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Abstract

Mutualistic plant-pollinator interactions are critical for the functioning of both non-managed

and agricultural systems. Mathematical models of plant-pollinator interactions can help

understand key determinants in pollination success. However, most previous models have

not addressed pollinator behavior and plant biology combined. Information generated from

such a model can inform optimal design of crop orchards and effective utilization of man-

aged pollinators like western honey bees (Apis mellifera), and help generate hypotheses

about the effects of management practices and cultivar selection. We expect that the num-

ber of honey bees per flower and male to female flower ratio will influence fruit yield. To test

the relative importance of these effects, both singly and simultaneously, we utilized a delay

differential equation model combined with Latin hypercube sampling for sensitivity analysis.

Empirical data obtained from historical records and collected in kiwifruit (Actinidia chinensis)

orchards in New Zealand were used to parameterize the model. We found that, at realistic

bee densities, the optimal orchard had 65-75% female flowers, and the most benefit was

gained from the first 6-8 bees/1000 flowers, with diminishing returns thereafter. While bee

density significantly impacted fruit production, plant-based parameters-flower density and

male:female flower ratio-were the most influential. The predictive model provides strategies

for improving crop management, such as choosing cultivars which have their peak bloom on

the same day, increasing the number of flowers with approximately 70% female flowers in

the orchard, and placing enough hives to maintain more than 6 bees per 1000 flowers to

optimize yield.
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Introduction

Mutualistic plant-pollinator interactions play a vital role in plant reproduction in both natural

systems and managed (i.e. agricultural) systems. Animal-mediated pollination is important for

87.5% of angiosperms globally [1], and 75% of the most important crop species benefit signifi-

cantly from this service [2], providing greater than US$170 billion in economic value annually

[3]. Functionally dioecious plants are especially reliant on pollination, as pollinators must cross

from one plant to another. Even in well-studied systems, such as kiwifruit (Actinidia chinensis),
the complexity of interacting variables limits the ability of researchers to provide clear recom-

mendations to growers, with proposed stocking rates varying from 3-8 colonies per ha [4].

Mathematical modeling of plant-pollinator interactions can help understand key determi-

nants in pollination success [5]. Such approaches could be valuable tools for designing optimal

crop orchard layouts and for the effective use of managed pollinators in agricultural systems.

This may be especially important in dioecious crops that have separate male and female plants

which adds further complexity in conducting empirical field trials when these plants respond

differently to environmental variables.

In spite of this, pollination models have tended to focus on plant biology [6–9] or insect

behavior [10, 11] but few have examined both simultaneously [12, 13]. Including variables

such as flower phenology, the ratio of male to female flowers, pollinator abundance, and flower

handling behavior could assist in the generation of robust models. Combining information

from both pollinators and plants in the same framework more realistically represents field con-

ditions and enables us to directly compare their importance. A significant challenge in devel-

oping good models is sufficient data for parameterization.

We chose kiwifruit as our model dioecious crop system as there are four decades of empiri-

cal data, examining many aspects of both insect behavior and plant biology [14]. Kiwifruit is a

deciduous vine, with male and female flowers borne on separate plants [15]. Neither sex pro-

duces nectar, and the female flowers produce inviable pollen [15], which is high in lipids [16],

to attract pollinators instead. Plants are typically trained onto a pergola system, with male

vines interplanted amongst a larger number of female vines at a 1:3 to 1:8 ratio [4, 17].

Although male cultivars typically have 2-3x more flowers than female cultivars [18], grower

planting and pruning regimes ultimately determine the floral sex ratio in orchards. While kiwi-

fruit have a number of pollinating species in their native range [19–21], most growing regions

rely on honey bees for pollination, representing the vast majority of all flower visitors in the

United States [22], France [23], Australia [24], and New Zealand [25, 26].

We expected that male-female kiwifruit flower ratio and pollinator density will influence

fruit yield, along with various parameters of pollinator behavior. To test the relative impor-

tance of these effects, both singly and simultaneously, we used a system of delay differential

equations (DDEs) combined with Latin hypercube sampling for parameter sensitivity analysis

[27]. The model explicitly tracks pollinators (parameterized here based on data from honey

bees), with varying pollen loads as they preferentially visit male and female flowers, as well as

the current number of open flowers over time. The delays incorporated into this model take

into account the lifespan of open flowers, as male and female flowers open and close through-

out the blooming period.

