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Abstract

Growing evidence suggests that the efficacy of immunotherapy in non-small cell lung can-

cers (NSCLCs) is associated with the immune microenvironment within the tumor. We

aimed to explore radiologic phenotyping using a radiomics approach to assess the immune

microenvironment in NSCLC. Two independent NSCLC cohorts (training and test sets)

were included. Single-sample gene set enrichment analysis was used to determine the

tumor microenvironment, where type 1 helper T (Th1) cells, type 2 helper T (Th2) cells, and

cytotoxic T cells were the targets for prediction with computed tomographic (CT) radiomic

features. Multiple algorithms were in the modeling followed by final model selection. The

training dataset comprised 89 NSCLCs and the test set included 60 cases of lung squamous

cell carcinoma and adenocarcinoma. A total of 239 CT radiomic features were used. A linear

discriminant analysis model was selected for the final model of Th2 cell group prediction.

The area under the curve value of the final model on the test set was 0.684. Predictors of

the linear discriminant analysis model were skewness (total and outer pixels), kurtosis, vari-

ance (subsampled from delta [subtraction inner pixels from outer pixels]), and informational

measure of correlation. The performances of radiomics on test set of Th1 and cytotoxic T

cell were not accurate enough to be predictable. A radiomics approach can be used to inter-

rogate an entire tumor in a noninvasive manner and provide added diagnostic value to iden-

tify the immune microenvironment of NSCLC, in particular, Th2 cell signatures.

Introduction

Immune checkpoint blockade therapy, an anti-cancer treatment that potentiates the ability of

the immune system to recognize and destroy cancer cells, has become a standard in the care of
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patients with non-small cell lung cancers (NSCLCs) [1–5]. The expression of the programmed

death-ligand 1 (PD-L1) gene in the tumor has been associated with a response to checkpoint

blockade therapy and prognosis, to some extent [6, 7], but the understanding of the complex

interactions between tumors and their microenvironment remains insufficient to distinguish

between patients who will respond to therapy and those who should be offered alternative

treatment. Growing evidence suggests that the efficacy of immunotherapy in cancers is associ-

ated with the immune microenvironment of tumors, thereby type 1 and 2 immune responses

are believed to be important predictive biomarkers [8–11]. Generally, type 1 immune

responses are thought to be the most relevant to antitumor immunity, and many cancer

immunotherapies are designed to augment type 1 immune responses that involve cytotoxic T

cells and type 1 helper T (Th1) cells to eliminate tumors [9], whereas a type 2 immune

response characterized by type 2 helper T (Th2) cells is often associated with a tumor-permis-

sive environment [8]. Recent work revealed that the inhibition of melanoma tumor formation

occurred in an activated type 2 immune response that was distinct from the classical tumor

microenvironment [10].

Immunohistochemistry after tumor resection is the only technique that yields quantitative

information on the immune microenvironment and immune response type assessment.

Therefore, efficient and reliable noninvasive biomarkers are urgently needed. Radiomics has

recently been identified as a way to use accurate quantitative imaging descriptors in line with

advances in image processing techniques [12, 13]. High-dimensional imaging data allows an

in-depth characterization of tumor phenotypes, with the underlying hypothesis that imaging

reflects not only macroscopic but also the cellular and molecular properties of tissues. Radio-

mic features are complementary to biopsies and have the advantage of being noninvasive,

which allows the evaluation of a tumor and its microenvironment, characterization of spatial

heterogeneity, and longitudinal assessment of disease evolution [13, 14]. Since radiomic fea-

tures are composed of hundreds of variables, a predictive modeling algorithm can be imple-

mented for regularization, feature selection, and tree-based algorithms.

Accordingly, we have conducted a study to demonstrate the feasibility of radiomic predic-

tion of the immune microenvironment by using computed tomographic (CT) imaging in

NSCLC. Our ultimate goal was to identify useful predictive radiomic characteristics of the

immune microenvironment and to further develop treatment strategies.

