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Abstract

In general, requirements expressed in natural language are the first step in the software

development process and are documented in the form of use cases. These requirements

can be specified formally using some precise mathematical notation (e.g. Linear Temporal

Logic (LTL), Computational Tree Logic (CTL) etc.) or using some modeling formalism (e.g.

a Kripke structure). The rigor involved in writing formal requirements requires extra time and

effort, which is not feasible in several software development scenarios. A number of existing

approaches are able to transform informal software requirements to formal specifications.

However, most of these approaches require additional skills like understanding of specifica-

tion languages additional artifacts, or services of domain expert(s). Consequently, an auto-

mated approach is required to reduce the overhead of effort for converting informal

requirements to formal specifications. This work introduces an approach that takes a use

case model as input in the proposed template and produces a Kripke structure and LTL

specifications as output. The proposed approach also considers the common use case rela-

tionships (i.e., include and extend). The generated Kripke structure model of the software

allows analysis of software behavior early at the requirements specification stage which oth-

erwise would not be possible before the design stage of the software development process.

The generated LTL formal specifications can be used against a formal model like a Kripke

structure generated during the software development process for verification purpose. We

demonstrate the working of the proposed approach by a SIM vending machine example,

where the use cases of this system are inputs in the proposed template and the correspond-

ing Kripke structure and LTL formal specifications are produced as final output. Additionally,

we use the NuSMV tool to verify the generated LTL specifications against the Kripke struc-

ture model of the software, which reports no counterexamples thus validating the proposed

approach.

Introduction

Precise, consistent and verifiable software requirements are more useful for software verifica-

tion and validation activities than ambiguous, inconsistent and unverifiable software
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requirements written in a natural language. These features of software requirements are

mainly dependent on the selected requirements specification approach [1]. Informal software

specification is quite flexible due to the use of natural language. However, natural language

requirements are prone to errors and ambiguities. Consequently, the much needed character-

istics of a software specification, i.e., clarity and correctness can get compromised. Moreover,

it reduces the chances for providing regular and predictable support services which are usually

required after the deployment of a software [2]. In contrast, when these requirements are for-

mally specified, they ensure a higher degree of consistency, reliability and extendibility. These

specifications, due to their well defined syntax and semantics are unambiguous. However, for-

mal specifications are highly demanding in terms of time and effort [3]. The required addi-

tional time and cost, may not be feasible in all development scenarios. This creates space for

the development of an approach that can transform informal software requirements into for-

mal software requirements.

In the literature, a number of approaches can be found that transform informal software

requirements to formal requirements. For example, approaches proposed by Somé et al. [4],

Kalnins et al. [5] and Scandurra et al. [6]. These approaches require software requirements

written in natural language and transform these to corresponding requirements in a formal

language. Though these approaches perform well but they have different types of limitations,

for example some of these depend upon domain specific ontology [7], others require expertise

in supporting skills like formation of domain diagram, activity diagram, interaction diagram

or class diagram [8]. In addition to these limitations, some of the approaches either use

Restricted Use Case Modeling (RUCM) [9], or Use case Specification Language (USL) [10]

that requires understanding and usage of pre-defined syntax rules. Besides, these approaches

lack the capability to handle the use case relationships, i.e., include and extend relationships

which are useful for re-usability. Moreover, approaches proposed by Somé et al. [4], Kalnins

et al. [5], Scandurra et al. [6] and Yue et al. [9] and Chu et al. [10] perform transformation

at model level. A major limitation of model level transformation is that it is not a general pur-

pose transformation and works only for some selected configurations. This limitation was

addressed by proposing a meta-model based transformation mechanism. The distinctive char-

acteristics of this setup lie in its capability to handle all possible features of the source model

[11].

Realizing the importance of transformation and effects of overheads involved in the existing

transformation approaches, this work proposes an approach that transforms use case descrip-

tions into corresponding Kripke structure and LTL formal specifications. This approach

requires to document the use case description(s) in the proposed template in a natural lan-

guage. This approach also handles the commonly used use case relationships, i.e., include and

extend relationship. It performs the transformation at meta-model level. Both generated LTL

formal specifications and Kripke structure can be used as input to model checkers like

NuSMV [12], SPIN [13] and SAL [14]. However, model checking is not a direct subject of the

current study; instead, the focus is on formalization of use case description. The major contri-

butions of this paper are: meta-models for use case and Kripke structure and an approach to

transform use case description into a Kripke structure at meta-model level and use case to LTL

specifications directly.

The proposed meta-models for use case and Kripke structure as well as the proposed

approach are discussed in the proposed approach section, use case model and the generated

Kripke structure along with the generated LTL formal specifications for SIM vending machine

example are presented in the example section. Related work section discusses the existing

state-of-the-art approaches in this context. Finally, the conclusion section concludes the work.
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Proposed approach

This paper presents an approach to transform use case description(s) to a Kripke structure and

LTL formal specifications. The use case description(s) is(are) required to be specified in the

proposed use case template using a natural language. The proposed template requires to spec-

ify a use case description using a set of keywords along with the distinct listing of software

input and output symbols. These input and output symbols are identified at the requirements

elicitation stage. To make the proposed approach suitable for model-driven object-oriented

paradigm, meta-models for use case description and Kripke structure have been defined.

Along with these meta-models, transformation rules that transform a use case description to a

Kripke structure and LTL formal specifications are also defined. A user can use either of these

as an input to the model checkers like NuSMV, SPIN and SAL to verify the software behavior

at an early stage of software development process which otherwise would not be possible

before the design phase of the software development process. Fig 1 shows a schematic diagram

of the proposed approach.

The user populates an instance of the use case model. This populated use case instance is

processed by Use Case to Kripke Structure Transformation Process and a Kripke structure is

generated as an output. Use Case to LTL Transformation Process generates LTL formal specifi-

cations(LTL formulas) from the use case description provided as an input. The proposed

meta-models for use case description and Kripke structure along with Use Case to Kripke
Structure Transformation Process and Use Case to LTL Transformation Process are discussed in

the following sub-sections.

Use case meta-model

Generally, a use case template is required for writing a use case description. There are a num-

ber of available use case templates. Examples of popular use case templates include the tem-

plates proposed by Cockburn [15], Ivar Jacobson [2], RUP [16], Duran [17], Leite [18] etc.

These available use case templates contain some common features like use case name, actor

name, success scenario and alternate scenario. But to the best of our knowledge, UML does

not recommend any template as a standard template. This allows to propose a new use case

template, if required.

As discussed earlier, there are multiple available use case templates, but none of these lists

input and output symbols of the software explicitly. Moreover, available templates list alternate

Fig 1. Proposed approach schematic diagram.

https://doi.org/10.1371/journal.pone.0231534.g001
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scenario(s) in a separate section. This makes it difficult to proceed for the transformation pro-

cess as the transformation process must repeatedly scan the use case description back and

forth to track the possible flow of the use case. To overcome these difficulties and to make the

transformation process simple, we propose a use case template that lists the input and output

symbols explicitly. Furthermore, it enlists the alternate scenario(s) along with the normal

scenario.

Furthermore, the use case relationships are used to reuse a use case to make the system

more operable. This makes a use case more flexible to write in a more customized format.

Zaman et al. [19] proposed a use case template that is closer to our requirements of writing a

use description. However, this template does not handle use case relationships, i.e., include
and extend. In addition, their proposed template requires the lengthofBitVector, BitVector and

binary values for output symbols. These requirements make this template difficult to use by a

common user. The proposed template in this work does not require the user to calculate

lengthofBitVecor, BitVector and corresponding binary values for output symbols. In addition,

this template also handles use case relationships. An include relationship allows to include

another use case whereas, the extend relationship extends a use case functionality on some

specified interaction. As an example, consider the case of a software that allows a user to

choose a payment option by selecting to pay using a credit card or to pay by cash on delivery.