Materials and methods

Model development

We develop and analyze a mathematical model of pollination dynamics that incorporates key

aspects of both plant biology and insect behaviors. First, we present a sub-model of the
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flowering dynamics in an orchard, then in the following section, we add the pollinator dynam-

ics. We assume homogeneous conditions across the field for both flower and pollinator densi-

ties. Table 1 describes the model state variables and parameters.

Flowering dynamics. We consider a kiwifruit orchard made up of male and female trees

and model the opening and closing of flowers throughout the bloom. To capture pollination

dynamics, it is important to know how many male and female flowers are open at any given

day. Here, we assume that the total number of flower buds in the field is fixed and the rate they

open follows a normal distribution. Let Bm and Bf denote the total number of male and female

flower buds. Initially all flower buds are closed. Let M and F denote the number of male and

female flowers that have opened. The rates that these flowers open is modeled as

dM
dt

¼
Bmffiffiffiffiffiffiffiffiffiffiffi
2ps2

m

p e
�

ðt � tmÞ
2

2s2
m

ð1aÞ

dF
dt
¼

Bf
ffiffiffiffiffiffiffiffiffiffi
2ps2

f

q e
�

ðt � tf Þ
2

2s2
f ð1bÞ

Table 1. Description of model state variables and parameters.

Flower dynamics

Variable Meaning

m(t) number of open male flowers at time t
f(t) number of open female flowers at time t

Parameter Meaning

Bm number of male buds

Bf number of female buds

tm peak day of male flower opening rate

tf peak day of female flower opening rate

σm spread of male flowering period

σf spread of female flower period

τm life span of male flowering

τf life span of female flowering

Pollinator dynamics

Variable Meaning

Pm1 pollinators with high pollen loads

Pm2 pollinators with medium pollen loads

Pm3 pollinators with low pollen loads

Pf pollinators carrying no pollen

Parameter Meaning

ρ pollinators per 1000 flowers

α search rate

β handling time

δ preference to remain on male flowers

ε preference to remain on female flowers

p1 percent chance to set fruit from single type one visit

p2 percent chance to set fruit from single type two visit

p3 percent chance to set fruit from single type three visit

https://doi.org/10.1371/journal.pone.0231120.t001
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where tm and tf are the times when the opening rates are highest and σm and σf are the varia-

tions in these rates of opening. We assume that each flower is only open for a fixed amount of

time. Male flowers are open for τm days and female flowers remain open for τf days. While M
and F denote the total number of male and female flowers that have opened, the number of

currently opened flowers changes, as flowers close. Let m and f denote the number of male and

female flowers that are currently open, which can be determined with the following expres-

sions:

mðtÞ ¼

(MðtÞ � Mðt � tmÞ if t > tm

MðtÞ elsewhere
ð2aÞ

f ðtÞ ¼

( FðtÞ � Fðt � tf Þ if t > tf

FðtÞ elsewhere:
ð2bÞ

Example simulated dynamics of open flowers over time are depicted in Fig 1. Here, we

chose and varied some parameter’s values to highlight the role they have in shaping the curve

describing flowering dynamics.

Pollinator dynamics. Pollinator dynamics are modeled with differential equations that

divide the population into subcompartments based on their pollen load. Pollinators can have a

high, medium, or low pollen load (denoted as Pm1, Pm2, and Pm3 respectively) or be carrying

no pollen (denoted at Pf). These states represent a division of empirical data on single-visit

deposition, which often follows an exponential [28] or steeper than exponential decay [29].

We assume that pollinators completely load up on pollen with a visit to a male flower and

deposit some pollen with a visit to a female flower. We assume that male pollen availability is

not limiting in this scenario; to partially compensate for this short-coming of the model we

limit active foraging to four hours per day as captured by the visitation rate, corresponding to

field observations [30]. This four-hour window of pollen-foraging activity limits the total

amount of pollination in a day (built into the visitation rate parameter). Within this window,

pollen availability is typically not a limiting factor in kiwifruit due to male flowers having up to

twice as many pollen grains than female flowers, and the anthers continued to dehisce over

this four-hour period. A diagram depicting the movement of pollinators between the compart-

ments is shown in Fig 2. A pollinator with a high pollen load can move between compartments

Pm1, Pm2, Pm3, and Pf with subsequence visits to female flowers. Regardless of current pollen

loads, whenever a pollinator visits a male flower it completely loads up on pollen and enters

the Pm1 compartment.

