancer executes the SGMLB

algorithm and based on the follower’s strategy, the load balancer allocates the tasks to the host.

The load balancer takes the role of a leader, and all other hosts behave like the follower.

The main objective of the proposed work is to deploy the tasks among cloud data centers in

such a way that all the tasks are evenly distributed to the hosts with requested resources. No

host in the data center is overloaded, and the available resources are efficiently utilized. All of

this will contribute to performance efficiency and decrease the number of task failures. The

proposed Game theoretical approach for load balancing with price strategy and satisfaction

factor finds the suitable physical host with the right amount of resource and assigns tasks to

that hosts in a cloud data center. This ensures that the task completes without any failures, and

the resource in every physical host is productively utilized. The proposed work measures

throughput, makespan, task failures, resource utilization, and front-end error rate using the

SGMLB algorithm incorporated with a satisfaction index in a simulated environment using

cloudsim.

The rest of the paper is organized as follows: In section 2, various existing works for load

balancing in cloud computing environments are discussed. Section 3 presents the detailed

problem formulation of the Stackelberg game-theoretical model for load balancing. Section 4

highlights the algorithm of proposed Model. Section 5 elaborates the mathematical derivation

regarding how Stackelberg equilibrium is maintained. In Section 6 and 7, the simulation envi-

ronment, metrics evaluation, and the comparison of the performance parameters are dis-

cussed. Section 8 concludes the paper with a discussion on how the SGMLB model allocates

tasks to the physical host in the cloud environment along with the future scope.

Related work

Various studies are proposed, and the number of researches is steadily increasing in recent

times related to dynamic load balancing in the cloud data center to handle the computing

resources efficiently. As the industries move towards Business 4.0, where automation and

remote computing play a significant role, optimal load balancing has become the widely stud-

ied topic in recent times. Nayyar [6] provided all the essentials of Cloud Computing like cloud

types, its features, cloud components, their advantages, and disadvantages. The concept of vir-

tualization, services of the cloud, and cloud security also discussed in detail along with a

detailed overview of all available simulation environments for the cloud. Centralized load bal-

ancing and distributed load balancing techniques are widely used load balancing techniques

cloud data centers [3–8]. In centralized load balancing, the coordinator or the central node

plays the primary role in allocating and de-allocating the resources. In distributed load balanc-

ing, multiple nodes act as the coordinator and do the load balancing job. VM (Virtual

Machine) scheduling algorithms also exist to support load balancing. Researchers have pro-

posed a series of scheduling methods like FCFS, Round Robin, least connection method, and

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0231708

load balancing methods like min-min, max-min, Honeybee, Ant-colony optimization to solve

load balancing issues in real-time cloud environments [9, 10].

Farrag et al. [11] discussed load balancing algorithms for cloud environment like VM

scheduler using Bayes theorem, Artificial Bee Colony Algorithm, and Genetic algorithm. The

advantages of these algorithms are its ease of use, but when considered for cloud data centers,

their load balancing effect is not absolute. Like other load balancing algorithms, Kaur et al.

[12] discussed the data placement in cloud computing based on workflow management that

has a direct impact on performance, cost, and execution time of workflows. The Workflow

Management Coalition (WfMC) has been defined as an advancement in organizing exercises

and calculations of a business procedure. WfMC introduces a reference framework model that

empowers the process to operate interactively at an assortment of IT applications. The work-

flow lifecycle comprises of the workflow design phase, partitioning, mapping, and enactment.

Then the data placement process is carried out as a movement of input data of a data-intensive

application from a remote site to the execution site, and then the output is moved from the

execution site to remote site or the same site. Various data placement methods have been dis-

cussed, and few are based on correlation, genetic algorithm, energy, PSO, ACO, replication,

and fault tolerance. These algorithms were implemented in various cloud simulation tools,

and the data placement criteria were analyzed. In contradiction with load balancing and data

placement algorithms, Deep et al. [13] proposed an authentication mechanism for cloud data-

bases using blockchain technology. A novel authentication algorithm was proposed by authen-

ticating login credentials using the blockchain mechanism. Both insiders and outsiders are

authenticated using IDs and signatures that secure the system from insiders and outsiders

attack. The performance of the system is evaluated using the scyther tool.

Zhao et al. [14], deployed the tasks among physical hosts in the cloud data center by a prob-

abilistic approach using Bayes Clustering (LB-BC) and discussed how the LB-BC model could

achieve overall load balancing. The combination of Bayes theorem and clustering process has

obtained the optimal clustering set of physical hosts on which the tasks were deployed. Wang

et al. [15] proposed a SDN based dynamic load balancing in the cloud data center. The work

detects the load traffic of the open flow switching network. From the load traffic, the load vari-

ance of the servers in the network is calculated, and the incoming load is hashed to the servers

with the least load. The hashing technique for load distribution does not guarantee load bal-

ancing in the long run. Tang et al. [9], suggested load-balanced scheduling (DLBS) approach

to analyze the load imbalance degree of every data center in the open flow network and then

schedule the unbalanced data load to other data centers in order to maximize network

throughput. Somula et al. [16], proposed load balancing in mobile computing to improvise

response time and reduce waiting time and latency. Load balancing is carried out by offloading

the load from mobile cloudlets to cloud computing environments using a round-robin algo-

rithm having limited resources like storage, processing capacity, and battery life.

Patel et al. [17], introduced resource provisioning and allocation along with task scheduling

in a distributed environment using priority-based round-robin method by allocating time

slices for every task. Zhang et al. [18], performed network-aware virtual machine migration in

the overloaded cloud and used the Artificial-Bee Colony optimization algorithm and Genetic

algorithm to achieve load balancing effect. It was observed after experimentations that Artifi-

cial Bee Colony outperformed the Genetic algorithm in terms of data transfer time. However,

the method results in low resource utilization. Sun et al. [19] proposed a load balancing tech-

nique using Flowshop scheduling to maintain fairness strategy in a parallel environment. This

parallelization of Flowshop scheduling is done using the hierarchical master-worker paradigm.

The task is distributed by the supervisor processes to master processes and then to the worker

processes in hierarchical order. The nodes are allocated with different amounts of tasks based

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 4 / 22

https://doi.org/10.1371/journal.pone.0231708

on their completion. The supervisor took the responsibility of the load balancer and distrib-

uted the tasks. This method faces communication overhead in the process, which affects sys-

tem performance.