This software also requires the user to re-login when finalizing the payment option. Use case

relationships facilitate to specify this scenario.Pay by card or pay by cash on delivery use cases

can be extended and the requirement to re-login can be documented by including the login
use case.

A specimen of the proposed use case template is given in Fig 2.

The proposed template consists of a set of keywords including UseCase:, ActorSet:, Input-
Set:, OutputSet:, Scenario, Alternate_Scenario:, End_of_AlternateScenario, Continue, Include,
Extend, Condition and End_of_Usecase.

The use case name is required to be unique in a software and is recorded with the keyword

UseCase:. Software’s actor(s) is(are) labeled with the keyword ActorSet:. This template allows

to record input and output symbols explicitly. It enlists the possible input with a keyword

InputSet:. For example, a user’s credentials may be valid or invalid. In this case, the InputSet:
will have valid_credentials and invalid_credentials. Each use case is required to have an Input-
Set:. The output set is denoted by OutputSet: keyword and contains the possible output values

for this output symbol, e.g., a system can display a successful login message or invalid login

attempt, depending on the provided credentials to the software by a user. In this case, the Out-
putSet: with a label login message contains successful_login_message and invalid_login_attempt.
Other possible OutputSet: may have output symbols like file_uploaded_successfully and inva-
lid_file_upload_attempt with a label file notification message. The proposed approach is flexi-

ble and does not place any limitation on the number of OutputSet: and output symbols. It

dynamically fulfills the contextual requirements.

An actor’s interaction with a software is listed under the keyword Scenario and a possible

alternate scenario is with the keyword Alternate_Scenario. An alternate scenario can be con-

cluded in two ways either with Continue or End_of_AlternateScenario keyword. An alternate

scenario ended with End_of_AlternateScenario keyword represents an interaction with the

software which results in halting the execution and switching to the position from where the

alternate scenario started whereas, the Continue keyword marks the end of alternate scenario

where a software continues to repeat its operation unless a valid input is provided. The key-

word End_of_Usecase is used to mark the end of a use case. The keywords Include and Extend
are used to specify the use case relationships namely include and extend respectively and
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require a valid use case name. There is another keyword Condition that specifies the user inter-

action with the software when an extending use case extends the specified use case.

A context free grammar has been defined for the proposed use case template using

Extended Backus-Naur Form (EBNF) notation Fig 3. To ensure syntactical correctness of the

input use case, a parser has been developed. Fig lists the context free grammar. An id is defined

as a string of alphabets and _. This id can be used to define Ucname, inputsymbol, output’s

label, Outputvalue, Userline and Systemline. A Ucname is used with UseCase: to specify the

name of a use case. In addition, it is also used to specify the name of use case being included or

extended. The use case being included is specified with Include, whereas the use case being

extended is specified with Extend along with Condition. The actors of a use case are listed with

ActorSet: keyword. The input symbols of a use case can be specified by InputSet:. The output

symbols are listed with OutputSet along with its possible values. The Scenario: lists the user

action line(s) and system action line(s). The scenario is ended with End_of_Usecase. All the

possible alternate scenarios are listed with Alternate_Scenario. It lists the alternate user line(s)

and system line(s). An alternate scenario can be ended either by End_of_AlternateScenario or

Continue.
A use case containing Include or Extend is flattened by Use Case Flattener process and it is

listed as Rule 1. This process accepts a use case description, read its scenario line by line for the

Fig 2. Proposed use case template.

https://doi.org/10.1371/journal.pone.0231534.g002
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occurrence of Include or Extend. If any of these is found it calls Use Case Includer or Use Case
Extender rules accordingly.

Rule 1 Use Case Flattener
Require: UC as a use case description in the proposed template
Ensure: UCflattened as a use case description in the proposed template
1: Define UCtemp, UCflattened.ActorSet  UC.ActorSet, UCflattened.InputSet

 UC.InputSet, UCflattened.OutputSet  UC.OutputSet
2: for ℓ in UC.Scenario do
3: if ℓ contains Include then
4: UCtemp  Ucname
5: UCflattened  IncludeUseCase(UCflattened,UCtemp)
6: else if ℓ contains Extend then
7: UCtemp  Ucname
8: UCflattened  ExtendUseCase(UCflattened,UCtemp,Userline)
9: else
10: UCflattened.Scenario  UCflattened.Scenario + ℓ
11: end if
12: end for

Rule 2 Use Case Includer
Require: UCflattened, UCincluded as use case descriptions in the proposed
template
Ensure: UCflattened as a use case description in the proposed template
1: UCflattened.ActorSet  UCflattened.ActorSet [ UCincluded.ActorSet
2: UCflattened.InputSet  UCflattened.InputSet [ UCincluded.InputSet

Fig 3. Context free grammar for use case template.

https://doi.org/10.1371/journal.pone.0231534.g003
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3: UCflattened.OutputSet  UCflattened.OutputSet [ UCincluded.OutputSet
4: UCflattened.Scenario  UCflattened.Scenario + UCincluded.Scenario

Rule 3 Use Case Extender
Require: UCflattened, UCextended as use case descriptions in the proposed
template, Userline as scenario line
Ensure: UCflattened as a use case description in the proposed template
1: UCflattened.ActorSet  UCflattened.ActorSet [ UCextended.ActorSet
2: UCflattened.InputSet  UCflattened.InputSet [ UCextended.InputSet
3: UCflattened.OutputSet  UCflattened.OutputSet [ UCextended.OutputSet
4: UCflattened.Scenario  UCflattened.Scenario + Extension_Point +

Userline
5: UCflattened.Scenario  UCflattened.Scenario + UCextended.Scenario +

End_Extension_Point

Rule 2 takes UCflattened and UCincluded use case descriptions. It combines ActorSet, InputSet
and OutputSet of both use case descriptions. Moreover, this process appends scenario lines of

UCincluded to the scenario lines of UCflattened.
Rule 3 accepts UCflattened and UCextended use case descriptions. It combines ActorSet, Input-

Set and OutputSet of both use case descriptions. This process then append Extension_Point,
Userline and scenario lines of UCextended use case description to the the UCflattened scenario

lines. This process ends by appending End_Extension_Point to the UCflattened scenario. A meta-

model for this flattened use case is defined and it is shown in Fig 4.

UseCase is the main element that includes ActorSet, InputSet, OutputSet and the Scenario-
Line. UseCase element has a data member name to store use case name. ActorSet includes

Actor element(s) with a data element name to store the value of an actor. The true strength of

meta-model can be used if it carries its relationships with multiple objects of the same

Fig 4. Use case meta-model.

https://doi.org/10.1371/journal.pone.0231534.g004
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structure. For this matter mutual cardinality of objects is taken into account. There is one to

one cardinality between UseCase and ActorSet, whereas the cardinality between ActorSet and

Actor elements is one to many. UseCase can only have one InputSet and there can be more

than one InputSymbol elements in an InputSet. There can be multiple OutputSet in a UseCase
to contain the possible output symbols with their respective values. OutputSymbol element in

an OutputSet is value. ScenarioLine element in a UseCase element is used to represent use case

scenario lines. A UseCase element can have multiple ScenarioLine elements. ScenarioLine ele-

ment has its specialized forms including ActorActionLine, SystemActionLine, AlternateScenar-
ioLine, EndUseCaseLine, EndAlternateScenarioLine, ContinueLine, ExtensionPointLine and

EndExtensionPointLine. ActorActionLine element represents a use case scenario line where an

actor’s interaction with the system and SystemActionLine element is used to represent a soft-

ware response to an actor. AlternateScenarioLine element lists the start of an alternate scenario

and EndAlternateScenarioLine to mark the end of alternate scenario. The end of an alternate

scenario can also be marked by a ContinueLine element. ExtensionPointLine element is used to

mark the scenario lines of a use case being extended and EndExtensionLine is used to mark the

end of the scenario lines of the use case being extended. EndUsecaseLine is used to mark the

end of use case.