The rate that pollinators visit male and female flowers is a crucial part of the model dynam-

ics. We consider a pollinator visitation rate that depends on the search rate (α), the handling

time (β) and the densities of open male (m) and female (f) flowers, as described above in Eq

(2). For pollinator visitation rates, previous work suggests that saturating functions of flower

densities such as Holling type II functional responses are typical of oligolectic consumers that

use only a few plant species and Holling type III responses are typical of generalist consumers

that switch between hosts [6]. While honeybees are generalist, here we use a Holling type II

response because of the mono-culture orchard environment in the model. Following previous

studies [6, 31, 32] we defined the total pollinator visitation rate as:

Total pollinator visitation rate ¼
aðf þmÞ

1þ abðf þmÞ
ð3Þ

which has the units of per time. This visitation rate includes visits to both male and female
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Fig 1. Example simulations of open flowers over time following Eq (2) starting with 600,000 of each male and

female flower buds Bm = Bf = 600, 000 (representing a one ha. of the orchard) for (a) σm = 1, σf = 1, tm = 7, tf = 8, τm
= 5, τf = 6 and (b) σm = 2, σf = 4, tm = 7, tf = 8, τm = 5, τf = 6 and (c) σm = 3, σf = 3, tm = 4, tf = 5, τm = 4, τf = 5.

https://doi.org/10.1371/journal.pone.0231120.g001
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flowers. The movement of pollinators between male and female flowers depends on the pro-

portion of male vs female flowers, as well as pollinator preferences. Previous studies suggest

that honey bees have a preference to visits flowers of the same sex as the one they are currently

on [22, 24, 33, 34]. We define the preference parameter δ such that a pollinator on a male

flower can preferentially choose to next visit another male flower (0 < δ< 1). Similarly, we

define the preference parameter � such that a pollinator on a female flower preferentially next

visits another female flower (0 < � < 1). Pollinators have no preference if δ = � = 1. We used

these preference parameters to define functional forms representing the probability of a polli-

nator to visit each type of flower, following the method used in [35]. These probabilities

depend on the ratio of male to female flowers raised to the power of the preference, such that

the movement of pollinators between flowers can be written as the following expressions:

m
f þm

� �d

fraction on male flowers that move to a male flower ð4aÞ

1 �
m

f þm

� �d

fraction on male flowers that move to a female flower ð4bÞ

f
f þm

� �ε

fraction on female flowers that move to a female flower ð4cÞ

1 �
f

f þm

� �ε

fraction on female flowers that move to a male flower ð4dÞ

Fig 3 shows plots of the probabilities of pollinators that will switch the type of flower

they are on verses the proportion of female flowers in the orchard, for various preferences

parameters.

Fig 2. Model flow diagram of pollinator types. Solid lines depict visits to a male flower. Dashed lines depict visits to a female flower.

https://doi.org/10.1371/journal.pone.0231120.g002
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Fig 3. Movement probabilities for (a) pollinators on male flowers switching to a female flower and (b) pollinators

on female flowers switching to a male flower for strong, weak, and no preferences in paramters δ and �. Values for

strong preferences were used for the analyses in this paper, details are described in the Parameterization section. Note

that a strong preference for remaining on the same type of flower corresponds with a low probability of switching

between flower types.

https://doi.org/10.1371/journal.pone.0231120.g003
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Full pollinator-flower model. The complete pollinator-flower model are described with

the following system of differential equations:

dPm1

dt
¼

aðf þmÞ
1þ abðf þmÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total visitation rate

1 �
f

f þm

� �ε� �

ðPm2 þ Pm3 þ Pf Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from female to male

� 1 �
m

f þm

� �d
 !

Pm1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from male to female

2

6
6
6
4

3

7
7
7
5
ð5aÞ

dPm2

dt
¼

aðf þmÞ
1þ abðf þmÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total visitation rate

1 �
m

f þm

� �d
 !