Game theory is a mathematical model that focuses on decision making between self-inter-

ested agents and is widely used for developing decision-making strategies for co-operation

among rational decision-making entities as proposed by Wooldridge, Michael [20]. Each

player in the entity uses their rational choice to make their best decision. The computational

challenges in applying game theory concepts in AI were addressed where cooperative game

theory is used. Game theory is interpreted as descriptive or normative interpretation. Descrip-

tive interpretation foresees the behavior of players in a specific strategic setting, and normative

interpretation imposes the action that a player needs to make. In recent times, the algorithmic

game theory is a significant growth area in theoretical computer science. There are different

game-theoretical approaches available like cooperative and non-cooperative games [21,22],

symmetric and non-symmetric, simultaneous and sequential move games, constant sum, zero-

sum and non-zero- sum games. Stackelberg model is one of the strategic game models in

which the leader firm makes its first move, and then the follower firm makes its next move

sequentially [23]. This model is framed based on the game theory, where a group of players fol-

lows a leader to compete for a quantity or resource. Load balancing for future internet was pro-

posed by Song et al. [24] using the game-theoretical approach in modeling the static load

balancing in which the game is modeled as a non-cooperative game among users considering

minimal response time for the task and cooperative game among processors considering mini-

mal system processing time.

Nan et al. [25], discussed the distribution of live multimedia streaming data from the cloud

to both desktop and mobile users using a two-stage Stackelberg game: an evolutionary game

model for mobile users and a non-cooperative game model for the desktop users. This approach

allows a mobile user with limited bandwidth to acquire live multimedia streaming from desktop

users. Their strategies comprise of the bandwidth size and price. The bandwidth related problem

between desktop users and mobile users is solved using a non-cooperative game and evolutionary

game model for sharing the bandwidth and price by maximizing their utilities. Yu and Hong [26],

provided optimal load control of a device in the virtual electricity trading process based on

demand response (DR) algorithm using real-time price. In this study, one leader, N-follower

game, has been formulated in which the energy management center is the virtual retailer who acts

as the leader and the other devices that purchase energy acts as the follower. The DR algorithm

helps each device in selecting the optimal strategy for their energy demands based on a rapidly

updating real-time price. The existence of Stackelberg equilibrium was also proved to state that

both the leader and the followers are benefitted. This Stackelberg model helps to achieve load con-

trol of the device. Wang et al. [27], used mobile devices to share their unused resources for cooper-

ative application execution for mobile cloud computing. To increase the benefit of the owners of

the task and mobile devices in task execution, the Stackelberg game is formulated with the amount

of processing unit that each mobile computing device can offer and at what price. The existence

of Stackelberg equilibrium is shown using an efficient algorithm.

Duong et al. [28], performed power allocation in the cellular network by understanding the

behavior of macrocell base station (MBS) and femtocell base stations (FBS), and modeled it as

Stackelberg Bayesian Game. The cellular network consists of macrocells underlaid by the fem-

tocell network in which MBS acts as the leader, and FBS acts as the follower. The MBS offers

its price strategy for maximizing its overall benefit based on which the followers decide to max-

imize the transmission capacity of the femtocell network. It is taken care that the interference

of the macro base station does not exceed an interference constraint, and the existence of Nash

Equilibrium was also examined using backward induction. Tran et al. [29], used a two-stage

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0231708

Stackelberg game and modeled in the geo-distributed data center to distribute their substantial

energy demands based on the real-time pricing scheme of demand response programs [30,23].

Based on the literature study, it is found there are a variety of methods for load balancing tasks,

and in all those methods, load balancing has been done in an on-premise environment. Also, the

Game theoretical approach has been used for solving various problems like bandwidth allocation

in mobile computing, allocation of electrical energy on demand. In this research work, as an alter-

native to all the other methods, the Game theoretical approach has been used to load balance

tasks in the cloud computing environment. For effective testing and implementation, metrics like

makespan, throughput, and resource utilization have been analyzed. In addition to all the above

metrics, the count of failed tasks and the front-end error rate has been measured.

The paper proposes SGMLB Game theoretical approach to efficiently perform load balanc-

ing for benefitting both the user’s tasks and the physical hosts of the cloud data center. In sum-

mary, the proposed work has the following aspects:

• Uses Stackelberg game theoretical model for load balancing task in cloud data center.

• Introduced Satisfaction factor in aggregating the favorable hosts for processing

• Utility function along with price strategy of cloud data center and satisfaction factor has

been considered in allocating tasks to the physical hosts in data center. The price strategy of

every physical host depends on its available CPU and memory resource.

• Tasks have been allocated to appropriate physical hosts with right amount of resources at

best price and resources in data centre are efficiently utilized.

Problem formulation

Proposed work

In cloud computing, where infrastructure is offered as a service (IaaS), clients consuming the

service expect their tasks to be scheduled effectively with optimal pricing. When the tasks are

submitted by the users, they are deployed on the physical hosts of the cloud data center. Gener-

ally, the tasks are deployed on the physical hosts randomly. When the random deployment of

tasks is done, the task may get allocated to the host with inadequate resources compared to the

resource requested by the tasks. This usually results in a delay in processing and more frequent

failures in processing the incoming tasks. Also, if the task gets assigned to the host where the

available computing resource is almost the same as the resource requested by the clients, it

causes the host to be overloaded and results in service inefficiency [10]. Hence it is necessary

to design an optimal model for task deployment in-order to balance the load in the cloud com-

puting environment. The proposed solution to the problem deploys the task to a different host

in the cloud data center based on Stackelberg game theoretical model. The architecture dia-

gram of Stackelberg Load Balancer is given is highlighted in (Fig 1). The load balancer gets the

load request from the user and receives the available computing resources of all the hosts in

the cloud data center. Based on the available computing resources, the price is chosen from a

range of values calculated based on the price strategy for the Data Center. With the available

computing capacity, price strategy, and requested load, the utility function for the Data Center

is calculated and the tasks are allocated to the optimal hosts with minimum utility value.