The use case meta-model can be described as:

UseCasemetamodel = h namei, ActorSeti, InputSeti, (k × OutputSet)i, (j × ScenarioLine)i i.
where i = 1, . . ., n, represents the ith instance of use case meta-model. namei is a use case model

name. ActorSeti = {Actor1, Actor2, . . ., Actorp} and p 2 N.

InputSeti = {InputSymbol1, InputSymbol2, . . ., InputSymbolq} where q 2 N and InputSymbolś
value is stored in name.

The variable k is a positive integer and it is used to represent the number of OutputSet in

the ith instance of use case meta-model and OutputSet = {label, OutputSymbol1, OutputSym-
bol2, . . ., OutputSymbols} where s 2 N and the label records the textual output e.g. login mes-

sage. OutputSymbol = {value. The element value denotes the textual value of output symbol

e.g. successful_login_message or invalid_login_attempt.
The variable j 2 N denotes the number of scenario lines in the ith instance of use case meta-

model. The ScenarioLine = {ActorActionLine, SystemActionLine, AlternateScenarioLine, EndAl-
ternateScenarioLine ContinueLine, ExtensionPointLine, EndExtensionPointLine, EndUseCase-
Line}. The proposed meta-model is implemented in Eclipse Modeling Framework (EMF) [20].

Kripke structure meta-model

A Kripke structure [21] is a formal notation and is a five-tuple hQ, S, δ, q0, λi where

• Q is a finite set of states,

• S is a finite set of input symbols,

• δ:Q×S! Q is a transition function,

• q0 2 Q is the initial state,

• λ: Q!2AP is a labeling function

The AP are atomic propositions describing some property of a system over a particular

state. An extension of a Kripke structure is proposed by Meinke et al. [22] to use it as a multi-

bit Moore machine with states labeled by Boolean bitvector that makes it useful for test case

generation of reactive systems by Learning-based Testing (LBT). The Kripke structure used for

this purpose is defined as:
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• Q is a finite set of states,

• S is a finite set of input symbols,

• δ:Q×S! Q is a transition function.

• q02 Q is the initial state,

• λ: Q! Bk is a labeling function and (b1,. . .,bk) 2 Bk, a Boolean bitvector, is an indexing of a

set AP of k atomic propositions.

Model checkers like NuSMV [12], SPIN [13] and SAL [14] take a Kripke structure as input

model for formal verification of software behavior. Fraser et al. [23] used a Kripke structure

model to generate test cases for white box testing by exploiting structural properties of the soft-

ware code using a Kripke structure model and in [24], [22] and [25], authors used specification

based black box testing by learning Kripke structure models of the system under test. The

model transformation process requires a meta-model of a Kripke structure. To the best of our

knowledge, there is no existing meta-model definition for a Kripke structure. However, meta-

model for a state machine exists in the literature [26]. In this study, we use the definition of

Kripke structure as in [22]. A meta-model for the reformulated Kripke structure has been

defined and is shown in Fig 5.

KripkeStructure element has a StateSet element which contains a start state and other states

of a Kripke structure. A State element has a name element and a BitLabel to store the bitvector

of the state. Its value is represented by Bit elements. Each Bit element can have a possible true
or false value. A KripkeStructure element has an InputSet element that consists of multiple

InputSymbol elements. The InputSymbol element has a name. A KripkeStructure element can

have multiple Transition elements that represent the transitions of a Kripke structure. A

Fig 5. Kripke structure meta-model.

https://doi.org/10.1371/journal.pone.0231534.g005
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Transition element is defined by a from and end state of State type and a transition symbol of

type InputSymbol.
The Kripke structure meta-model can be represented as:

KripkeStructuremetamodel = hStateSeti, InputSeti, (z× Transition)i i where i = 1,. . .,n denotes

the ith instance of Kripke structure meta-model.

The element StateSeti = {qinitiali, q1, q2, . . ., ql} where l 2 N.

The initial state qinitiali = {name = Initial_State and BitLabel} where BitLabel = Bit1, . . .,

Bitlengthofbitvector and Bit = {false}.
The state q = {name, BitLabel} where BitLabel = Bit1, . . ., Bitlengthofbitvector and Bit = {true,

false}
The element InputSeti = {InputSymbol1, InputSymbol2, . . ., InputSymbolm} wherem 2 N

and InputSymbol= name.

The element Transition = {qfromstate, qtostate, InputSymbol}. A Kripke structure can have mul-

tiple transitions. The designed meta-model is implemented using EMF [20].

Use case to Kripke structure transformation process

In model to model transformation, a model of a meta-model can be transformed to a model of

another meta-model. This transformation can be automated if the transformation rules are

expressed in some transformation language. Epsilon Transformation Language (ETL) is one

such language [27]. It is is a hybrid model to model and rule based transformation language. It

is built on top of the Epsilon model management platform that allows to perform multiple

model management tasks including update in place, model to model and model to text trans-

formation. ETL can transform many input models to many output models.

Fig 6 shows the transformation process of a use case model to a Kripke structure model. A

use case description UC is provided as an input model to this transformation process. The

transformation process consists of nine rules to handle the provided use case description and

to generate the resultant Kripke structure model KS. We will briefly discuss these rules in the

following paragraphs. We abstracted some of the implementation details to make these rules

more readable.

Rule 1 copies the UC.InputSet to KS.InputSet and also calculates the bitvectorlength value.

In addition, it also generates random binary values for OutputSymbol in OutputSet.
Rule 1 Calculate binary values, bitvectorlength and copy input symbols

Fig 6. Use case to Kripke structure transformation.

https://doi.org/10.1371/journal.pone.0231534.g006
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1: ucOPSetBinary: new UseCase!OutputSet, bitvectorlength  0,
InputSettemp: new KripkeStructure!InputSet

2: for UC.OutputSet do
3: countoutput  outputOutputSet.OutputSymbol.count
4: bitreq  RequiredBitscountoutput; bitvectorlength += bitreq
5: for OutputSymbol do
6: ucOPSetBinary.value  OutputSymbol.value
7: ucOPSetBinary.binaryvalue  random binary value
8: end for
9: end for
10: for UC.InputSet.InputSymbol do
11: InputSettemp.InputSymbol.name  UC.InputSet.InputSymbol.name
12: end for
13: KS.Inputset = InputSettemp
14: KS.bitvectorlength  bitvectorlength

Rule 2 defines statedead, KS.State.InitialState and qcurrent states. It also initializes the KS.

State.InitialState and statedead BitLable’s indices to false. In addition, it set qcurrent value to KS.