Pm1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from male to female

� 1 �
f

f þm

� �ε� �

Pm2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from female to male

�
f

f þm

� �ε

Pm2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
moves from female to female

2

6
6
6
4

3

7
7
7
5
ð5bÞ

dPm3

dt
¼

aðf þmÞ
1þ abðf þmÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total visitation rate

f
f þm

� �ε

Pm2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
moves from female to female

� 1 �
f

f þm

� �ε� �

Pm3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from female to male

�
f

f þm

� �ε

Pm3

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
moves from female to female

2

6
6
6
4

3

7
7
7
5
ð5cÞ

dPf

dt
¼

aðf þmÞ
1þ abðf þmÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total visitation rate

f
f þm

� �ε

Pm3

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
moves from female to female

� 1 �
f

f þm

� �ε� �

Pf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
moves from female to male

2

6
6
6
4

3

7
7
7
5
:ð5dÞ

The incorporation of flowering dynamics given in Eq (2) into the system of differential

equations for the pollinators model (5) results in a system of ordinary differential equations

when t�min{τm, τf}, before any open flowers begin to close, followed by a system of delay dif-

ferential equations with a single delay τ = min{τm, τf} when min{τm, τf}�t�max{τm, τf}, and

then by a system of delay differential equations with two fixed delays, τm and τf. This model

tracks the number of open male and female flowers (m, f) and the number of pollinators of

each type (Pm1, Pm2, Pm3, Pf) as they visit male and female flowers.

Pollination measurement. The total number of visits to female flowers is an important

factor for pollination. Visits to female flowers from the different classes of bees represent dif-

ferent pollen depositions needed to determine success of fruitset.

We define the visits of pollinators to female flowers that result in pollen deposition as either

type one, two, or three, as depicted in Fig 2. We then define fruit set for a day t denoted by P(t)
as

PðtÞ ¼ 1 � ð1 � p1Þ
v1ðtÞ � ð1 � p2Þ

v2ðtÞ � ð1 � p3Þ
v3ðtÞ ð6Þ

where vn(t) for n = 1, 2, 3 represents the total number of type n visits that each flower has

received at the time of closing (day t), and pn represents the percent chance that a single visit

will fully pollinate a flower to set fruit, for each visit type n. The total predicted yield is the fruit

set for each day multiplied by the number of female flowers closing on that day, summed over

all the days,

The total predicted yield ¼
X

t

DFCðtÞ � PðtÞ: ð7Þ

where DFC(t) denotes the daily number of female flowers closing at day t. The total predicted
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yield proportion over all days is the number of flowers closing on each day multiplied by the

fruit set for that day divided by the total number of female flowers, in our calculation we use

the number of total female flower buds,

The total predicted yield proportion ¼
P

tDFCðtÞ � PðtÞ
Bf

: ð8Þ

Parameterization

All model parameters are listed in Table 2. In order to parameterize the visitation rate Eq (3)

we assume the pollinators are active in the field for only 4 hours per day. For the search rate α
we assume a pollinator encounters 2 flowers per min, or 480 visits per day, assuming they for-

age only 4 hours a day. For the handling time β it has been observed that the average time a

pollinator spends on a flower is 16 sec, or 0.0011 days [36]. We use an odds ratio to parameter-

ize the preference parameters, δ and �.

Experimental observations on pollinator behaviors in environments with equal density of

male and female flowers (1:1 ratio, which is typical across planting regimes even when the

ratio of male to female plants differs, due to flower pruning practices) reveal that pollinators

on male flowers have a 0.957 probability of remaining on male flowers and those on female

flowers have a 0.951 probability remaining on female flowers [14, 24, 34]. This information

was used to help parameterize the preference parameters. Following the experimental condi-

tions, we assume an equal density of male and female flowers and take δ = ln(0.957)/ln(0.5)

and � = ln(0.951)/ln(0.5). It is important to note, that while these preference parameters are

constant, the probability of switching from flower types depends on these preferences, as well

as the open number of male and female flowers, see Eq 4 and Fig 3.

Once flowers begin to open, the peak day for flower openings occurs between days 2 and 9

[24, 37, 38] and we assume tm = 6 and tf = 6 days. Flowers remain open for 3–7 days [30] and

we assume base values of 5 for τm and 4 for τf. Observed pollinator densities range from 0.2 –

20 per 1000 flowers [30], and we assume a baseline value of ρ = 6 pollinators. We assume the

Table 2. Model parameters, base values and ranges used in simulations.

