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Abstract

Purpose

Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography

(IVOCT) catheters are tracked in real time in order to compensate for image artifacts related

to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-

vitro experiments.

Material and methods

During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI. A 4D trajec-

tory of the catheter tip is determined from the MPI data using center of mass sub-voxel strat-

egies. A custom built IVOCT imaging adapter is used to perform different catheter motion

profiles: no motion artifacts, motion artifacts due to catheter bending, and heart beat motion

artifacts. Two IVOCT volume reconstruction methods are compared qualitatively and quan-

titatively using the DICE metric and the known stenosis length.

Results

The MPI-tracked trajectory of the IVOCT catheter is validated in multiple repeated measure-

ments calculating the absolute mean error and standard deviation. Both volume reconstruc-

tion methods are compared and analyzed whether they are capable of compensating the

motion artifacts. The novel approach of MPI-guided catheter tracking corrects motion arti-

facts leading to a DICE coefficient with a minimum of 86% in comparison to 58% for a stan-

dard reconstruction approach.

Conclusions

IVOCT catheter tracking with MPI in real time is an auspicious method for radiation free MPI-

guided IVOCT interventions. The combination of MPI and IVOCT can help to reduce motion

artifacts due to catheter bending and heart beat for optimized IVOCT volume reconstructions.
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1 Introduction

Optical coherence tomography (OCT) enables a high-resolution imaging of tissue structures

[1–3]. In the field of cardiovascular diseases intravascular OCT (IVOCT) imaging is applied to

assess the vascular wall structures and observe plaque formations and related stenosis lengths

[4, 5]. IVOCT highly benefits from a second imaging modality in order to align its catheter tip

position within the global coordinate system of the patient. Using digital subtraction angiogra-

phy (DSA), ionizing radiation is introduced and only 2D projections of the catheter tip posi-

tions are observed. Different methods have been presented to determine the 3D vascular shape

using a combination of IVOCT and angiographic images. For example, a co-registration of

both imaging modalities is applied to align the images to each other [6–9]. An improved 3D

volume reconstruction method uses the information of both the vessel center line as well as

the 3D catheter trajectory determined in bi-plane angiographic frames [10]. Most of the recent

volume reconstruction methods assume a static imaging scenario neglecting heart beat

motion, arterial vasomotion, and catheter bending leading to motion artifacts. Nevertheless,

several publications depict a relevant influence of motion artifacts on the IVOCT volume

reconstructions. For example, an irregular formation of stent struts are related to heart beat

motion [11, 12]. In a pre-clinical scenario a setup for ECG triggered IVOCT imaging with a

duration of less than one second is proposed [13], hence heart beat motion artifacts can be

minimized. Micro-motor catheters are proposed in order to deal with the problem of imaging

artifacts due to bending of proximally rotated catheters [13, 14]. However, the miniaturization

of high-speed motors is a challenging and expensive task. Thus, a medically approved IVOCT

catheter with micro motor has not been presented yet. Consequently, motion artifacts due to

catheter bending and arterial vasomotion still arise in clinical scenarios and have an influence

on the quantification of plaque formations. In addition, a contrast agent (iodine) is necessary

for DSA imaging, which can be problematic in some patients with kidney diseases [15–17].

As an alternative, magnetic particle imaging (MPI) spatially resolves the distribution of

superparamagnetic iron oxide nanoparticles (SPION) in 4D at high temporal resolution by

using the particle’s non-linear magnetization characteristics [18, 19]. MPI applies static and

oscillating magnetic fields to visualize the SPIONs. Thus in contrast to DSA, no ionizing radia-

tion is induced to the patient. The changing magnetic fields are operated within the safety con-

straints of the peripheral nerve stimulation [20] and specific absorption rate (SAR) [21–23].

The SPIONs are biodegradable and decomposed within the liver [24, 25]. Furthermore, MPI

provides 3D information over time, while DSA only provides 2D projections over time. An

advanced biplane DSA measurements can be post-processed to gain a 3D information over

time, which however leads to a doubled radiation exposure. Further, MPI has demonstrated its

beneficial usage in several interventional applications such as catheter tracking, stenosis identi-

fication and stenosis clearing [26–28]. Catheters and guide wires are coated with magnetic

markers to track their position with MPI in real time [29–33]. The first bimodal experiments

combining IVOCT and MPI are presented in [34, 35]. The 3D vessel center line can be esti-

mated from static MPI images. With the help of the estimated vessel center line the IVOCT

images are oriented in 3D space to reconstruct the vessel volume.