State.InitialState.
Rule 2 Define Initial and Dead states

1: BitLabeltemp: new KS.BitLable, statedead, qcurrent: new KS.State
2: for BitLabeltemp do
3: BitLabeltemp.Bit.val  false
4: end for
5: KS.State.InitialState.BitLabel  BitLabeltemp
6: statedead  BitLabeltemp
7: qcurrent  KS.State.InitialState

Rule 3 reads a scenario line at a time and tracks the occurrence of actor, input and output

symbols. On their occurrence it sets the value of flag bits isActor, isInput and isOutput accord-

ingly. It also tracks the values of last read input symbol to σtemp and output symbol to

outputtemp.
Rule 3 Scan a scenario line for the occurrence of Actor, Input and Output Symbols

1: for UC.ScenarioLine do
2: for UC.InputSet do
3: if ℓ contains σ then
4: isInput  true, σtemp  InputSymbol.name
5: end if
6: end for
7: for UC.ActorSet do
8: if ℓ contains Actor then
9: isActor  true
10: end if
11: end for
12: for UC.OutputSet do
13: for OutputSymbol do
14: if ℓ contains OutputSymbol then
15: outputtemp  OutputSymbol.value
16: end if
17: end for
18: end for
19: end for‘

Rule 4 defines a new state qnew on the occurrence of a actor and input symbol in a scenario

line. It defines BitLabeltemp with the value of qcurrent. The value of BitLabeltemp is updated by

the Bit Label Updater process. It updates the corresponding indices for the BitLabeltemp with

the corresponding binary value of outputtemp. The updated outputtemp value is then assigned to

qnew.BitLablel. The newly created state qnew is then added to KS.State. A transition from
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qcurrent and qnew is defined and is labeled with the value of σtemp. This newly created transition

is added to the KS.Transition. Transitions for the UC.InputSet other than σtemp are also

defined from qcurrent and statedead. These transitions are also added to KS.Transition. The value

of qcurrent is updated with the value of qnew.

Rule 4 Define a new state and transitions
1: if isInput AND isActor then
2: isInput  false, isActor  false
3: Define qnew, BitLabeltemp  qcurrent.BitLabel
4: BitLabeltemp  BitLabelUpdater (outputtemp, ucOPSetBinary,

BitLabeltemp)
5: qnew.BitLabel  BitLabeltemp
6: KS.State.add(qnew)
7: if isExtensionPoint then
8: KS.Transition.add(qbeforeExtension, qnew, σtemp)
9: else
10: KS.Transition.add(qcurrent, qnew, σtemp)
11: end if
12: for UC.InputSet—σtemp do
13: KS.Transitio.add(qcurrent, statedead, σ)
14: end for
15: qcurrent  qnew
16: end if

Rule 5 describes the computation steps that are performed when a scenario line ℓ of

type UC.AlternateScenarioLine is read. A temporary state qhold is defined and the value of

qcurrent is copied to it. Moreover, a new state qn ew is created. The value of qcurrent.BitLabel
is copied to BitLabeltemp. The value of BitLabeltemp is updated with the binary value of last

output symbol read. The updated BitLabeltemp is assigned to qnew.BitLable. This rule also

defines a transition from the state qcurrent to the newly created state qnes and is labeled with

the value of σtemp. This transition is added to the KS.Transition. Transitions for the all input

symbols other that σtemp are defined from qcurrent and deadstate and are also added to KS.

Transition.

Rule 5 Process a use case line of type Alternate Scenario
1: if ℓ.typeOf(UC.AlternateScenarioLine) then
2: qhold  qcurrent
3: Define qnew, BitLabeltemp  qcurrent.BitLabel
4: BitLabeltemp  BitLabelUpdater (outputtemp, ucOPSetBinary,
BitLabeltemp)
5: qnew.BitLabel  BitLabeltemp
6: KS.State.add(qnew)
7: KS.Transition.add(qcurrent, qnew, σtemp)
8: for UC.InputSet—σtemp do
9: KS.Transition.add(qcurrent, statedead, σ)
10: end for
11: qcurrent  qnew
12: end if

Rule 6 defines a new transition from qcurrent to qcurrent and is labeled with σtemp, when a sce-

nario line of type UC.ContinueLine is read. The value of qcurrent is also updated with the value

of qhold.
Rule 6 Process a use case line of type Continue

1: if ℓ.typeOf(UC.ContinueLine) then
2: KS.Transition.add(qcurrent, qcurrent, σtemp)
3: qcurrent  qhold
4: end if
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Rule 7 defines a transition form qcurrent to KS.State.InitialState on reading a line of type UC.

EndAlternateScenarioLine and this transition is labeled with value of σtemp. The value of qcurrent
is updated with the value of qhold.

Rule 7 Process a use case line of type End Alternate Scenario
1: if ℓ.typeOf(UC.EndAlternateScenarioLine) then
2: KS.Transition.add(qcurrent, KS.States.InititalState,σtemp)
3: qcurrent  qhold
4: end if

Rule 8 processes a scenario line of type UC.ExtensionPointLine that results in the definition

of a new state qbeforExtension. The calue of state qcurrent is copied to the state qbeforExtension and a

flag isExtensionPoint is marked to true.
Rule 8 Process a use case line of type Extension Point

1: if ℓ.typeOf(UC.ExtensionPointLine) then
2: isExtensionPoint  true
3: qbeforeExtenstion  qcurrent
4: end if

Rule 9 processed a scenario line of type UC.EndExtensionPointLine and defines a new tran-

sition from qcurrent to qbeforeExtenstion is defined and it is labeled withe σtemp. The value of qcurrent
is assigned with the value of qbeforeExtension and the flag bit isExtentionPoint set to false. The sce-

nario line of type UC.EndUsecaseLine does not produce any impact on the transformation

process.

Rule 9 Process a use case line of type End Extension Point
1: if ℓ.typeOf(UC.EndExtensionPointLine) then
2: KS.Transition.add(qcurrent, qbeforeExtension, σtemp)
3: qcurrent  qbeforeExtenstion
4: isExtensionPoint  false
5: end if

The time complexity for Use Case to Kripke Structure Transformation process is calculated

and it is O(n(ip+os(op)+ac)), where n denotes the number of scenario lines, ip denotes the

number of input symbols, os denotes the number of output set, op denotes the number output

symbols in an os and ac denotes the number of actors in the use case description of the use

case provided as an input to this process.

Use case to LTL transformation process

The use case description, described in the proposed template, is also used to produce LTL for-

mal specifications. LTL formal specifications are built using LTL formulas. LTL formulas are

built from finite sets of atomic propositions, the logical operators and the temporal operators.

The temporal operators include:

• Next operator, represented by the symbol � or X

• Eventually operator, represented by the symbol � or F

• Globally operator, represented by the symbol □ or G

• Until operator, represented by the symbol U

Formal semantics of LTL operators can be described with the help of Kripke structure. Let

K be a Kripke structure and a path ρ = hq0, q1,.:., qni corresponding to a word ω = σ0, σ1, . . .,

σm 2 Sω is a sequence such as 8i� 0: qi+1 = δ(qi, σi) and q0 is the initial state. The set Paths(K,

q0) denotes all paths in K, where q0 is the initial state of K. If we consider ϕ and ψ as two syn-

tactically well formed LTL formulas then semantics of LTL operators over path ρ can be

described as:
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• X ϕ: K, ρ⊨ X ϕ� K, ρ1 ⊨ ϕ

• F� : K; r � F� � 9 i 2 N : K; ri � �

• G� : K; r � G� � 8 i 2 N : K; ri � �

• �Uc : K; r � �Uc � 9 i; j 2 N : K; rj � c ^ 80 � i < j;K; ri � �

The scenario lines of a use case description specify either an actor’s interaction with the

software using an input symbol or system’s interaction with the actor using an output symbol.

The input symbol is specified with the input identifier in the produced LTL formal specifica-

tions. Each of the specified OutputSet has a label and it is used to specify a particular output.

The OutputSymbol in OutputSet holds the possible value for this output. In the start of a use

case scenario, all of the OutputSet have a null value and this is marked as the Initial_State in

the generated LTL formal specifications. The state is specified in the LTL formal specifications

by state. LTL formal specifications are generated from a use case description by LTLNextSpeci-
ficationGenerator process and LTLFutureSpecificationGenerator process and these are

described by Rule 1 and Rule 2 respectively. The block diagram of Use Case to LTL Transfor-
mation process is shown in Fig 7.