Parameter Meaning Units Base value Range References

α search rate 1/(day×flower) 480 120—3600 [14]

β handling time days 0.0011 0.00013– 0.0094 [22, 23, 36, 39]

δ preference to remain on male flowers – 0.0634 0–1 [14, 22, 24, 33, 34]

ε preference to remain on female flowers – 0.0725 0 –1 [14, 22]

Bm number of male buds flower 600000 300000–900000 [18, 37]

Bf number of female buds flower 600000 300000–900000 [37]

tm peak day of male flower opening rate day 6 2—9 [24, 37, 38, 40]

tf peak day of female flower opening rate day 6 2—9 [24, 37, 38, 40]

σm spread of male flowering period 2.5 0.5–5.5 [24, 37, 38]

σf spread of female flower period 2 1–4 [24, 37, 38]

τm life span of male flowering day 4 3–5 [30]

τf life span of female flower day 5 3–7 [34, 41, 42]

ρ pollinators per 1000 flowers pollinators/flower 6 1—20 [18, 30]

p1 percent chance to set fruit from single type one visit 0.66 0.25– 0.75 [14]

p2 percent chance to set fruit from single type two visit 0.55 0.1– 0.65 [14]

p3 percent chance to set fruit from single type three visit 0.22 0– 0.5 [14]

https://doi.org/10.1371/journal.pone.0231120.t002
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percent chance that a single type one visit (transitions a pollinator from group Pm1 to group

Pm2) will fully pollinate a flower to set fruit is p1 = 66%. A single type two visit (transitions

from Pm2 to Pm3) will fully pollinate a flower with assumed p2 = 55% and a single type three

visit (transitions from Pm3 to Pf) will fully pollinate a flower with assumed p2 = 22% [14]. For

the total number of flowers we assume the number of flower buds follows Bm = Bf = 600, 000

per ha.

Model simulations

All simulations were conducted using Matlab’s differential equations solvers ode45 and dde23

with initial conditions such that 0% of pollinators were Pm1, Pm2, and Pm3, and 100% of polli-

nators were Pf at time t = 0 for an orchard of sample size of 1 ha. Parameter values for the

total number of flower buds Bm (male) and Bf (female) along with the number of pollinators

per 1000 female flowers ρ are used to determine the total number of pollinators for each

simulation.

Base simulations testing model behaviors. Model simulations for the set of baseline val-

ues given in Table 2 are shown in Fig 4. Pollinators of type Pm1 and Pf fluctuate during the

blooming period while the number of pollinators of types Pm2 and Pm3 remain low (Fig 4a).

The accumulated number of visits to female flowers at the time of closing is almost identical

across visit types (Fig 4e), and is driven by the number of open female and male flowers, since

the number of pollinators is fixed. Our model output measure (total predicted yield) is shown

in Fig 4f. As expected, type one visits have the highest fruit set rate while type three visits have

the lowest fruit set rate, even though the total number of these visits are similar (Fig 4f). The

results in Fig 4(f) multiplied by the daily number of female flowers closing yields the daily pre-

dicted yield. Then the summation of this yield returns the main output for our model; the total

predicted yield (see Eq (7)). Under these baselines values total predicted yield is 545,120 fruit /

ha with a predicted fruitset of 90%. This is on the high end of reported fruit set in “Hayward”

orchards (c.f. 80% in Gonzales et al. 1998 [43]), but matches the experience of the authors in

field trials where fruit set is measured before harvest and thus is a higher figure than fruit set

calculated for yield (Pattemore D pers. obs., Broussard M pers. obs.). Accordingly, the fruit

number per hectare is higher than the 200,000—300,000 often reported in the literature [44–

46], but again is within the range of possible outcomes.

Simulations exploring model outputs. We varied key model input parameters and inves-

tigated model predictions with numerical simulations and sensitivity analysis. Model parame-

ters are presented in Table 2. A major model output measure is the predicted yield, which is

defined as the number of female flowers per ha that became fully pollinated fruit. A second

important model output is the percentage of female flowers that became fully pollinated fruit,

defined here as the fruit set. We used numerical simulations to explore variations in flowering

dynamics including the percentage of buds that are female and shifts in the duration of time

when male and female flowers are both opened (by varying the peak date in male flower open-

ing rate). We also explored variations in pollinators dynamics including bee densities, prefer-

ence parameters and pollinator handling time.