Materials and methods

Datasets

Two independent datasets were used for the training and test sets. The training dataset labeled

“Lung3”, contains data from patients treated at the MAASTRO Clinic, the Netherlands [13].

The test set was a dataset from The Cancer Genome Atlas (TCGA), which included both squa-

mous cell carcinoma and adenocarcinoma cases [15, 16]. Both training and test sets were pub-

licly available CT image and gene expression data. Thus, no Institutional Review Board

approval specific to this study was required.

Radiomic feature extraction for prediction variables

CT images were gathered from The Cancer Imaging Archive (TCIA, http://

cancerimagingarchive.net/) [17]. All images from TCIA were acquired using CT scans at fol-

lowing variable image resolutions; For “Lung3”, mean in-plane resolution, 0.913 ± 0.204 mm

(range, 0.602–1.367 mm) and mean slice thickness, 3.989 ± 1.236 mm. For “TCGA”, mean in-

plane resolution, 0.718 ± 0.136 mm (range, 0.547–0.977 mm) and mean slice thickness,

3.930 ± 1.429 mm. The values following the mean are standard deviation (SD) values. In "Lung
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3" cohort, 62 (69.7%) cases were scanned by contrast-enhanced CT and 27 (30.3%) patients

were scanned by non-contrast CT. In "TCGA", 25 (41.7%) cases were scanned by contrast-

enhanced CT and 35 (58.3%) cases were scanned by non-contrast CT. For the radiomic analy-

sis, regions of interest (ROIs) were delineated on axial CT images to generate a volume of

interest that included the entire target lesion (Fig 1). The quantitative CT analysis was based

on physical, histogram-based, shape, local, filter-based, and fractal model-based features from

the manually derived ROI. All radiomic features were calculated using the open-source code

(PyRadiomics) [18] and in-house code using MATLAB. Features unavailable in PyRadiomics

were implemented using the in-house code and there are several published articles which have

been used the same software [19, 20]. Details are described in S1 File.

Immune microenvironment profiling for target variables

The training set gene expression data were generated using the Rosetta/Merck Human RSTA

Custom Affymetrix 2.0 microarray (GPL15048) and stored in the Gene Expression Omnibus

(GEO accession: GSE58661). The test set gene expression data were generated using RNAseq

Fig 1. Development of the tumor microenvironment prediction model.

https://doi.org/10.1371/journal.pone.0231227.g001
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and downloaded from the Broad GDAC Firehose. The immune cell signature was estimated

from gene expression data using single-sample gene set enrichment analysis (ssGSEA) to

determine the immune microenvironment of lung cancer. The GSVA R package was used for

the ssGSEA [21]. A set of 28 immune cell gene lists was selected from a previous study con-

ducted by Bindea et al. [22]. We focused on Th1, Th2, and cytotoxic T cell signatures. The

immune cell signature of TCGA data was initially obtained from all 1016 cases. The test set

included 60 TCGA cases that were available with CT images. Principal component analysis

(PCA) of immune cell signatures was done with 1016 TCGA non-small cell carcinomas (Fig

2A). The immune cell signature that gave a positive principal component 1 (PC1) score

included Th1 cells, CD8 T cells, macrophages, and dendritic cells. The immune cell signature

that gave PC2 positive and PC1 negative scores included Th2 cells and cancer cells. The

immune cell signature that gave PC2 negative and PC1 positive scores included Th17 cells,

eosinophils, and NK CD56 bright cells. This result means that the Th1 cell and Th2 cell signa-

tures are almost independent. The PCA results with “Lung3” were similar to TCGA (Fig 2B).

Thus, signatures of Th1, Th2, and cytotoxic T cells were selected as target variables and

grouped by their mean cut-off values (high vs. low). The cut-off value was set as the average of

the value of immune cell signatures. The training set and the test set applied their own average

cut-off value instead of the same cut-off value, because the distributions of Th1, Th2, and cyto-

toxic T cells signature of the test sets (TCGA cohort) shift further to the right than the training

set (“Lung3” cohort) (Fig 3).