Rule 1 produces LTL formal specifications using the LTL next operator. It initializes the

OutputLabel with all the specified OutputSet label’s value to null. It, then, scans all scenario

lines one by one for the occurrence of actor, input symbol and output symbol. If any of these is

found in the line being read then it enables the corresponding flag isActor, isInput and isOut-
put to true. It stores the read input symbol to InputSymbolread. The read output symbol is

stored to OutuputSymbolread and the value of corresponding label in OuputLabel is

updated with the value of OutuputSymbolread. The value of OutputLabel is stored in OutputLa-
belbeforeExtension on reading the Extension_Point line and is reassigned to OutputLabel on read-

ing the End_Extension_Point line. Whereas, the value of OutputLabel is stored in

OutputLabelbeforeAlternate and it is reassigned to OutputLabel on reading the Continue line or

End_of_AlternateScenario line. An LTL formula identified with an identifier Formulacurrent
is defined by using the values of OutputLabel, InputSymbolread and the value of

OutputSymbolread. A keyword LTLSPEC is added in the start of Formulacurrent to make it

appropriate for model checking using NuSMV model checker. The generated LTL formula

identified as Formulacurrent is added to LTL formulas and is the final output of this process.

Rule 1 LTL next specification generator process
isInput  false, isActor  false, isOutput  false
String OutputLabel, OutputLabelbeforeExtension, OutputLabelbeforeAlternate,
InputSymbolread, OutputSymbolread, Formulacurrent

1: for set in UC.OutputSet do

Fig 7. Use case to LTL transformation process.

https://doi.org/10.1371/journal.pone.0231534.g007
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2: set.OutputSymbols  set.OutputSymbols + null
3: OutputLabel  OutputLabel + set.Label + “= null”
4: end for
5: for ℓ in UC.ScenarioLine do
6: for inputsymbol in UC.InputSet then
7: if ℓ contains inputsymbol then
8: isInput  true
9: InputSymbolread  inputsymbol
10: end if
11: end for
12: for set in UC.OutputSet do
13: for outputsymbol in set do
14: if ℓ contains outputSymbol then
15: isOutput  true
16: OutputSymbolread  outputsymbol
17: for setavailable in UC.OutputSet do
18: if set.Label = setavailable then
19: Update OutputLabel.set.Label  OutputSymbolread
20: end if
21: end for
22: end if
23: end for
24: end for
25: for actor in UC.ActorSet do
26: if ℓ contains actor do
27: isActor  true
28: end if
29: end for
30: if ℓ.typeof(UC.ExtensionPointLine) then
31: OutputLabelbeforeExtension  OutputLabel
32: end if
33: if ℓ.typeof(UC.EndExtensionPointLine) then
34: OutputLabel  OutputLabelbeforeExtension
35: end if
36: if ℓ.typeof(UC.AlternateScenarioLine) then
37: isAlternate  true
38: OutputLabelbeforeAlternate  OutputLabel
39: end if
40: if ℓ.typeof(UC.ContinueLine) OR ℓ.typeof(“UC.EndAlternateSce-
narioLine”) then
41: isAlternate  false
42: OutputLabel  OutputLabelbeforeAlternate
43: end if
44: if isActor AND isInput AND isOutput then
45: if all OutputSet.Label.value = null then
46: Formulacurrent  “LTLSPEC G (state = Initial_State & input =”

+ InputSymbolread + “− > X (” + OutputSymbolread + “)”
47: else
48: Formulacurrent = “LTLSPEC G (” OutputLabel + “& input =” +

InputSymbolread + “−> X (” + OutputSymbolread + “)”
49: end if
50: end if
51: LTL formulas = LTL formulas + Formulacurrent
52: isActor  false, isOutput  false
53: end for

Rule 2 enlists the process to generate the LTL formulas using LTL future operator. It initial-

izes the Inputfuture value to null in the start of the process. It scans all scenario lines one by one
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for the occurrence of actor, input symbol or output symbol. If any of these is read in the line

being read then it enables the corresponding flag isActor, isInput and isOutput to true. It

stores the read output symbol to OutputSymbolread. When an input symbol is read, the value of

Inputfuture is assigned to Inputbeforefuture. The value of Inputfuture is then concatenated with X
where X represents the LTL next operator and the read input symbol with a label input in the

generated LTL formula.

Rule 2 LTL future specification generator process
boolean isInput  false, isActor  false, isOutput  false
String Inputfuture, Inputbeforefuture, InputbeforeExtension,

InputbeforeAlternate,
OutputSymbolread, Formulacurrent
Counterinput  0, isFirstWritten  false, isAlternate  false

1: for ℓ in UC.ScenarioLine do
2: for inputsymbol in UC.InputSet do
3: if ℓ contains inputsymbol
4: isInput  true
5: if Counterinput = 0 then
6: Counterinput++
7: Inputfuture  “(input =” + inputsymbol + “)”
8: else
9: Inputbeforefuture  Inputfuture
10: Inputfuture  Inputfuture + “& X (input =” + inputsymbol + “)”
11: end if
12: end if
13: end for
14: for set in UC.OutputSet do
15: for outputsymbol in set do
16: if ℓ contains outputSymbol then
17: isOutput  true
18: OutputSymbolread  outputsymbol
19: end if
20: end for
21: end for
22: for actor in UC.ActorSet do
23: if ℓ contains actor then
24: isActor  true
25: end if
26: end for
27: if ℓ.typeof(UC.ExtensionPointLine) then
28: InputbeforeExtension  Inputfuture
29: end if
30: if ℓ.typeof(UC.EndExtensionPointLine) then
31: Inputfuture  InputbeforeExtension
32: end if
33: if ℓ.typeof(UC.AlternateScenarioLine) then
34: isAlternate  true
35: InputbeforeAlternate  Inputfuture
36: Inputfuture  Inputbeforefuture
37: end if
38: if ℓ.typeof(UC.ContinueLine) OR ℓ.typeof(UC.

EndAlternateScenarioLine) then
39: isAlternate  false
40: Inputfuture  InputbeforeAlternate
41: end if
42: if isActor AND isInput AND isOutput then
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43: Formulacurrent  “LTLSPEC G (state = Initial_State &” +
Inputfuture + “−> F (” + OutputSymbolread + “)”

44: end if
45: LTL formulas  LTL formulas + Formulacurrent
46: isActor  false, isOutput  false
47: end for

The value of Inputfuture is stored in InputbeforeExtension on reading the UC.ExtensionPointLine
and is reassigned to Inputfuture when the UC.EndExtenstionPointLine is read. Whereas, on

reading the UC.AlternateScenarioLine, the value of Inputfuture is stored in InputbeforeAlternate and

the value of Inputfuture is updated with the value of Inputbeforefuture. While, on reading the UC.

ContinueLine or UC.EndAlternateScenarioLine the value of Inputfuture is updated with the

value of InputbeforeAlternate. The LTL formula identified by the Formulacurrent identifier is pro-

duced by using the values of state, Inputfuture and OutputSymbolread. A keyword LTLSPEC is

added in the start of Formulacurrent to make it appropriate for model checking using NuSMV

model checker. The generated Formulacurrent is added to LTL formulas.

The time complexity of Rule 1 and Rule 2 is O(n(ip+os (op)+ac)) where n denotes the num-

ber of scenario lines, ip denotes the number of input symbols, os denotes the number of Out-
putSet, op denotes the number of output symbols in an os. The variable ac denotes the number

of actors in a use case description.

Soundness of the proposed approach

The proposed approach consists of two transformation processes i.e. Use Case to Kripke Struc-

ture Transformation and Use Case to LTL Transformation. In the following paragraphs, we

will discuss the soundness of these processes.