Parameter sensitivity analysis. In order to better assess the predictions of our model we

investigate the uncertainty of the estimated parameter values using Latin Hypercube Sampling

(LHS) with the statistical Partial Rank Correlation Coefficient (PRCC) technique, which pro-

vides a global parameter sensitivity analysis. LHS is a stratified Monte Carlo sampling method

without replacement giving a global and unbiased selection of parameter values [27]. The

PRCC technique is used to assess the importance of each parameter for a given output mea-

sure. It is appropriate when the parameters have a nonlinear and monotonic relationship with

PLOS ONE Modeling plant-pollinator interactions to predict fruit yield

PLOS ONE | https://doi.org/10.1371/journal.pone.0231120 October 23, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0231120


Fig 4. Model simulations presenting (a) number of pollinators during the bloom period, (b) accumulated number of transitional visits of

different types, (c) number of open male and female flower during the bloom period, (d) daily number of transitional visits of different

types, (e) daily number of transitional visits of different types per female flower at the time of closing, (f) predicted number of fully

pollinated fruit for each type visit and all visits for female flowers at the time of closing. All parameter values are base values in Table 2 with

initial conditions that pollinators haven’t collected any pollen yet (i.e., Pm1 = Pm2 = Pm3 = 0 and Pf = ρ�Bf/1000).

https://doi.org/10.1371/journal.pone.0231120.g004
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the output measures. Using a model orchard of 1 ha we used LHS to sample the parameters

listed in Table 2 and used PRCC to investigate the output measure of the total predicted fully

pollinated fruit per hectare (yield). Following Marino et al. 2008 [27] we performed a z-test on

the resulting PRCC values and verified that, in general, higher magnitude PRCC values corre-

spond with a stronger influence on the output measure. Most of the parameters had nonlinear

and monotonic relationships to the total predicted yield. Additional investigation on parame-

ter values that were nonmonotonic was done by truncating the parameter space to monotonic

regions, details are presented in the appendix.

Results

To investigate the role of key plant parameters we varied the ratio of male to female flowers in

the orchard by fixing the total number of flowers and varying the percentage of flowers that

are female, all other parameters were set to their base values shown in Table 2. Increasing the

fraction of flowers that are female (versus male) per hectare first increases the total predicted

yield (fruit per hectare), peaking near 0.66, and then decreasing rapidly as female flowers make

up the majority of the orchard (Fig 5). When the fraction of female flowers per hectare is low,

nearly all female flowers produce fruit: predicted fruitset reaches above 97%. However, the

total yield (fruit produced) is low due to the low quantity of female flower buds. On the other

hand, when most flowers are female, predicted fruitset decreases to 20% along with an associ-

ated decline in yield. This is due to the fact that while the quantity of female flowers is high,

the quantity of male flowers is low and the chances of successful pollination decreases

Fig 5. Total predicted yield (fruit per ha) as a function of the percentage of buds that are female. The total number

of buds was kept constant at 1.2 million/ha and the fraction of female flowers varied. Other parameters are baseline

values in Table 2. The fruitset (percentage of open female flowers that achieved full pollination) is listed under each

data point.

https://doi.org/10.1371/journal.pone.0231120.g005
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substantially. The model predicts a maximum fruit yield when female flowers make up two

thirds of the field with a fruitset (percent of open flowers that achieved successful pollination)

of 78.3%.

Other key plant parameters influence the timing of when male and female flowers are open

and receptive. Pruning and the use of chemical bioregulators are typically used to control the

onset and duration of flowering by growers [47]. Over a longer time frame, cultivar selection

can be used to ensure adequate overlap of male and female flowering across a range of environ-

mental conditions. The model assumes the rate that flowers open follow normal distributions

with key parameters specifying the peak day of flower openings for both the male (tm) and

female (tf) distributions. Varying the peak day that male and female flowers open influences

the duration of time with both types of flowers open simultaneously as well as the number of

flowers open during these times (Fig 6a). In particular, differences between tm and tf shifts

these distributions and affects the overlapping time when both flower types are open. In Fig 6

we hold tf = 6 days constant and vary the peak day of male flowers opening from tm = 3–9

days. Predicted yield is maximized (with associated fruit set rates above 91%) when both flower

types open concurrently with the same peak opening day (Fig 6b). While shifting the peaks a

day apart does not have a huge influence on the predicted yield, a shift of two or three days has

significant consequences.

To investigate the role of key pollinator parameters, we varied pollinator density based on

data on observed honey bee densities. The total predicted yield increases rapidly as the number

of bees increases from one to six bees per 1000 female flowers (Fig 7). Here fruit set also

increases from 39% with only one bee per 1000 female flowers to over 90% with six bees per

1000 female flowers. While continuing to increase the number of bees does increase fruit set

rate and the total predicted yield, the increase slows down substantially above six bees per 1000

female flowers.