Stackelberg game model based load balancing

The problem is formulated as follows: Consider the cloud data center with ‘m’ number of task

requests arriving at time ‘t’ from the user. There are ‘n’ numbers of physical hosts in the Cloud

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 6 / 22

https://doi.org/10.1371/journal.pone.0231708

Data Center to satisfy the user requirement. One of the nodes in the cloud data center is identi-

fied as the primary load balancer and another node as the stand-by load balancer, and the pri-

mary load balancer deploys the tasks to different hosts in the cloud based on Stackelberg game

model. Stackelberg game model is a leadership model. The problem is applied to scenarios

where the setup has one leader and ‘n’ followers. Here, the chosen load balancer in the cloud

data center acts as the leader, and all other hosts act as followers. Throughout the paper, the

term leader–load balancer and follower–hosts are used interchangeably. The work assumes

that the cluster has high availability (HA) feature already implemented so that the cluster can

fall back to the stand-by load balancer node and continue processing jobs if the primary node

balancer becomes unresponsive after a certain period that is configured as per the HA parame-

ters. The load balancer receives the overall storage and computation cost from the Cloud Ser-

vice Providers (CSP) and also announces the available remaining resource amount of the

physical host in the cloud periodically. The remaining resource amount includes the remain-

ing CPU resource and the remaining memory resource. The leader receives m number of tasks

requests from the users for processing, and they will have to be deployed to the available hosts

Fig 1. Stackelberg load balancer’s architecture diagram.

https://doi.org/10.1371/journal.pone.0231708.g001

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 7 / 22

https://doi.org/10.1371/journal.pone.0231708.g001
https://doi.org/10.1371/journal.pone.0231708

in the cloud. We propose a novel approach of load balancing in task deployment strategy.

The leader deploys the tasks request one by one to the physical hosts in a reliable manner, and

this process occurs sequentially based on the Stackelberg Game Model for Load Balancing

(SGMLB).

Load balancer—leader

All physical host in Cloud Data Center announces its available resource amount to the load

balancer. The remaining resource amount includes the available CPU for processing and avail-

able memory for storage. The load balancer has a set (HS) of available CPU and memory of

every individual host. Let HS = {(C1, M1), (C2, M2), (C3, M3),, (CN, MN)}. The

set HS contains some unfavorable hosts which do not have sufficient resource amount to pro-

cess the tasks request. The host with very substantial CPU resources and minimal memory

resources or with extensive memory resources and minimal CPU resources are considered as

an unfavorable host for processing. The load balancer eliminates those hosts by calculating the

mean for the available CPU Lc and memory resource Lm using Eq (1)

Lc ¼

Pn
i¼1

Ci

n
and LM ¼

Pn
i¼1

Mi

n
ð1Þ

Using the mean calculated, the host outliers are eliminated, thus forming a new host set

HS’. From the new set formed, the load balancer calculates the total resource available for each

host using the Eq (2).

Li
H ¼ aC

i þ bMiwhere aþ b ¼ 1 ð2Þ

Here Ci is the remaining CPU resource, and Mi is the remaining memory of the host “I” in

the cloud; α and β are the weight values of CPU and storage, which is determined by neural

network learning. There arrives ‘m’ number of task requests at time ‘t’ from the users. Every

task request requires Cj amount of CPU resource and Mj amount of memory resource. Based

on the individual demand of the tasks the load balancer calculates the total load requirement

of every task as given in Eq (3).

Rj
T ¼ aC

j þ bMiwhere aþ b ¼ 1 ð3Þ

The price range for the cloud data center is fixed by the cloud service provider. The

load balancer assigns the node for processing tasks based on its leader’s strategy. Let p’ = {p1,
p2, p3,, pN} be the price range based on the price strategy of the physical host or the follow-

ers. As per the Demand-Response scheme [30], the maximum price is chosen for the host with

minimum computing resources available, and the minimum price is chosen from the price

range for the host with maximum computing resources available. The tasks may be deployed

on the physical host based on the follower’s strategy. The follower strategy consists of two

parameters i.e. processing cost and the satisfaction factor.

• Processing cost: Given by the amount of load to be processed at price pi and it is denoted as

RjPi.

• Satisfaction factor: Evaluates if the host can process the load request or not based on its cur-

rent available CPU and memory.

The satisfaction factor is framed as an exponential function, which is a continuously

increasing or decreasing function based on the resource demand Rj. The satisfaction factor of

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 8 / 22

https://doi.org/10.1371/journal.pone.0231708

the follower or the host is given in Eq (4).

SF ¼ ½e
1�

Rj=Li

� �

� � 1 ð4Þ

The satisfaction factor changes from negative to positive based on the request demand (Rj).

The satisfaction factor is expressed as an exponential function, which is a non-decreasing posi-

tive range function. The satisfaction factor is made to change between positive and negative

values by adding -1 to the exponential function. If Rj is higher than Li, then the satisfaction fac-

tor would be negative, implying that the available load is less than the requested load. Hence

the host cannot process the task request. If Rj value is less than the Li, then the satisfaction fac-

tor would be decisive, implying that the available load is higher than the task requested. So, the

host can process the task requested. If Rj is equal to Li, the satisfaction factor would be zero

implies that the load demanded and the load available are both the same. When the task gets

assigned to such host, then the host may be overloaded and causes performance degradation.

The tasks may be allotted to particular host only if the satisfaction factor of the host is positive.

Thus, the feasible resource request that a host can process must be within an interval

[Rmin
j ;Rmax

j] for a price in p’. The other parameter which plays the main role in task allocation

to the host is the processing cost. Thus, the task gets allotted to a particular host whose utility

function value of the follower is minimum and thus benefitting the users and the host. The

hosts are benefitted in the way that appropriate task load gets allotted to the host so the hosts

resources are efficiently utilized. The utility function for the follower is given in Eq (5).

UFHðp
0;RjÞ ¼ pi:Rj þ w:SFðRjÞ;w > 0 ð5Þ

The utility function value is computed for those hosts for which the satisfaction factor is

positive. The negative or zero satisfaction factors implies that the hosts are unfavorable for pro-

cessing the task requests. The price pi for processing the task is calculated based on the avail-

able load. Thus, the price is decided based on a demand-response strategy where the

maximum price is used when the available load is minimum and the minimum price is used in

case on maximum available load. This price strategy helps to utilize the hosts with the maxi-

mum available load. The maximum and minimum prices are chosen within the price range of

the cloud service provider. The optimal host for processing the user task is formulated as elab-

orated in Eq (6).

minUFHðp
0;RjÞ ð6Þ

The utility function of the Leader or the load balancer is formulated as the net benefit

obtained in processing the task for the given price and offloading the tasks to appropriate host

in load-balanced d way. Thus, the utility functions is given in Eq (7).