Soundness of use case to Kripke structure transformation process. This process pro-

duces a Kripke structure from the provided use case. The generated Kripke structure is well

formed and deterministic in nature. Initially this process defines an initial state s0 and a dead

state d0. These states are added to the states of the generated Kripke structure. All the generated

states are labeled with unique bitvector of same length. All the input symbols are unique. The

generated Kripke structure is deterministic. This process defines a unique initial state. There is

only one transition defined for the read input symbol and the transitions for the remaining

input symbols are defined and mapped to d0.

Soundness of use case to LTL transformation process. This process generates LTL for-

mulas from given use case. A context free grammar has been defined using Extended Backus-

Naur Form (EBNF) to verify the well formedness of the generated LTL formulas. The grammar

is as follows:

Ltlstart = “LTLSPEC” Ltlform {“LTLSPEC” Ltlform}.

Ltlform = Atomicprop {Binaryopr Atomicprop}.

Binaryopr = “U” | “R” | “−>” | “&” | “|” | “=” | “!=”.

Atomicprop = “(”Ltlform“)” | Unaryopr Ltlform | “TRUE” | “FALSE” | id.

Unaryopr = “X” | “G” | “F” | “!”.

id = alpha {alpha}.

alpha = ‘a’‥‘z’ + ‘A’‥‘Z’ + ‘_’.

The generated LTL formulas for the examples have been parsed against this grammar and

no error was found. Count of the generated LTL formulas is dependent on the number output
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symbols of given use case. Whereas, complexity of LTL formulas is dependent on number of

input symbols, system action lines and AlternateScenario lines of the use case.

A process is called complete in terms of its ability to generate Kripke structure and LTL for-

mulas from all use case constructs provided in the proposed template.

Completeness of use case to Kripke structure transformation process. The use case

constructs include input symbols, output symbols, user action line, actor action line, Alterna-

teScenario and EndAlternateScenario lines. The include and extend constructs are handled by

Use Case Flattener process. This process replaces these to ExtensionPoint and EndExtenstion-

Point lines. This process handles all use case constructs proposed in use case template. Rule 1

handles input symbols and output symbols of input use case. Rule 2 handles user action and

system action lines. Rule 5 handles AlternateScenario line and Rule 6 handles Continue line. In

addition to theses, Rule 7 handles EndAlternateScenario line. Whereas, ExtensionPoint and

EndExtensionPoint lines are handled by Rule 8 and Rule 9 respectively.

Completeness of use case to LTL transformation process. This process consists of two

rules and both rules handle all use case constructs. The use case constructs are treated in differ-

ent contexts for the generation of LTL formulas by Rule 1 and Rule 2. Input symbols are han-

dled by lines 6-11 of Rule 1 and lines 2-13 of Rule 2. Whereas, output symbols are handled by

lines 1-4, 12-24 of Rule 1 and lines 14-21 of Rule2. ExtensionPoint and EndExtensionPoint lines

are handled by lines 30-35 of Rule 1 and lines 27-32 of Rule 2. AlternateScenario line is handled

by lines 36-39 of Rule 1 and lines 33-37 of Rule 2. Continue and EndAlternateScenario are han-

dled by lines 40-43 of Rule 1 and lines 38-41 of Rule 2.

Tool support

The proposed approach is implemented in the Use Case to Kripke Structure and LTL formulas

generator tool (UCKSLTL) [28]. This tool takes a use case in the proposed template as an

input and produces the resultant Kripke structure along with LTL specifications. The gener-

ated Kripke structure is presented in .dot, .gml, .png and .smv formats. The tool uses GraphViz

API [29] to draw the generated Kripke structure. This tool verifies the syntactical structure of a

use case against the proposed template. These features simplifies the user task to document a

use case description and the transformation process.

Example

The proposed approach has been used to transform use case descriptions of a number of exam-

ples which can be retrieved from UCKSLTL weblink [28]. We select Subscriber Identification

Module (SIM) vending machine example to show the working of proposed approach in this

paper. A SIM vending machine, works as a kiosk. It facilitates its user to check for a registered

SIM, purchase a new SIM, view balance history and update call plan after adding a Computer-

ized National Identification Card (CNIC) number. The use case description for SIM vending

machine is shown in Fig 8. The use case diagram for this is shown in Fig 9.

The proposed approach requires to add use case description of the included and extended

use cases descriptions in the use case description of the use case including or extending them.

This addition is also performed by the tool. However, the use case description after addition of

the use case descriptions being included and extended is shown in Fig 10 to provide the reader

an insight into this artifact.

The corresponding Kripke structure instance is shown in Fig 11. The exceptional behavior

of system being developed is mapped to a dead state. In the generated Kripke structure, the

dead state and the transitions mapping to it are not shown to make this figure readable.
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A set of LTL formal specifications is generated by this approach for SIM vending machine

example. Some of the generated LTL formulas are listed here:

• LTLSPEC G(state = Initial_State & input = valid_CNIC! X(cardMessage =

valid_card_message))

Fig 8. A SIM vending machine start a transaction use case description.

https://doi.org/10.1371/journal.pone.0231534.g008

Fig 9. A SIM vending machine start a transaction use case diagram.

https://doi.org/10.1371/journal.pone.0231534.g009
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The software displays a valid card message to the user if the user provides a valid CNIC to

the software at the initial state.

• LTLSPEC G(cardMessage = valid_card_message & checkSIMMessage = null& purchaseSI-
MOptionMessage = null& amountMessage = null& thumbMessage = null& issueSIMMessage
= null& balanceHistoryMessage = null & changePlanMessage = null& input = number_of_re-
gistered_SIMs! X(checkSIMMessage = list_of_registered_SIMs))

Fig 10. A SIM vending machine start a transaction use case detailed description.

https://doi.org/10.1371/journal.pone.0231534.g010
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The software displays the list of registered SIMs to the user if the user asks the software to

provide the number of registered SIM after the provision of valid CNIC to the software.

• LTLSPEC G(state = Initial_State & (input = valid_CNIC) & X (input = number_of_register-
ed_SIMs)! F (checkSIMMessage = list_of_registered_SIMs))

A user will get the list of registered SIMs from the software by providing a valid CNIC and

asking the software to provide number of registered SIM as input.

• LTLSPEC G (state = Initial_State & (input = valid_CNIC) & X (input = number_of_register-
ed_SIMs) & X (input = change_plan_option)! F (changePlanMessage = SIM_current_plan))

A user will get the information of SIM current plan after providing a valid CNIC, number

of registered SIM and SIM plan as input to the software.

The approach presented in this paper transforms a use case description into corresponding

Kripke structure and LTL formal specifications. Two different approaches are used in this

study: one is to generate a Kripke structure from a use case description and the other one pro-

duces LTL formal specifications from the same use case description. Both of the generated for-

malism correspond to the same software and can be used by a model checker like NuSMV as

an input for the validation purposes. For the validation purpose the generated Kripke structure

and the LTL formal specifications were provided to the NuSMV tool. Upon execution NuSMV

did not generate any counterexample. This validates the generated kripke structure and LTL

formal specifications.

Fig 11. A SIM vending machine start a transaction Kripke structure.

https://doi.org/10.1371/journal.pone.0231534.g011
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This approach is domain independent and requires software requirements artifact, in the

proposed template, for the transformation process. Whereas the other available approaches

require additional artifacts like domain model, sequence diagram, interaction diagram, activity

diagram or business rules definition along with the software requirements artifact for the

transformation process. The user of this approach also does not require the skills to specify the

software requirements artifact in some specialized specification language.

Scalability of the proposed approach

In this section, we present some preliminary results to assess the scalability of the proposed

approach for larger case studies. The ATM cash withdrawn example, the SIM vending

machine example and two other case studies have been used for scalability analysis of the pro-

posed approach. The time complexity and the execution time of the proposed transformation

process depend on the following four parameters of the input use case: (a) number of actors

(b) number of input symbols (c) number output symbols and (d) number of scenario lines.