Pollinator behavior parameters also play important roles in the model. The model includes

preference parameters for pollinators to remain on the type of flower they are visiting, based

again on data from honey bee observations. For the baseline values, a pollinator on a male

flower preferentially chooses to visit a male flower next (δ), likewise a pollinator on a female

flower preferentially chooses to visit a female flower next (�). Total predicted yield increases as

the pollinators increasingly prefer to switch between male and female flowers in sequential vis-

its (Fig 8a). The yield increases substantially when preference for switching is very small and

saturates quickly after. The drastic increase in yield begins to plateau close to the baseline

parameter values for the preferences, � and δ (dashed lines in Fig 8a). It is important to note

that Fig 8a explores variations in preference parameters for a constant male to female flower

ratio. The actual probabilities of moving between types of flowers is described in Eq (4) and

variations in preference parameters are depicted in Fig 3 across different orchard conditions.

Another relevant pollinator behavior is the speed of foraging. Our model includes two

parameters for this: the handling time and search rate. Our analyses indicate that of these two,

the handling time is the most influential; the total predicted yield decreases quickly as the polli-

nators’ handling time increases (Fig 8b). When the handling time increases from 10 sec to 60

sec, fruit set rates decrease from 100% to 50%.

The modeling framework enables us to vary key plant and pollinator parameters simulta-

neously. For a given percentage of female flower buds that make up the orchard, predicted

yield increases as the number of bees per 1000 female flowers increases (Fig 9). When the

female flower buds percentage is high (between 50% and 90%), maintenance of bee densities

over 6 bees per 1000 female flowers will lead to better pollination and therefore ensure a high

predicted yield.
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Parameter sensitivity analysis shows that the percentage of female flowers, the total number

of buds, and the bee density have the most significant effect on the total predicted yield (Fig

10) with a positive correlation. Bee density, the pollinators’ preference to switch from female

to male flowers (�), the male flowering period (σm), and the pollinator’s preference to switch

Fig 6. Open male (colored) and female (black) flowers (a) and total predicted yield (b) for varying peak day of

male flower opening from day 3 to day 9. The total amount of buds was kept constant at 1.2 million/ha with a male to

female flower ratio of 1:1 and 6 bees per 1000 female flowers. Other parameters are baseline values in Table 2. The

percentage of open female flowers that achieved sufficient pollination to set fruit is listed under each data point.

https://doi.org/10.1371/journal.pone.0231120.g006
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from male to female flowers (δ) are the next most important parameters that are positively cor-

related with the predicted yield, while pollinator handling time is the only parameter with a

strongly negative effect on the total predicted yield.

Discussion

Flower density and the percentage of female flowers were highly influential parameters in pre-

dicting final fruit yield. Also important was the width of the male blooming window. Managed

honey bees are the primary mode of kiwifruit pollination globally [2], and several pollinator-

related factors were found to influence yield, with bee density, flower handling time, and pref-

erence for moving between flowers of different sexes all highlighted by our sensitivity analysis.

Kiwifruit flowers may take up to 40 honey bee visits to be fully pollinated [48], but this is

partially due to the large numbers of bees which deposit little or no pollen. We found that

increasing bee density will increase fruit production, but that there is a point of diminishing

returns after the first 6-8 bees per 1000 female flowers and buds. This finding broadly agrees

with the literature, which reports that densities of around 3-6 bees per 1000 flowers are suffi-

cient for full pollination [25, 49, 50], with sustained higher bee numbers being unusual, though

sustained densities of 14 bees per 1000 flowers have been reported in cages [49] and densities

of 30-60 bees per 1000 flowers may occur for a very brief period of time in rare circumstances

[4, 34]. We found that a longer flower handling time was negatively correlated with fruit pro-

duction in this model. Although empirical data show that honey bee flower handling time is

not correlated with pollen deposition [14], the rate of flower visitation is a well-known factor

in limiting the effectiveness of pollinators independently of pollen deposition. [51].