UFLBðp
0;R0Þ ¼

Xn

i¼1

pi:Rj �
Xn

i¼1

w:SFðRjÞ;w > 0 ð7Þ

The net benefit of the load balancer is computed based on the follower’s strategy. Utility

value is calculated using the allotted tasks to the hosts as the summation of processing the

request Rj at price pi and the satisfaction factor of the request Rj in transferring to the hosts.

The net benefit of the leader is maximized, thus indicating that almost all the tasks are assigned

to appropriate hosts. The remaining resource amount is updated. Based on the maximum utili-

zation of the hosts and based on the remaining resource amount available, the price of each

host is chosen. On the whole, the overall performance of the cloud data center is improved.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0231708

The optimal strategy of the host is illustrated in Eq (8).

maxUFLBðp
0;R0Þ ð8Þ

Hosts–Follower

The hosts, i.e., the follower, chooses its best response strategy by selecting the minimum utility

function value. Based on the best strategy, the follower accepts the task request and executes

the same. The SGMLB algorithm flow is given in (Fig 2).

Fig 2. Flow diagram of SGMLB.

https://doi.org/10.1371/journal.pone.0231708.g002

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0231708.g002
https://doi.org/10.1371/journal.pone.0231708

Stackelberg game model

Stackelberg Game model has the following sequence of steps for performing task deployment:

1. The leader chooses the prize of every individual host based on the remaining resource

amount and calculates the UFH(p’,Rj) for a host and incoming task requests and announces

the utility strategy value to the follower.

2. The follower chooses minUFH(p’,Rj) as its best response strategy, thus utilizing its available

resources efficiently.

3. Based on the best response strategy chosen by the follower, the leader identifies its optimal

strategy as maxUFLB(p’,R0) and update the price for every host based on the remaining

resource amount.

Steps 1 to 3 are repeated at a regular time interval and as long as the task request arrives

from the user.
Algorithm: SGMLB (H, Ci, Mi, TR, Cj, Mj)

Input. available H, available CPU Ci, available memory Mi,
requested TR, requested CPU Cj, requested memory Mj

Output. Load balancer (Leader) optimal strategy, Host (Fol-
lower) optimal Strategy, Price strategy for each host

1. HS' = Φ;
2. Chosen price strategy for each host p’ = {p1, p2, p3,, pN]

3. Compute Lc ¼

Pn

i¼1
Ci

n And LM ¼

Pn

i¼1
Mi

n ;
4. if Ci> LC and Mi> LM then

5. Add {(Ci, Mi) } to HS';
6. End if
7. for each hostHi Є HS' do
8. LH

i = α Ci + β Mi;
9. End for
10. for each task Rj Є TR do
11. RT

j = α Cj + β Mj;
12. End for
13. for each hostHi Є HS' do
14. for each task Rj Є TR do
15. Compute satisfaction factor

as SF ¼ e
1�

Rj=Li

� �" #

- 1

16. if (SF> 0)
17. UFH(p',Rj) =

pi.Rj+w.SF(Rj);
18. End if
19. End for
20. End for
21. for each Hi Є HS' do
22. Find minUFH(p',Rj)as the optimal strategy for

host Hi and assign task Rj to Hi with minUFH and make host
Hiunavailable.

23. End for
24. Compute UFLB(p',R0) =

Pn
i¼1

pi:Rj �
Pn

i¼1
w:SFðRjÞ for the load balancer

25. The optimal strategy of the load balancer is given by max-
UFLB(p',R0).

26. Update available load for each host Є H and choose a new price
strategy for every host.

27. Repeat above steps for every incoming batch of task request.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 11 / 22

https://doi.org/10.1371/journal.pone.0231708

SGMLB algorithm

Step 1: In cloud data center, there are a large number of physical host present to serve the

incoming task requests. There are situations where some hosts cannot process the requested

task as it cannot meet the resource requirements of the incoming tasks. Those outlier hosts are

eliminated according to Eq (1), and a new host set is formed as HS’ = {(Ci, Mi)} whose Ci> LC

and Mi> LM. From the host set HS’, the total resource available for each host is found out

based on Eq (2). Similarly, the total resource required for each task is found using Eq (3).

Step 2: The set HS’ consists of hosts with an average amount of resources. All suitable hosts

for processing the task request is identified by the satisfaction factor in Eq (4). The hosts have

enough resources to process the task request if the satisfaction factor is positive. The hosts

have precisely the same amount of resources compared with the resource requested by the task

if the satisfaction factor is zero. The host having an inadequate amount of resources to process

the task negative satisfaction factor. Thus for every host and each task request, the satisfaction

factor is computed, and the host with enough resource is identified. For that identified host,

based on the price strategy, the follower’s utility function value is calculated as given in Eq (5).

Step 3: The followers’ utility function value indicates which host can process the requested

task at a cheaper price. Thus the optimal host to process the requested task is identified by the

load balancer based on the follower’s utility function value given by minUFH(p’,Rj) Eq (6). The

task is then assigned to the host with minUFH and the host is made unavailable for the next

task request in the batch. Thus, the host chooses its task request to process such that its

resources are efficiently utilized and also the tasks are assigned to the optimal host that can be

processed at a lesser price.

Step 4: Based on the task assigned to the host, the load balancer computes the utility func-

tion value for the leader based on Eqs (7) and (8). Thus, the net benefit of the leader is maxi-

mized, indicating that almost all the tasks are assigned to appropriate hosts.

Step 5: With the processing task, the host updates its available resource for the next batch of

incoming tasks. Based on the availability of the resource, the price is chosen in such a way that

the probability of choosing the host with the more available resource is high. Then the whole

process is repeated for the next batch of incoming task requests.

The whole load balancing process of SGMLB cannot be achieved by just executing this algo-

rithm. It is a long-term process. The optimal host for processing the requested task is found

for every batch of incoming tasks request, and available resources are updated in each execu-

tion time, and the new price strategy is chosen for the host. The load balancer picks up the best

response strategy hosts, thus benefitting the hosts, the task requests, and maximizing the over-

all performance of the load balancer.