In this work, we track the IVOCT catheter by labeling its tip with an MPI visible marker.

Using real time MPI imaging we get the catheter position over time allowing for motion com-

pensation. Both imaging modalities are registered to each other using a time synchronization.

An experimental setup, including a custom built IVOCT adapter, enables the generation of dif-

ferent catheter motion profiles. In all experiments the MPI-tracked catheter trajectory is used

to reconstruct a 4D IVOCT volume. A straight 3D printed vessel phantom with integrated ste-

nosis is imaged. In a first experiment the plausibility and statistical error of the MPI catheter
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tracking is analyzed using a constant catheter velocity. In the following experiments motion

artifacts due to catheter bending and heart beat are simulated. The reduction of motion arti-

facts and their statistical deviation are analyzed. The reduced artifacts in the reconstructed vol-

umes are shown by quantitative measurements using the Dice similarity coefficient (DICE)

factor and the estimated stenosis lengths in comparison to the ground-truth shape of the

phantom.

2 Materials and methods

2.1 Experimental setup

The experimental setup is composed of a pre-clinical MPI scanner [36], a custom built IVOCT

imaging adapter, a spectral domain OCT system (Telesto I, Thorlabs), and a control unit as

shown in Fig 1. A straight vessel phantom with an inner diameter of 2.5 mm and total length

of 20 mm is positioned within the MPI field of view (FoV). A stenosis with a length of 1.5 mm

and an inner diameter of 1.5 mm is integrated in the phantom (see Fig 1, CAD sketch). A 3D

printer (Form 2, Formlabs) based on stereolithography is used to build the phantom out of

gray resin. An IVOCT catheter (Dragonfly Duo Kit, Abbott) with an outer diameter of 0.9 mm

is used. The catheter consists of an optical fiber covered by a tight and flexible protection,

which can rotate freely within a hollow plastic catheter. Within the catheter tip a prism directs

the infrared light to the surface. To enable a MPI-based catheter tracking, the catheter tip is

coated with a thin layer of magnetic lacquer (1 μL Magneto Magnetic Lacquer, Hand & Nail

Harmony), as seen in Fig 1. The lacquer dries quickly on the catheter tip. The OCT images

acquired with the marked catheter provide suitable image quality, whereas the phantom struc-

tures are still apparent for later segmentation algorithms.

Fig 1. Experimental setup. A vessel phantom with a stenosis (a) is positioned within the MPI FoV. In the CAD sketch of the phantom

(bottom right), the phantom and entire stenosis dimensions are depicted. The stenosis has a diameter and length of 1.5 mm. Triggered by

MPI, an IVOCT catheter (b) is rotated and pulled backwards through the phantom using a custom built adapter. The catheter tip (blue

dot) is coated with magnetic lacquer (c) without covering the OCT prism. The cropped MPI FoV is highlighted with a red box.

https://doi.org/10.1371/journal.pone.0230821.g001
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2.1.1 MPI acquisition parameters. For the MPI measurements a pre-clinical MPI scan-

ner is used together with a custom-built receive coil [37]. The scanner excites the particles with

three orthogonal sinusoidal excitation fields with frequencies fx = 2.5/102 MHz, fy = 2.5/96

MHz, and fz = 2.5/99 MHz. The magnetic field strength is set to 12 mT in all three directions

while the gradient strength is set to 2.0 T m-1 in z-direction and 1.0 T m-1 in the x- and y-direc-

tions. The imaging period is 21.54 ms which equals a frame rate of 46.43 Hz. The FoV has a

size of 24 mm × 24 mm × 12 mm and the MPI data acquisition is conducted with the system

software Paravision (Bruker).

In order to reconstruct an MPI image using the frequency space approach [38], a calibra-

tion scan is required. This scan moves a small delta sample filled with SPIONs through the

FoV while the system response at all attended positions is measured. The acquired data is used

to set up the MPI system matrix, which characterizes the relation between the induced voltage

signal and the particle distribution. In this work, the system matrix is acquired at 35 × 25 × 13

positions which cover a total volume of 35 mm × 25 mm × 13 mm. To prevent artifacts at the

FoV boundaries, the calibration volume is chosen to be larger than the system FoV in all direc-

tions [39]. The delta sample has a size of 1 mm × 1 mm × 1 mm and is filled with 1 μL undi-

luted magnetic lacquer.