Fig 7. Total predicted yield as a function of the number of bees per 1000 female flowers. The bee density varies

from 1 bee per 1000 female flowers to 20 bees per 1000 female flowers, and the total amount of buds was kept constant

at 1.2 million/ha with a male to female flower ratio of 1:1. Other parameters are baseline values in Table 2. The

percentage of open female flowers that achieved sufficient pollination to set fruit is listed under each data point.

https://doi.org/10.1371/journal.pone.0231120.g007

PLOS ONE Modeling plant-pollinator interactions to predict fruit yield

PLOS ONE | https://doi.org/10.1371/journal.pone.0231120 October 23, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0231120.g007
https://doi.org/10.1371/journal.pone.0231120


Fig 8. Total predicted yield for varying pollinators’ preference of flowers (a) and for varying pollinators’ handling

time (b). Other parameters are baseline values in Table 2. Pollinators prefer flowers of the same sex in sequential visits; in

(a) low preference values near 0 correspond with strong tendencies to remain on either male or female flowers, higher

preference values correspond with strong tendicies to switch flower type. Blue dashed line in (a) depicts baseline values of

δ (preference to remain on male flowers) and red dashed line depicts values of � (preference to remain on female flowers).

https://doi.org/10.1371/journal.pone.0231120.g008
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Preference factors are less well-known, but highlighted here. Honey bees are able to differ-

entiate between male and female kiwifruit flowers without landing on them [34], and they

must travel from a male flower to a female flower to deposit viable pollen. This chance of

switching can potentially be affected by other pollinators in the field [52], as well as the attrac-

tiveness of the male and female cultivars. Increasing the chance of switching between plant

sexes may be a critical factor for kiwifruit pollination, as the baseline values in our model are

right on the edge of a steep decline—if less switching happens than currently reported in the

literature (as indicated by the base parameter values), there could be very significant, negative

impacts on pollination.

When examining the interaction of bee density and the proportion of female flowers, we

found that, at typical bee densities (< 12 bees per 1000 flowers), the optimum proportion of

Fig 9. Total predicted yield for varying the proportion of female flower buds and the number of bees per 1000 female flowers. The total amount of buds was

kept constant at 1.2 million/ha. Other parameters are baseline values in Table 2.

https://doi.org/10.1371/journal.pone.0231120.g009
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female flowers was 65-75% of total flowers, representing a ‘sweet spot’ between having more

possibilities for fruit development and risk from insufficient movement of bees between the

two flower sexes. Current orchard plantings have an approximately 50:50 ratio between male

and female flowers [4], highlighting an opportunity to increase yield by changing pruning

practices to increase the proportion of female flowers-an easily achievable intervention com-

pared with changing pollinator behavior.

Our model takes advantage of over 30 years of field-based data in New Zealand and other

parts of the world and provides a way to quantitatively assess how different plant- and insect-

related factors interact and their importance for final fruit set. Our results suggest that choos-

ing cultivars which have their peak bloom on the same day, planting and pruning to achieve

approximately 70% female flowers in the orchard, having as many flowers as the vine can sup-

port to full fruit size, and placing enough hives to maintain more than 6 bees per 1000 flowers

will optimize yield. There is the potential for future work to improve the predictive power of

this model by accounting for multiple pollinators and spatial scale and pattern.

Supporting information

S1 Appendix. Many of the parameters have monotonic relationships with the output mea-

sure (S1a Fig) and the PRCC statistics for those are reliable. However, we note that parame-

ters σm, σf, tm, tf and the proportion of female flower buds in the field exhibit nonmonotic

behaviors. Therefore, we conducted additional LHE sampling by truncating the ranges of

these parameters to monotonic regions. S1b and S1c Fig depict the monotonicity of the

Fig 10. Sensitivity analysis of the delay differential equation model using partial rank correlation coefficient (PRCC) values for each parameter in the Latin

hypercube sampling. PRCC values marked as ns are not significant (P� 0.05). Flower traits are in orange and pollinator traits are in blue.

https://doi.org/10.1371/journal.pone.0231120.g010
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truncated parameter space. The resulting PRCC results for the entire parameter space as well

as the truncated parameter spaces are compared in S2 Fig. Parameters for the total number of

buds, percentage of female buds, bee density, and handling time are consistently identified as

important parameters in all cases. We note that in the truncated case we split the percentage of

female flower buds into the cases of 5–76% and 76–96%. In the first half this parameter shows

a highly influential positive relationship with predicted yield (large positive PRCC value) and

in the second half the parameter is inversely related to the predicted yield. This is as expected

as saturating the field with only female buds will eventually cause a decrease in yield. These

dynamics are observed in the monotonicity plots as well.

(PDF)

S1 Available code. Matlab code for our model was provided as an online supplemental file

and is available to download.
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