Modeling for the prediction of tumor immune microenvironment

The Th1, Th2, and cytotoxic T cell groups were predicted using machine learning algorithms,

which included penalized logistic regression, penalized discriminant analysis, sparse discrimi-

nant analysis, linear discriminant analysis, naive Bayes, classification and regression tree

(CART), bagged CART, and random forest. R (version 3.6.0) and the caret R package were

used for the prediction modeling [23]. Data pre-processing methods included removing zero

variance variables, NA imputation (KNN), resolving skewness (Yeo-Johnson), centering, and

scaling (Z-score normalization). Data preprocessing was applied to all predictor variables with

the recipe (v.0.1.9) rpackage. The detailed preprocessing parameters set with the default value.

Resampling was done using the 0.632 bootstrap estimator.

Fig 2. Principal component analysis of immune cell signatures with 1016 TCGA (A) and “Lung3” (B) non-small cell carcinomas.

https://doi.org/10.1371/journal.pone.0231227.g002
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Results

Demographic information and tumor characteristics for both the training and test sets are pre-

sented in Table 1. The training dataset comprised 89 NSCLCs and the test set included 60

cases from all 1016 lung squamous cell carcinoma and adenocarcinomas whose CT images are

available. For radiomic feature extraction, we evaluated a total of 239 CT radiomic features,

which were divided into seven groups as follows: three physical features, 59 histogram-based

features, 10 shape features, 95 local features, 63 filter-based features (LoG filter), three fractal

model-based features, and six sigmoid features. Details are provided in S1 Table.

Training set prediction

Classification trees and rule-based models and recursive feature elimination methods per-

formed better than penalized linear classification models. Random forest, linear discriminant

analysis, and penalized logistic regression models performed well in the training set of Th2 cell

prediction (area under the curve, AUC = 0.795, 0.772, and 0.754, respectively) (Table 2 and Fig

4). Random forest, penalized discriminant analysis, and bagged CART models performed well

in the training set of Th1 cells (AUC = 0.751, 0.711, and 0.741, respectively) and cytotoxic T

cells (AUC = 0.681, 0.674, and 0.647, respectively) predictions (Tables 3 and 4).

Test set prediction

We selected a linear discriminant analysis model for Th2 cell prediction and penalized dis-

criminant analysis model for Th1 cell prediction because both models are simpler than bagged

CART or random forest. Although the tree based ensemble methods including random forest

and bagged CART showed best performance, but the performance was not significantly differ-

ent between the ensemble methods and linear models including linear discriminant analysis

and penalized discriminant analysis models. The prediction performance on the test set of Th2

cells was good (AUC = 0.684) (Table 5 and Fig 5) but not on Th1 cells (AUC = 0.536–0.564)

Fig 3. Distributions of type 1 helper T-cell, type 2 helper T-cell, and cytotoxic T cell signatures of the test set

(TCGA cohort) and training set (“Lung3” cohort).

https://doi.org/10.1371/journal.pone.0231227.g003
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and cytotoxic T cells (AUC = 0.533–0.612) (S2 and S3 Tables). Predictors of linear discrimi-

nant analysis model were skewness (total and outer pixels), kurtosis, variance (subsampled

from delta [subtraction inner pixels from outer pixels]), and informational measure of correla-

tion (IMC) (Table 6).

Discussion

Several previous reports suggest that malignant phenotypes and efficacy of immunotherapy in

cancers are defined not only by the intrinsic activities of cancer cells but also by components

in the tumor microenvironment, especially tumor-infiltrating immune cells [24–30]. Despite

the volume of previous research in this setting, the complex interactions between tumors and

Table 1. Demographic information of the “Lung3” and TCGA dataset.