2.1.2 IVOCT acqusition parameters. The OCT system with an A-scan rate of fOCT = 91

kHz uses a central wavelength of 1315 nm. The axial OCT FoV is about 2.66 mm in air,

whereas each A-scan consists of 512 pixels. The phantom is filled with distilled water yielding

a pixel spacing of 4.5 μm between catheter and inner phantom wall, assuming a refractive

index of 1.33. The custom-built catheter adapter enables a simultaneous rotation and transla-

tion of the IVOCT catheter. A rotational frequency of frot = 6.25 Hz is used for all experiments.

The center pullback velocity v0 = −1.25 mm s−1 is varied during the experiments to simulate

different motion artifacts. In all experiments, the catheter is pulled back over a total distance of

s = 25 mm.

2.2 MPI image reconstruction and image processing

In frequency space MPI, the inverse problem to reconstruct an MPI image is treated with a

first-order Tikhonov-regularized least-squares approach

argmin
c

kSc � uk2

2
þ lkck2

2
; ð1Þ

where S 2 CM�N
is the MPI system matrix, u 2 CM

is the measurement vector and c 2 RþN is

the particle-concentration vector. This least-squares problem is iteratively solved by using the

Kaczmarz method. The Kaczmarz method converges quickly for nearly orthogonal matrices,

which is the case for MPI [40, 41]. For the MPI reconstruction and data processing the Julia

packages MPIFiles.jl [42] and MPIReco.jl [43] are used. The number of Kaczmarz iterations is

set to 3 whereas the regularization parameter λ is set to λ = λ0 � 10−3, where λ0 = trace(SH S)

N−1. These reconstruction parameters have been optimized regarding the visual impression of

the reconstructed MPI images.

2.2.1 MPI-Guided catheter tracking. The 4D MPI images are block averaged with a

factor of two over time prior to reconstruction, which leads to a temporal resolution of fMPI =

23.2 Hz. The set of MPI images is denoted by I : Os � R! R (Os � R
3
) with I(x, t) where x is

the position and t is the time. The catheter localization is performed in three steps as generally

described for more than one marker in [44]. At first, a threshold filter is applied to each image

in order to separate the marker from the background. This results in the data set Iseg :
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Os � R! R with

Isegðx; tÞ ¼

( 1 if Iðx; tÞ � Y �max
x

Iðx; tÞ

0 otherwise;
ð2Þ

where Θ 2 [0, 1] denotes the relative threshold. In our case the relative threshold is chosen to

be Θ = 0.35. In a second step, the connected region O
t
1
� Os, with the highest maximal inten-

sity value max IðOt
1
; tÞ is identified by connected-component labeling of Iseg(Os, t), t 2 R.

Finally, the position of the catheter marker is obtained by calculating the center of mass

cðtÞ ¼

R

Ot
1

x � Isegðx; tÞdx
R

Ot
1

Isegðx; tÞdx
ð3Þ

of the voxel intensities of the corresponding connected region in the MPI image I. The accu-

racy for this sub-voxel approach is within the sub-millimeter range and the catheter position is

determined only within cropped MPI FoV robustly. The positions M1 to M2 denote the posi-

tions when the catheter enters and leaves this cropped MPI FoV. Hence, we crop the MPI FoV

for later 4D reconstruction methods. In x-direction the cropped MPI FoV has a length of

approximately 10 mm. Outside this cropped MPI FoV the catheter position could not be deter-

mined as robust since more image artifacts are introduced by the rotation of the catheter.

These outer positions are not considered for the later reconstruction methods. Additionally,

outliers are removed with a Ransac algorithm and extreme outliers are excluded via threshold-

ing. In these extreme cases, the images are affected by noise and the localization algorithm

falsely detects a high intensity noise voxel as a marker position. Further, the trajectories are

smoothed to ensure a continuous trajectory.

2.3 Volume reconstruction methods

We refer to two different methods as IVOCT catheter marker tracking (MT) and input param-

eter (IP) based volume reconstruction, respectively. For both reconstruction methods, the

inner phantom wall is segmented in the IVOCT data using a semi-automatic algorithm [34,

35, 45]. Especially in the narrowed phantom parts, some manual corrections are applied. As a

result the distance r between catheter and phantom wall is given for each A-scan. 3D point

clouds are generated based on the MT and IP method, whereas their envelopes are used to

quantify the volume reconstructions.

2.3.1 Input parameter (IP) method. On the basis of the known input parameters of the

custom built adapter (pullback and rotational speed) we take the distances r for each OCT A-

scans and place a respective point in a 3D coordinate system. We assume a constant pullback

and rotational velocity and align the 3D phantom boundary points on a helix with constant

pitch p0 = v0/fOCT and angle θ0 = 360˚ � frot/fOCT.