Stackelberg equilibrium

Equilibrium state in a game is the position where the two players’, i.e., the leader and the fol-

lower, make their decision to reach their desired outcome. At this Stackelberg equilibrium, the

follower is benefitted by its minimized utility function based on the satisfaction factor and

price strategy of the host. Also, the leader allocates tasks to the optimal host and maximizes its

utility function based on the followers’ strategy. In the context of this problem, the Stackelberg

equilibrium [31,32] is defined as the state where both the leader and follower assign and pro-

cess the tasks in an optimal manner, respectively. This section explains with the set of deriva-

tives how the Stackelberg equilibrium gets attained.

• The leader’s optimal strategy is to maximize the overall benefit by allocating tasks to every

host based on the best price and computing resource availability of the hosts.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 12 / 22

https://doi.org/10.1371/journal.pone.0231708

• The strategy of the host is that it processes the assigned tasks by utilizing the available com-

puting resources. The optimal task is chosen based on the load requirement of the tasks.

The optimal strategy of the Leader and the follower is proved by Stackelberg equilibrium.

By using the backward induction method, we observe that the Stackelberg equilibrium is

achieved. The leader’s optimal strategy pi is obtained by solving the follower’s utility function

in Eq (5).

@UFH

@Rj
¼ pi �

w
Li
:eð1�

Rj
Li
Þ

ð9Þ

By equating the derivative in Eq (9) to zero, we obtain the best price strategy.

@UFH

@Rj
¼ 0 ð10Þ

pi ¼
w
Li
:eð1�

Rj
Li
Þ

ð11Þ

From Eq (11), the price range of the host is chosen as below.

Maximum price for host i is derived in Eq (12).

pmax
i ¼ max 0;

w
Li
:eð1�

Rmin
j
Li
Þ

()

ð12Þ

Minimum price for host i is derived in Eq (13).

pmin
i ¼ min

w
Li
:eð1�

Rmax
j
Li
Þ
; pCSP

� �

ð13Þ

Note that the price pi values must be less than pCSP, where pCSP is the price from Cloud Ser-

vice Provider.

pi ¼
w
Li
:eð1�

Rj
Li
Þ
< pCSP ð14Þ

From the leader’s price strategy, the follower’s optimal strategy is given in Eq (15).

Rj ¼ Li 1 � ln
pi:Li

w

� �

ð15Þ

By taking the second-order derivative of (9) we obtain a positive value which implies the set

of Rj is proved to be convex and so the range for Rj is defined to be [Rmin
j ;Rmax

j] in Eq (16).

@2UFH

@R2

j

¼
w
Li

2
:eð1�

Rj
Li
Þ
> 0 ð16Þ

From Rj value the utility function of the leader can be rewritten as, mentioned in Eqs (17)

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0231708

and (18)

UFLB p0;R0ð Þ ¼
Xn

i¼1

pi:Lið1 � ln
pi:Li

w
Þ �

Xn

i¼1

w:e1�
Li 1� ln

pi :Li
wð Þ

Li ð17Þ

UFLB p0;R0ð Þ ¼
Xn

i¼1

pi:Li 1 � ln
pi:Li

w

� �

� pi:Li � w ð18Þ

Solving the above function in Eq (18), the second-order derivative of the function is a nega-

tive value, which proves leaders’ price strategy p’ is a concave function.

@2UFLBðp0;R
0Þ

@p2
i

¼ �
w
pi

< 0 ð19Þ

The weight factor w is a constant and obtained using the inequality function in Eq (16).

w < pCSPLie
Rmax
j
Li
� 1

� �

ð20Þ

Simulation environment

The cloud environment is simulated using the ‘CloudSim’ framework. The Algorithm in sec-

tion 4 has been programmed in ‘CloudSim’ environment, and the simulation for the following

input tasks was executed to display the performance metrics. The cloud data center is formed

with a minimum of 100 physical hosts with a different available computing resource. Around

20 batches of jobs with each batch consisting of 25 to 75 tasks with varying load requirements

are provided to the physical host in the simulation environment. The results are captured and

documented here for 200 to 1000 tasks. The output results are captured, and visualized on var-

ied performance metrics like makespan, failed number of tasks, throughput, resource utiliza-

tion, front-end error rate, and price-load matrix. The simulations are coded in Eclipse IDE

using Java on a 4.2 GHz Intel Core i7 processor with 16 GB RAM.

Results and discussion

In this section, the proposed SGMLB approach is compared with Flow-Shop scheduling and

random allocation in deploying tasks to hosts in the cloud data center. The random allocation

method is followed to allocate the task as it is simple and does not require more system infor-

mation. Task allocation is unbiased in such a way that no single host in data center is over-

loaded, and it restricts systematic errors. In Random Allocation Scheduling algorithm [33], the

incoming ’m’ number of tasks at time ’t’ is processed by ’n’ number of physical hosts at random

using CloudSim’s inbuilt random allocation utilities. Another method considered for task allo-

cation is Flow-Shop scheduling. The repetitive concept of Flow Shop Scheduling has many

benefits like improved execution efficiency, resource utilization, reduced processing time of

the tasks, and optimization of the load balancer in an easy manner. In Flow shop scheduling

algorithm [34], ’m’ number of tasks arriving at time t are assigned among ’n’ number of physi-

cal hosts. Each batch of tasks at time ‘t’ is scheduled using Johnson’s rule, and then every task

is assigned to the host at the cloud data center in a sequence. This process is repeated for all the

tasks in every batch. In CloudSim environment, all three algorithms were simulated by setting

the appropriate number of tasks with varying load requirements and hosts with varying com-

puting resources. The following aspects like makespan, resource utilization, failed number of

tasks, throughput, front-end error rate is compared, and price value for the available load is

also graphed.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 14 / 22

https://doi.org/10.1371/journal.pone.0231708

Makespan

Makespan is the total time for processing the tasks. (Fig 3) shows the result of makespan value

in “Table 1” for the three models. Arbitrary deployment of the task to the physical host on the

cloud data center is carried out by a random allocation model. And the flow shop scheduling

finds the optimal sequence of jobs and deploys the tasks on the host on the cloud data center.