Lung3 (n = 89) n TCGA (n = 60) n

Age ± SD N/A 67.3 ± 10.3 60

Sex 89 60

Male 60 (67.4) 28 (46.7)

Female 29 (32.6) 32 (53.3)

Stage 87 57

I 35 (40.2) 23 (40.4)

II 34 (39.1) 18 (31.6)

III 13 (14.9) 14 (24.6)

IV 5 (5.7) 2 (3.5)

Histological subtype 89 60

Squamous cell carcinoma 36 (40.5) 35 (58.3)

Adenocarcinoma 44 (49.4) 25 (41.7)

Other 9 (10.1) 0 (0)

Race N/A 59

Black or African-American 7 (11.9)

White 52 (88.1)

Ethnicity N/A 57

Not Hispanic or Latino 57 (100)

TCGA, The Cancer Genome Atlas; SD, standard deviation; N/A, not available

data in parentheses are percentages.

https://doi.org/10.1371/journal.pone.0231227.t001

Table 2. Type 2 helper T-cell signature training set prediction.

AUC Sens Spec AUCSD SensSD SpecSD Model

0.795 0.642 0.869 0.108 0.194 0.114 Random forest

0.772 0.500 0.840 0.090 0.208 0.192 Linear discriminant

0.754 0.636 0.808 0.08 0.152 0.095 Penalized logistic regression

0.753 0.624 0.832 0.097 0.173 0.136 Bagged CART

0.736 0.546 0.796 0.093 0.119 0.098 Sparse discriminant analysis

0.729 0.633 0.730 0.116 0.276 0.230 Naive Bayes

0.717 0.613 0.740 0.091 0.199 0.138 CART

0.701 0.666 0.762 0.114 0.209 0.126 Penalized discriminant analysis

AUC, area under the curve; Sens, sensitivity; Spec, specificity; AUCSD, area under the curve standard deviation; SensSD, sensitivity standard deviation; SpecSD,

specificity standard deviation; CART, classification and regression tree

https://doi.org/10.1371/journal.pone.0231227.t002
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their microenvironment remain poorly understood. In addition, these studies have evaluated

tumor-infiltrating immune cells using immunohistochemistry-based analyses alone. Most his-

tologic approaches only involve small biopsies or surgical specimens and are therefore limited

due to the heterogeneity of tumors. Thus, there is no valid noninvasive method that describes

the whole tumor microenvironment, raising a compelling need for the development of a

“translator” to predict the tumor microenvironment. In this situation, radiomics could offer

an alternative. However, there are very few studies that have related radiomic analysis to the

tumor microenvironment [31, 32].

In this study, based on the deconvolution of gene expression data from 89 patients in the

“Lung3” cohort using ssGSEA and immune microenvironment profiling with the use of 28

immune cell signatures from gene expression, we found associations with certain radiomic fea-

tures for subsets of Th1, Th2, and cytotoxic T cells in NSCLCs. Through a prediction perfor-

mance test using a TCGA test set, we also demonstrated that the radiomic prediction for Th2

cell signatures of NSCLCs was feasible (AUC = 0.684), even though the performances of radio-

mics on the test set of Th1 and cytotoxic T cells were not accurate enough to be predictable.

Fig 4. Receiver operating characteristic curve of top 3 models on the training set of type 2 helper T cells.

https://doi.org/10.1371/journal.pone.0231227.g004

Table 3. Type 1 helper T-cell signature training set prediction.