However, in our case studies, there is only one actor in each use case. The experiments have

been performed on an Intel Core2 Duo P8600 machine with 8 GB RAM, running 64-bit

Microsoft Windows 7 Professional operating system. The transformation process for the

example and each case study have been executed 500 times and a mean execution time has

been computed to eliminate slight variance due to operating system processes and threads

scheduled at a specific time. Table 1 lists the execution times against the selected input parame-

ters, as well as the number of states and transitions of the generated Kripke structure for each

case study. Fig 12 shows a growth in time required (as given by time complexity formula)

against the use case description parameters. The values of use case description parameters

have been normalized in the range 0 to 1. The values of use case parameters are on the x-axis

and the values of time complexity are on the y-axis of the graph. Likewise Fig 13 shows the

relationship between use case parameters and the actual execution time. The values of use case

parameters are on the x-axis and the values of execution times on the y-axis of the graph. The

graph shown in Fig 12 reflects an increase in the time complexity values as the values of use

case parameters increase. It can be seen from both figures that the growth in time requirement

is not linear, it is increasing slightly more rapidly. This observation is consistent with the time

complexity formula given in Use Case to Kripke Structure Transformation Process sub-section

which shows that the worst-case time complexity is quadratic. Another aspect of scalability

relates to the size of generated Kripke structure. The last two columns of Table 1 show the

Table 1. Use case parameters and Kripke structure.

Name Input Symbols Output Symbols Scenario Lines Time Complexity Execution Time (ms) States (Q) Transitions (T)

ATM cash withdrawn 6 7 21 283 0.19 8 50

SIM Vending

Machine

15 16 46 1472 0.55 16 23

Customer Work Flow Story 1 6 7 20 280 0.18 7 10

Story 2 9 9 27 513 0.26 10 13

Story 3 8 8 25 425 0.25 9 12

Story 4 5 5 17 187 0.13 6 8

Story 5 5 5 17 187 0.13 6 8

Touch’D Make Profile 24 19 67 2948 0.88 20 30

View Contact 12 13 41 1066 0.44 14 20

Call A

Contact

3 3 9 63 0.07 3 4

https://doi.org/10.1371/journal.pone.0231534.t001
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numbers of states and transitions of the generated Kripke structure. Figs 14 and 15 show

growth in the number of states and transitions, respectively, against the use case parameters.

The values of use case parameters have been normalized before plotting these graphs. Both

graphs show linear growth in the size of generated Kripke structure against the size of input

use case.

Related work

In this section, we review the approaches that transform use case description into correspond-

ing formal notations.

Fig 12. Time complexity to use case parameters.

https://doi.org/10.1371/journal.pone.0231534.g012

Fig 13. Execution time to use case parameters.

https://doi.org/10.1371/journal.pone.0231534.g013
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Somé et al. [4] propose to generate a state transition graph from a use case description and

a domain model of a software. The domain model evolves with the maturity of the software

development process. In addition, the generated transition graph does not consider the out-

puts of the software. This reduces the use of this generated transition graph for basic level of

verification activities. Moreover, this also requires the additional efforts to reformulate a tran-

sition graph with the evolution of the domain model.

Kalnins et al. [5] generate a multi-layered model from a use case description. The use case

description in the case of Kalnins et al. is required to be expressed in Requirements Specifica-

tion Language (RSL) [30]. This use case description along with the UML activity and interac-

tion diagrams are used to produce an architectural model. The generated architectural model

includes application logic, business logic and data access layers. These layers are populated

with UML component, interface, dependency, class and package instances. This approach is

also supported by a tool. Though Kalnins et al. make a significant contribution but Smialek

et al. [31] comprehend the usage of RSL with manual annotation of noun, verb, subject and

predicate in a use case description. Their approach generates a sequence diagram from this

Fig 14. Kripke structure states to use case parameters.

https://doi.org/10.1371/journal.pone.0231534.g014

Fig 15. Kripke structure transitions to use case parameters.

https://doi.org/10.1371/journal.pone.0231534.g015
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annotated software requirements expressed using RSL. This approach requires manual efforts

for the labeling process. Furthermore, the obtained precision is not scalable for supporting

large scale industrial projects. Software validation plays an equally important role that is why it

needs to be considered duly. Unfortunately, the approach presented by Smialek et al. [31] does

not consider this aspect. Whereas, Scandurra et al. [6] proceed by prioritizing the validation

aspect. The authors used RUCM framework for achieving this objective and eventually Scan-

durra et al. provided corresponding abstract state machine. The same framework of RUCM

has also been used by another group of researchers Yue et al. [9] but the difference is that Yue

et al. apply restricted rules and UCMeta for constructing sentences needed for use case

description. The achievement of the authors primarily revolves around the transformation of

use case description into the target domain and activity diagrams. Though the authors along

with the utility of aToucan [32] contributed in simplifying the whole setup. However, this

approach requires comparatively higher degree of expertise for documenting the use case

description using RUCM. It seems impractical for a common user to practice this approach

which discourages its integration into related areas of research.

Zaman et al. [19] transform a use case description into a Kripke structure. This approach

requires the specification of use case description in a proposed template. This template

requires the calculation of corresponding binary values for the output symbols of the software.

Moreover, this approach does not handle the use case relationships.

Singh et al. [33] propose a technique that requires the creation of UML class and sequence

diagrams prior to the formal transformation. After forming of these two artifacts they are able

to formalize the static and dynamic views of a software in Z language. A software static view is

extracted from a use case description with the support of a class diagram. Whereas, the soft-

ware dynamic view is generated from the sequence diagrams. UML class and sequence dia-

grams are built during the design stage of the software development process. A correction at

this stage of the development process is much expensive and also requires reformation of other

software development artifacts.

A use case can describe only a single functionality offered in a software. Whereas, a software

constitutes a number of functionalities. The above discussed approaches do not consider the

software level constraints. Software level constraints can be defined with the help of Object

Constraint Language (OCL) [34] and is used by Chu et al. [10] for formal transformation.

They have used USL to document a use case description. The pre- and post-conditions of use

case description are required to be expressed in OCL. This use case description along with

UML class diagram is used to build a Labeled Transition System (LTS) [35] by using defined

domain meta concepts and utility functions. This approach is expensive in terms of writing

pre- and post-conditions of a use case in OCL, specifying use case description in terms of

domain meta concepts and analytical skills to build a class diagram. The generated labeled

transition system seems not to be aligned with the formal system due to absence of initial and

final states in its formal setup that requires an explicit initial state to start its computation.

The approaches discussed so far focus on architectural arrangements of a software and

ignore the software’s business environment as well its constraints. This aspect has been consid-

ered by researchers and a number of approaches have been proposed to formalize informal

requirements. Business environment of a software influence the design and working of a soft-

ware. These can be represented by using business rules and domain ontology and are used by

the following approaches for the formal transformation of informal software requirements.

Selway et al. [36], use General Architecture for Text Engineering (GATE) to process busi-

ness rules expressed in a controlled natural language to generate the preliminary Semantics of

Business Vocabulary and Business Rules (SBVR) model [37] with the assistance of a domain
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expert. The limitation of this model lies in its continuous and unconditional reliance over the

domain expert and its limited vocabulary.

Li et al. [3] further investigated process of informal to formal requirements transformation

but with the slight difference of using the Web Ontology Language (OWL) in the transforma-

tion process. This approach is limited in impact due to its nature of being domain specific.

Consequently, it requires consistent additional efforts for the description of object, rules and

relations.

The aforementioned discussed approaches transform informal specifications to formal

specifications. Most of these approaches depend on the usage of a restricted natural language

like RSL or RUCM, prior to the transformation process. The disadvantage of limited vocabu-

lary and restricted rules compromise inherent features of simplicity and ease of use. Other

approaches require the understanding and expertise in constraint languages like OCL are

expensive as these constraints are defined on artifacts other than the requirements document.