While in SGMLB, the load balancer calculates the utility function of every available host and

deploys the tasks on the host with the minimum utility function value. Multiple batches, each

with different number of task requests, are submitted in the simulated environment of the

cloud data center using ‘Random Allocation’, ‘Flow Shop scheduling’, and by using the

SGMLB scheduling algorithm. With the increase in the number of incoming task requests, the

time to process all submitted tasks was observed to be increasing. The makespan value for a

maximum of 200 number of tasks requests is computed in the simulation environment using

three different methods, and in general, the makespan value is found to increase with the

increase in the number of tasks in all the three approaches. When compared with random allo-

cation and flow-shop scheduling, SGMLB methods have relatively lower makespan value as it

uses optimal hosts to deploy the submitted tasks request in the data center.

Failed no of tasks

Allotted tasks can fail due to host failure or when the tasks are allocated to hosts with an insuf-

ficient amount of resources. These types of failures are simulated in cloudsim. In random

Fig 3. Makespan analysis.

https://doi.org/10.1371/journal.pone.0231708.g003

Table 1. Makespan values in seconds for different task requests.

Makespan (in Seconds)

Task Requests SGMLB Flow Shop Random Allocation

200 2820 3200 3520

400 3020 3650 3930

600 3625 4045 4325

800 4300 4950 5615

1000 5330 6050 6555

https://doi.org/10.1371/journal.pone.0231708.t001

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 15 / 22

https://doi.org/10.1371/journal.pone.0231708.g003
https://doi.org/10.1371/journal.pone.0231708.t001
https://doi.org/10.1371/journal.pone.0231708

allocation method, the tasks are allocated at random to the host, while in flow-shop scheduling,

the tasks are allotted in sequence. SGMLB utilizes the satisfaction factor to identify the appro-

priate host set and select the optimal host to deploy the task request. The simulation results

show that the SGMLB algorithm efficiently deploys the tasks to the host with a sufficient

amount of resources. The results of the SGMLB algorithm, flow-shop, and random allocation

is tabulated in “Table 2,” and the results are compared in(Fig 4), which shows that the number

of tasks failed has reduced when compared to flow shop scheduling and random allocation

methods.

Throughput

Throughput is a measure of the number of tasks gets completed in a given period. The simula-

tion in the Cloudsim environment measured the performance of the SGMLB algorithm in

deploying the tasks request per second in the cloud data center. As per the proposed algorithm

in this paper, the satisfaction factor and utility functions with the price strategy played a pivotal

role in choosing the optimal host for deploying the incoming tasks. The number of tasks

Table 2. Number of tasks failed against total tasks submitted.

Failed No of Tasks

Total Tasks SGMLB Flow Shop Random Allocation

200 45 53 68

400 66 78 138

600 83 165 236

800 112 245 356

1000 146 293 418

https://doi.org/10.1371/journal.pone.0231708.t002

Fig 4. Failed number of tasks analysis.

https://doi.org/10.1371/journal.pone.0231708.g004

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 16 / 22

https://doi.org/10.1371/journal.pone.0231708.t002
https://doi.org/10.1371/journal.pone.0231708.g004
https://doi.org/10.1371/journal.pone.0231708

getting allocated to optimal hosts and completed in a given time frame is observed to have

increased in the SGMLB method, whereas the throughput of random allocation and flow-shop

scheduling method was observed to be very less. The throughput value is tabulated in

“Table 3” for the three approaches. The performance of the SGMLB algorithm in (Fig 5) was

found to be minimal compared to the other two approaches at the beginning but has improved

gradually over time, as observed in the graph below. The performance of the other two

approaches is inconsistent with drastic increase and decrease in the throughput values, which

is not the desired KPI (Key Performance indicator) in a cloud-based IaaS.

Resource utilization

This measure indicates how the computing resources of the hosts are efficiently utilized. In

random allocation and flow-shop scheduling, the tasks being scheduled to a particular host

without considering the hosts’ maximum or minimum load availability. Where-as in the

SGMLB model, the host, gets allotted with the right job for processing, i.e., the host with more

resource is being allocated first, then followed by the next host, which results in efficient

resource utilization compared with random allocation and flow-shop scheduling. The experi-

mental result of SGMLB, Flow-Shop scheduling, Random allocation have been tabulated in

“Table 4,” and the result shows that the SGMLB allocates the tasks to a host that has optimal

computing resources based on the follower’s utility function as explained in the proposed

Table 3. Throughput value for task requests per second.

Throughput (Requests/Second)

Task Requests SGMLB Flow Shop Random Allocation

200 0.5 0.9 1.5

400 1.2 1.6 1.5

600 1.7 1.8 1.4

800 2.2 1.8 1.35

1000 2.9 2.3 1.5

https://doi.org/10.1371/journal.pone.0231708.t003

Fig 5. Throughput analysis.

https://doi.org/10.1371/journal.pone.0231708.g005

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 17 / 22

https://doi.org/10.1371/journal.pone.0231708.t003
https://doi.org/10.1371/journal.pone.0231708.g005
https://doi.org/10.1371/journal.pone.0231708

algorithm. The proposed model ensures that the computing resources are efficiently utilized

that is shown in (Fig 6).

Front-end error rate

Front-end error rate measured in the context of this experiment is defined as the percentage of

error that the load balancer returns to the calling client when it fails to identify a host in the

data center to allocate a given task. Front-end error rate is tabulated in "Table 5" and (Fig 7)

shows the results for the three models. The continuous stream of requests was submitted for a

pre-defined period as part of this experiment instead of submitting the requests in small

batches, and the front-end error rate is measured for that simulation period. The requests were

submitted for a period of 30 minutes to 150 minutes, and the front-end error rate was mea-

sured. Results show that the ’SGLMB’ algorithm has a slight advantage over ‘Random Alloca-

tion’ but observed to perform on par with ‘Flow Shop scheduling.

Price of load capacity

Price of the host is the cost at which the host lends its computing resource for the upcoming

jobs for processing. This price value in the cloud data center is chosen based on hosts—

Table 4. Resource utilization in every iteration.