AUC Sens Spec AUCSD SensSD SpecSD Model

0.751 0.666 0.788 0.083 0.145 0.133 Random forest

0.741 0.679 0.772 0.092 0.155 0.098 Bagged CART

0.711 0.677 0.712 0.087 0.115 0.111 Penalized discriminant analysis

0.709 0.540 0.755 0.165 0.328 0.213 Naive Bayes

0.686 0.598 0.669 0.082 0.111 0.117 Sparse discriminant analysis

0.682 0.646 0.741 0.090 0.111 0.115 Penalized logistic regression

0.676 0.589 0.740 0.084 0.168 0.134 CART

0.606 0.490 0.665 0.204 0.270 0.181 Linear discriminant analysis

AUC, area under the curve; Sens, sensitivity; Spec, specificity; AUCSD, area under the curve standard deviation; SensSD, sensitivity standard deviation; SpecSD,

specificity standard deviation; CART, classification and regression tree

https://doi.org/10.1371/journal.pone.0231227.t003
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Our results indicate that skewness (total and outer pixels), kurtosis, variance (subsampled

from delta), and IMC correlated with Th2 cells. Our study is in line with but distinguishable

from previous reports [31–33]. The other reports showed an association between radiomics

and certain immune cell signatures such as CD8 cell, CD3 cell, or tumor PD-L1 expression,

and demonstrated model creation and validation in independent cohorts. And Grossmann at

al. [33] used the same data set (“Lung3”) for validation cohort, and found a relationship

between radiomic features, immune response, inflammation, and survival, which was further

validated by immunohistochemical staining. As in our study, they showed that imaging can

provide a promising way to predict the immune phenotype of tumors and to infer clinical out-

comes for patients with cancer who had been treated with immunotherapy. Compared with

these studies, our study had distinguishable points in that we used more integral radiomic fea-

tures including filter-based and fractal model-based features reflecting the characteristics of

tumor margins, as well as first and second-order or textural features, and estimated the com-

prehensive immune microenvironment with 28 immune cell signatures. In addition, we

homogenized our data by using only NSCLC cases whereas previous two studies dealt with

heterogeneous cohorts of different tumor histopathology and location [31, 32]. Even though

our results do not provide good generalization across tumor types and locations, they predict

the immune microenvironment from radiomic information concentrated on NSCLC, in par-

ticular, and therefore we believe our results are more specific.

Most past studies dealing with antitumor immunity have focused on CD8+ cytotoxic T

cells, as their cytotoxic activity was deemed to be critical for tumor eradication. Recent work

indicates that specific subsets of CD4+ T cells (namely, Th1 cells), B cells, macrophages as well

as dendritic cells provide an important contribution to antitumor immune responses [28, 29].

These cytotoxic T cells and Th1 cells are the main cell signatures of the type 1 immune

response [9]. In addition, other studies have demonstrated that the levels of Th2 and regulatory

T (Treg) cells, which are important elements of the type 2 immune response, are associated

Table 4. Cytotoxic T cell signature training set prediction.

AUC Sens Spec AUCSD SensSD SpecSD Model

0.681 0.603 0.737 0.064 0.155 0.149 Random forest

0.674 0.604 0.665 0.076 0.144 0.088 Penalized discriminant analysis

0.647 0.597 0.717 0.052 0.130 0.144 Bagged CART

0.628 0.616 0.677 0.074 0.117 0.113 Penalized logistic regression

0.622 0.472 0.696 0.099 0.123 0.137 CART

0.607 0.579 0.586 0.075 0.121 0.121 Sparse discriminant analysis

0.574 0.515 0.625 0.249 0.302 0.246 Linear discriminant

0.545 0.420 0.545 0.167 0.242 0.222 Naive Bayes

AUC, area under the curve; Sens, sensitivity; Spec, specificity; AUCSD, area under the curve standard deviation; SensSD, sensitivity standard deviation; SpecSD,

specificity standard deviation; CART, classification and regression tree

https://doi.org/10.1371/journal.pone.0231227.t004

Table 5. Performance of prediction on test set of type 2 helper T-cells.