A number of approaches require the formation of artifacts like domain, sequence, interaction

and activity diagrams. These diagrams are built later in the design stage of the software devel-

opment process. Any correction at this stage is expensive and require the reformation of these

artifacts prior to the re-transformation process. The approaches to transform informal require-

ments in the light of software business environment are domain specific and are based on the

definition of business objects and their relations. Such domain specific approaches require the

services of a domain expert for the realistic definition of business environment.

Considering the identified limitations including understanding of specialized languages,

requirement of additional skill set, formation of other software development artifacts and defi-

nition of software environment, there is a need for an approach that allows to specify the soft-

ware requirements in natural language, using requirements stage artifacts and is domain

independent.

A comparison of the proposed approach with the existing approaches based on required

input, generated output, required additional artifacts and additional skills to practice the

approach is analyzed. This analysis is provided in Table 2.

It can be observed from Table 2 that most of these approaches require additional artifacts

like domain model, sequence diagram, activity diagram and interaction diagram along with

use case description prior to the transformation process. These diagrams are created at the

design stage of the software development process. It can also be seen that some of these

approaches require use case description specification in some specialized specification lan-

guage like USL, RUCM or RSL. This aspect adds additional requirement for a user of these

approaches. A number of these approaches are domain specific and require continuous sup-

port of domain expert for domain concepts definition. In comparison to these approaches, the

proposed approach requires the software artifact itself specified in the proposed template

using natural language. This template is simple enough and requires from the user to identify

software inputs and outputs, those are defined at requirements elicitation stage.

The objective of this study is to generate a Kripke structure and LTL formal specifications.

For this purpose, only those attributes of a use case description are considered which are useful

for the target formalism and these attributes are common in other existing use case templates.

In proposed approach, additional attributes of use case description like pre-/post- condition,

trigger, etc. are not considered as they do not contribute in the transformation process.

Conclusion

In this paper, we proposed an approach that transforms informal software requirements, speci-

fied as use cases, to corresponding formal requirements, i.e., LTL formal specification and a
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Kripke structure. The proposed approach handles use case relationships including include and

extend which allows the proposed approach to transform a use case model instead of a single

use case description. Moreover, this approach performs transformation at meta-model level.

The user of this approach does not require any additional skills like understanding of con-

straint language, e.g., OCL or specialized natural language specification languages like RUCM

or USL. The approach does not require any additional artifacts like domain model, sequence

diagram, activity diagram, interaction diagram or business rules definition. An example of

SIM vending machine is used to demonstrate this approach. The generated formal specifica-

tions, i.e., LTL formal specifications and a Kripke structure are validated using the NuSMV

model checker which produces no counterexamples.

In future, the presented approach can be extended to make it compatible with the other

existing use case templates.
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Formal analysis: Qamar uz Zaman.

Investigation: Qamar uz Zaman.

Table 2. Analysis of existing approaches with the proposed approach.

Proposed by Input Output Limitations

Somé et al. Use Case Description, Domain

model

State transition graph Domain model of a system evolves with the evolution of the system. The generated

state transition graph does not consider the output symbols of the software.

Smialik et al. Use Case Description Sequence diagram The user of this approach requires the specification skills using RSL language. In

addition, the generated sequence diagram is semi-formal UML artifact and cannot be

used for model checking directly.

Kalnins et al. Use Case Description, Activity and

Interaction diagrams

Architectural model The generated architectural diagram is semi-formal artifact and it cannot be used for

the model checking purposes. In addition, the required activity and interaction

diagrams along with a use case description are design phase artifacts. The correction

cost at the design phase is relatively high than the correction cost at the requirements

analysis phase. Moreover, the user of this approach requires the specification skills

using RSL language.

Scandurra

et al.

Use Case Description Abstract state machine The user of this approach requires the specification skills using RUCM framework.

Moreover, the generated abstract machine requires to add more details of the system

to make it suitable for the verification and validation purposes.

Zaman et al. Use Case Description Kripke structure This approach requires to calculate the corresponding binary values for the output

symbols. In addition, it does not require use case relationships.

Yue et al. Use Case Description Domain model and

Activity diagram

The user of this approach requires the specification skills using UCMeta. In addition,

the generated domain and activity diagram are semi-formal UML artifacts and cannot

be used for the model checking.

Singh et al. Use Case Description, Class

diagram and Sequence diagram

Z specification The additional artifacts including class and sequence diagram are design phase

artifacts. The correction cost at the design phase is relatively high than the correction

cost at the requirements analysis phase. In addition, the generated formalism is a

requirements phase artifact.

Chu et al. Use Case Description, Class

diagram

Labeled Transition

System

Additional skills are required to specify use case specification using USL and

employing use case contracts using OCL. Moreover, a labeled transition may have

infinite number of states and there are not initial and final states in a labelled

transition system. The initial and final states are required for the formal verification

activities.

Selway et al. Business rules SBVR model Specification skills are required to specify business rules using GATE. In addition, the

services of a domain expert are required.

Proposed

Approach

Use Case Description Kripke structure and

LTL formulas

This approach does not handle the nested alternate scenarios.

https://doi.org/10.1371/journal.pone.0231534.t002
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4. Somé SS. An Approach for the Synthesis of State Transition Graphs from Use Cases. In: Software

Engineering Research and Practice; 2003. p. 456–464.

5. Kalnins A, Kalnina E, Celms E, Sostaks A, Schwarz H, Ambroziewicz A, et al. Reusable case transfor-

mation rule specification. Project Deliverable D. 2007; 3.

6. Scandurra P, Arnoldi A, Yue T, Dolci M. Functional requirements validation by transforming use case

models into Abstract State Machines. In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing. ACM; 2012. p. 1063–1068.

7. Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them?

IEEE Intelligent Systems and their applications. 1999; 14(1):20–26. https://doi.org/10.1109/5254.

747902

8. Graham I, O’Callaghan A, Wills AC. Object-oriented methods: principles & practice. vol. 6. Addison-

Wesley Harlow, UK; 2001.

9. Yue T, Briand LC, Labiche Y. An automated approach to transform use cases into activity diagrams. In:

European Conference on Modelling Foundations and Applications. Springer; 2010. p. 337–353.

10. Chu MH, Dang DH, Nguyen NB, Le MD, Nguyen TH. USL: Towards Precise Specification of Use Cases

for Model-Driven Development. In: Proceedings of the Eighth International Symposium on Information

and Communication Technology. ACM; 2017. p. 401–408.

11. Lemesle R. Transformation rules based on meta-modeling. In: Proceedings Second International Enter-

prise Distributed Object Computing (Cat. No. 98EX244). IEEE; 1998. p. 113–122.

12. Cimatti A, Clarke E, Giunchiglia F, Roveri M. NuSMV: a new symbolic model checker. International

Journal on Software Tools for Technology Transfer. 2000; 2(4):410–425. https://doi.org/10.1007/

s100090050046

13. Holzmann GJ. The model checker SPIN. IEEE Transactions on software engineering. 1997; 23(5):279.

https://doi.org/10.1109/32.588521

14. De Moura L, Owre S, Rueß H, Rushby J, Shankar N, Sorea M, et al. SAL 2. In: International Conference

on Computer Aided Verification. Springer; 2004. p. 496–500.

15. Adolph S, Cockburn A, Bramble P. Patterns for Effective Use Cases. Boston, MA, USA: Addison-Wes-

ley Longman Publishing Co., Inc.; 2002.

16. Kruchten P. The Rational Unified Process: An Introduction. 3rd ed. Boston, MA, USA: Addison-Wes-

ley Longman Publishing Co., Inc.; 2003.
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