Resource Utilization

Iteration SGMLB Flow Shop Random Allocation

Iteration01 50 45 30

Iteration02 107 87 43

Iteration03 198 126 56

Iteration04 257 183 72

Iteration05 365 232 150

https://doi.org/10.1371/journal.pone.0231708.t004

Fig 6. Resource utilization analysis.

https://doi.org/10.1371/journal.pone.0231708.g006

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 18 / 22

https://doi.org/10.1371/journal.pone.0231708.t004
https://doi.org/10.1371/journal.pone.0231708.g006
https://doi.org/10.1371/journal.pone.0231708

available computing resource. The price is set to a higher value for the host if its available com-

puting resources are less so that the probability of this host getting chosen for task processing

is very less.

Similarly, the price is set to a lower value for the host if its available computing resource is

sufficient enough to process an incoming task so that the probability of this host getting chosen

for task processing is high. So, the price for every host in the cloud data center is set based on

the maximum and minimum load request it can able to process, which has also been shown in

Stackelberg equilibrium. This price strategy for available load capacity has been shown in

“Table 6”. (Fig 8) shows the price value in USD for different available load capacity.

Table 5. Front-end error rate.

Time (Sec) Total Request Front-end Error Rate %

SGMLB Random Flow-Shop

1800 1261 2 3 2.7

3600 2356 2.5 3.5 2.3

5400 5124 4 6 4.1

7200 9982 5.7 7.3 5.7

9000 21395 8 8.1 8.4

https://doi.org/10.1371/journal.pone.0231708.t005

Fig 7. Front-end error rate analysis.

https://doi.org/10.1371/journal.pone.0231708.g007

Table 6. Price strategy for the hosts based on available load.

Load Capacity Price ($)

40 0.83

65 0.45

82 0.27

98 0.14

110 0.07

https://doi.org/10.1371/journal.pone.0231708.t006

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 19 / 22

https://doi.org/10.1371/journal.pone.0231708.t005
https://doi.org/10.1371/journal.pone.0231708.g007
https://doi.org/10.1371/journal.pone.0231708.t006
https://doi.org/10.1371/journal.pone.0231708

Conclusion and future work

This paper has proposed the deployment of tasks in a load-balanced way using SGMLB game-

theoretical approach reinforced by the satisfaction factor for aggregating the optimal hosts.

The definite hosts are filtered, and the leader-follower strategy has been employed to identify

optimal hosts with their available resources. Then, SGMLB has Stackelberg game mode that

allocates tasks to suitable hosts based on the resource requirement, price strategy of the hosts,

and the available resources on the host benefitting the hosts, the task requests, and maximizes

the overall performance of the load balancer. The simulations results have shown (i) that the

tasks are deployed at a faster rate to the hosts in the data center, (ii) reduced number of failed

tasks due to effective resource utilization, (iii) Increased throughput and makespan values. The

proposed SGMLB model is observed to have utilized the resources 60% more effectively as

compared to the flow-shop scheduling and random-allocation model. The proposed SGMLB

model balances the load incurred by the task request in the long-term perspective.

In this way, SGMLB can choose an optimal host from the aggregated set of hosts based on a

leader-follower game-theoretical strategy to deploy tasks by adding advantage to the hosts and

the tasks. Latency in load balancing is one of the critical metric to be considered while allocat-

ing tasks. The leader, which is the load balancer as per the proposed SGMLB algorithm, must

also address latency as one of its metrics while allocating tasks. The future work will consider

the latency as one of the parameters and optimize the solution. The proposed model can also

be extended to load balancing jobs in real-time streaming analytics in a cloud-based big data

platform.

Supporting information

S1 Dataset.

(XLSX)

Fig 8. Price value computed for load capacity.

https://doi.org/10.1371/journal.pone.0231708.g008

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 20 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231708.s001
https://doi.org/10.1371/journal.pone.0231708.g008
https://doi.org/10.1371/journal.pone.0231708

S2 Dataset.

(XLSX)

S3 Dataset.

(XLSX)

S4 Dataset.

(XLSX)

S5 Dataset.

(PDF)

Author Contributions

Conceptualization: R. Swathy, B. Vinayagasundaram, G. Rajesh, Anand Nayyar, Mohamed

Abouhawwash, Mohamed Abu Elsoud.

Data curation: R. Swathy, Anand Nayyar, Mohamed Abouhawwash.

Formal analysis: R. Swathy, B. Vinayagasundaram, G. Rajesh, Mohamed Abu Elsoud.

Investigation: Anand Nayyar, Mohamed Abu Elsoud.

Methodology: B. Vinayagasundaram, G. Rajesh, Anand Nayyar, Mohamed Abouhawwash,

Mohamed Abu Elsoud.

Software: R. Swathy, G. Rajesh, Mohamed Abouhawwash.

Supervision: G. Rajesh, Mohamed Abouhawwash, Mohamed Abu Elsoud.

Validation: Mohamed Abouhawwash.

Writing – original draft: R. Swathy, B. Vinayagasundaram, G. Rajesh, Anand Nayyar.

Writing – review & editing: R. Swathy, B. Vinayagasundaram, G. Rajesh, Anand Nayyar,

Mohamed Abouhawwash, Mohamed Abu Elsoud.

References
1. Calheiros R. N., Ranjan R., Beloglazov A., De Rose C. A., &Buyya R. (2011). CloudSim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of resource provisioning algo-

rithms. Software: Practice and experience, 41(1), 23–50.

2. Garg S. K., Versteeg S., &Buyya R. (2013). A framework for ranking of cloud computing services.

Future Generation Computer Systems, 29(4), 1012–1023.

3. Santra, S., & Mali, K. (2015, September). A new approach to survey on load balancing in VM in cloud

computing: Using CloudSim. In 2015 International Conference on Computer, Communication and Con-

trol (IC4) (pp. 1–5). IEEE.

4. Mazrekaj A., Shabani I., &Sejdiu B. (2016). Pricing schemes in cloud computing: an overview. Interna-

tional Journal of Advanced Computer Science and Applications, 7(2), 80–86.

5. Wu, L., Garg, S. K., &Buyya, R. (2011, May). SLA-based resource allocation for software as a service

provider (SaaS) in cloud computing environments. In Proceedings of the 2011 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing (pp. 195–204). IEEE Computer Society.

6. Nayyar A. (2019). Handbook of Cloud Computing: Basic to Advance research on the concepts and

design of Cloud Computing. BPB Publications.