Model AUC p-value

Random forest 0.707 0.013

Linear discriminant analysis 0.684 0.027

Sparse discriminant analysis 0.687 0.034

AUC, area under the curve

https://doi.org/10.1371/journal.pone.0231227.t005
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with negative clinical outcomes [30]. In contrary to this traditional scheme of pro- and antitu-

mor microenvironment, a recent study demonstrated that the type 2 immune response charac-

terized by Th2 cells may inhibit tumor formation in melanoma [10]. In line with this research,

the Th1, Th2, and the cytotoxic T cell signature prediction test and the demonstration that the

radiomic prediction of the Th2 cell signature is feasible in our study are clinically meaningful

because these three cells are subsets of influential immune cells in tumor immune responses as

mentioned above.

We found that skewness (total and outer pixels), kurtosis, variance (subsampled from

delta), and IMC were correlated with Th2 cells. Among these features, outer pixel skewness

refers to skewness of the peripheral portion of the tumor. More interestingly, given that this

radiomic feature reflects the peritumoral radiologic phenotype, this finding may indicate that

the immune microenvironment of NSCLCs is closely related with certain interactions between

the tumors and surrounding normal lung tissues. In other words, these edges or peritumoral

radiologic findings offer information that can help predict tumor immune activity in the devel-

opment of immunotherapy strategies. There has been no previous research regarding the rela-

tionship between the five radiomic features, including skewness of outer pixels and subsets of

immune cells, therefore further verification of this finding in larger cohorts is needed.

Fig 5. Receiver operating characteristic curve of top 3 models on the test set of type 2 helper T cells.

https://doi.org/10.1371/journal.pone.0231227.g005

Table 6. Linear discriminant model predictor variables for type 2 helper T-cells.

Skewness Skewness (out) Kurtosis Variance (deltaS) IMC

Low 0.543 0.527 -0.498 -0.49 -0.426

High -0.352 -0.341 0.323 0.317 0.276

IMC, informational measure of correlation

out = outer pixels, delta = inner pixels subtracted from outer pixels, S = subsampled

https://doi.org/10.1371/journal.pone.0231227.t006
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Despite the advantages of utilizing a different cohort for external validation, this analysis

has several limitations. First, the training data are retrospective and limited to 89 patients from

a single institution. This deficiency could be addressed in future work by using a larger patient

cohort. Second, CT scans we obtained for radiomic feature selection were partly contrast-

enhanced and partly non-contrast and there are differences in image resolution and even may

be in acquisition protocol between training and test data (Scan protocol including tube voltage

and tube current was not provided). Contrast agent may obscure the radiomic textural features

and variable acquisition protocol might lead to be unstable in features because textural- and

intensity-based features may be affected by intensity and scanner variability. However, it is

rather difficult to have the same acquisition protocol between multi-center data in practice.

Testing using independent data with some differences in acquisition reflects the real clinical

practice and the performance measured under such circumstance is a good measure of gener-

alization of the proposed method. The data are obtained from the public database and many

studies using the data still used the data as a whole despite the heterogeneity [13, 34, 35]. Nev-

ertheless, further verification for reproducibility of radiomic features according to acquisition

protocol is needed. Lastly, this study includes multiple histologic types in both the “Lung3”

and TCGA cohorts. The histologic type could serve as a confounding factor when predicting

tumor immune microenvironment status using radiomic features. However, we believe our

findings and the comprehensive radiomics approach described herein are meaningful in terms

of building baseline research data for the next relevant study. In addition, this study shows the

usefulness of radiomics in the tumor microenvironment domain, especially for NSCLCs.

Above all, we attempted to perform external validation and our results were favorable for Th2

cell signature prediction, which is clinically important.

Conclusions

In conclusion, radiomic prediction for the immune microenvironment of NSCLC was feasible

and found a relationship between radiomic features and Th2 cell signatures. This study dem-

onstrated the potential of radiomic features as noninvasive biomarkers to capture the tumor

microenvironment properties and to predict the tumor-suppressive or tumor-permissive sta-

tus of NSCLC. The results of this study may help define categories of tumor immune activity

for patients with NSCLC and develop immunotherapy strategies.
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