7. Rastogi, G., & Sushil, R. (2015, October). Analytical literature survey on existing load balancing

schemes in cloud computing. In 2015 International Conference on Green Computing and Internet of

Things (ICGCIoT) (pp. 1506–1510). IEEE.

8. Aslam, S., & Shah, M. A. (2015, December). Load balancing algorithms in cloud computing: A survey of

modern techniques. In 2015 National Software Engineering Conference (NSEC) (pp. 30–35). IEEE.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 21 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231708.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231708.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231708.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231708.s005
https://doi.org/10.1371/journal.pone.0231708

9. Tang F., Yang L. T., Tang C., Li J., & Guo M. (2016). A dynamical and load-balanced flow scheduling

approach for big data centers in clouds. IEEE Transactions on Cloud Computing, 6(4), 915–928.

10. Babu K. R., & Samuel P. (2016). Enhanced bee colony algorithm for efficient load balancing and sched-

uling in cloud. In Innovations in bio-inspired computing and applications (pp. 67–78). Springer, Cham.

11. Farrag, A. A. S., Mahmoud, S. A., & El Sayed, M. (2015, December). Intelligent cloud algorithms for

load balancing problems: A survey. In 2015 IEEE Seventh International Conference on Intelligent Com-

puting and Information Systems (ICICIS) (pp. 210–216). IEEE.

12. Kaur A., Gupta P., Singh M., & Nayyar A. (2019). Data placement in era of cloud computing: a survey,

taxonomy and open research issues. Scalable Computing: Practice and Experience, 20(2), 377–398.

13. Deep G., Mohana R., Nayyar A., Sanjeevikumar P., & Hossain E. (2019). Authentication Protocol for

Cloud Databases Using Blockchain Mechanism. Sensors, 19(20), 4444.

14. Zhao J., Yang K., Wei X., Ding Y., Hu L., & Xu G. (2015). A heuristic clustering-based task deployment

approach for load balancing using Bayes theorem in cloud environment. IEEE Transactions on Parallel

and Distributed Systems, 27(2), 305–316.

15. Wang Y., Tao X., He Q., &Kuang Y. (2016). A dynamic load balancing method of cloud-center based on

SDN. China Communications, 13(2), 130–137.

16. Somula R., &Sasikala R. (2018). Round robin with load degree: An algorithm for optimal cloudlet discov-

ery in mobile cloud computing. Scalable Computing: Practice and Experience, 19(1), 39–52.

17. Patel S., & Bhatt M. (2017). Implementation of Load balancing in Cloud computing through Round

Robin & Priority using cloudSim. International Journal for Rapid Research in Engineering Technology &

Applied Science, 3(11).

18. Zhang W., Han S., He H., & Chen H. (2017). Network-aware virtual machine migration in an overcom-

mitted cloud. Future Generation Computer Systems, 76, 428–442.

19. Sun Z., Huang X., & Ma Y. (2008). Load Balancing Strategies to Solve Flowshop Scheduling on Parallel

Computing. arXiv preprint arXiv:0809.3285.

20. Wooldridge M. (2012). Does game theory work? IEEE Intelligent Systems, 27(6), 76–80.

21. Tripathi R., Vignesh S., Tamarapalli V., Chronopoulos A. T., &Siar H. (2017). Non-cooperative power

and latency aware load balancing in distributed data centers. Journal of Parallel and Distributed Com-

puting, 107, 76–86.

22. Xiao Z., Tong Z., Li K., & Li K. (2017). Learning non-cooperative game for load balancing under self-

interested distributed environment. Applied Soft Computing, 52, 376–386.

23. Fernández-Cerero D., Fernández-Montes A., Jakobik A., &Kolodziej J. (2018). Stackelberg Game-

Based Models In Energy-Aware Cloud Scheduling. In ECMS (pp. 460–467).

24. Song S., Lv T., & Chen X. (2014). Load balancing for future internet: an approach based on game the-

ory. Journal of Applied Mathematics, 2014.

25. Nan G., Mao Z., Yu M., Li M., Wang H., & Zhang Y. (2013). Stackelberg game for bandwidth allocation

in cloud-based wireless live-streaming social networks. IEEE Systems Journal, 8(1), 256–267.

26. Yu M., & Hong S. H. (2015). A real-time demand-response algorithm for smart grids: A stackelberg

game approach. IEEE Transactions on Smart Grid, 7(2), 879–888.

27. Wang X., Chen X., Wu W., An N., & Wang L. (2015). Cooperative application execution in mobile cloud

computing: A Stackelberg game approach. IEEE Communications Letters, 20(5), 946–949.

28. Duong N. D., Madhukumar A. S., &Niyato D. (2015). Stackelberg Bayesian game for power allocation in

two-tier networks. IEEE Transactions on Vehicular Technology, 65(4), 2341–2354.

29. Tran N. H., Tran D. H., Ren S., Han Z., Huh E. N., & Hong C. S. (2015). How geo-distributed data cen-

ters do demand response: A game-theoretic approach. IEEE Transactions on Smart Grid, 7(2), 937–

947.

30. Wang H., Huang J., Lin X., & Mohsenian-Rad H. (2015). Proactive demand response for data centers:

A win-win solution. IEEE Transactions on Smart Grid, 7(3), 1584–1596.

31. d’Aspremont C., & Gérard-Varet L. A. (1980). Stackelberg-solvable games and pre-play communica-

tion. Journal of Economic Theory, 23(2), 201–217.

32. Roughgarden T. (2004). Stackelberg scheduling strategies. SIAM journal on computing, 33(2), 332–350.

33. Shah S. C., Chauhdary S. H., Bashir A. K., & Park M. S. (2010). A centralized location-based job sched-

uling algorithm for inter-dependent jobs in mobile ad hoc computational grids. Journal of Applied Sci-

ences, 10(3), 174–181.

34. Kuo I. H., Horng S. J., Kao T. W., Lin T. L., Lee C. L., Terano T., & Pan Y. (2009). An efficient flow-shop

scheduling algorithm based on a hybrid particle swarm optimization model. Expert systems with appli-

cations, 36(3), 7027–7032.

PLOS ONE Game theoretical approach for load balancing using SGMLB model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231708 April 20, 2020 22 / 22

https://doi.org/10.1371/journal.pone.0231708