2.3.2 Marker tracking (MT) method. Using the MPI-guided IVOCT catheter tracking

we can arrange the OCT A-scans along the actual catheter trajectory. A temporal synchroniza-

tion of both imaging systems allows for image registration (Fig 2). The 4D volume reconstruc-

tion method is separated in two parts. First, the OCT and MPI data sets are registered via

temporal correlation. The measurements are synchronized via a trigger signal sent from MPI

to the IVOCT system. The related time events can be seen on the time line in Fig 3. One sec-

ond after the MPI trigger arises (ttrigger), the catheter motion profile and OCT A-scan acquisi-

tion starts (tOCT,0). The time stamps tM1 and tM2 are related to the MPI volumes, wherein the
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catheter tip enters and leaves the cropped MPI FoV. Once the catheter motion profile is fin-

ished (tOCT,end) the MPI measurement is stopped subsequently (tMPI,end).

Then, we place points at distance r in 3D space considering both the spatial and temporal

dependencies of MPI and OCT data. Due to substantial noise of the y- and z-component of

the estimated 4D catheter trajectory, we only consider the x-coordinate (in pullback direction)

as catheter position over time. For two successive catheter positions we determine the distance

in space Δx and time ΔtMT and distribute the meanwhile acquired A-scans equidistantly. Based

on the given catheter rotation frot, OCT frequency fOCT, and MPI volume rate fMPI up to four

catheter positions are observed per catheter rotation. Assuming a constant catheter rotation

Fig 2. Exemplary IVOCT and MPI data. The OCT A-scans are arranged over time (top). The segmented phantom boundary is highlighted in red. For

three time stamps ti, the related MPI signals from catheter tip are shown within the CAD sketch (bottom).

https://doi.org/10.1371/journal.pone.0230821.g002

Fig 3. Time axis for synchronizing OCT device and pullback device with the help of the MPI trigger signal.

https://doi.org/10.1371/journal.pone.0230821.g003
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frot, the A-scans are oriented with a fixed angle difference θ0 around the actual catheter

trajectory.

2.4 Experiments

We perform three experiments with the stenosis phantom repeating each experiment three

times. As a first experiment, we conduct a standard pullback profile (SP) with a constant pull-

back velocity v0 and a pullback distance s.
As a second experiment, a bending artifact profile (BA) is used to simulate the non-linear

pullback of the catheter when the catheter is decelerated due to a bending and is then suddenly

accelerated due to its elastic material. At first, the catheter is pulled back with velocity v0

for the first 10 mm. Afterwards the catheter is simulated to be stuck and its velocity is set to

v1 = −0.625 mm s−1 for the next 5 mm. Finally, the velocity is set back to the initial velocity v0

for the last 10 mm to simulate the elastic contraction of the catheter. The distances over time

of the BA profile are shown in Fig 4a).

As a third experiment, we perform a measurement with a heart beat motion artifact (HBA)

profile. A heart beat artifact is related to the heart contraction and the relative vessel motion w.

r.t. the IVOCT catheter. This artifact results in multiple acquisitions of the same blood vessel

part due to a back and forth movement of the vessel (Fig 5). We use a catheter motion profile

(HBA) that simulates this relative motion. The velocity is set to v0 for the first 15 mm.

Fig 4. a) In case of the BA profile, the catheter is pulled backwards with a velocity v0 = −1.25 mm s−1 over the first 10

mm, then the velocity is reduced to v1 = −0.625 mm s−1 for the next 5 mm, afterwards the velocity is increased back to

v0 for the last 10 mm. b) In case of HBA profile, the IVOCT catheter is pulled backwards over the first 15 mm, then the

catheter is moved forward for 5 mm. Last, the catheter is pulled backwards in the original direction again for 15 mm.

The catheter moves with the initial velocity v0 for all motion directions.

https://doi.org/10.1371/journal.pone.0230821.g004

Fig 5. Exemplary sketch of heart beat motion artifact. Due to heart contraction the imaged artery is deformed for time stamp t2. Meanwhile, the

catheter tip (blue dot) moves continuously backwards. After heart contraction (t3) the artery gets back to its original shape (t1). Again, the catheter

motion is continued in between. This relative motion between catheter and artery leads to multiple IVOCT imaging of the sketched stenosis (black).

https://doi.org/10.1371/journal.pone.0230821.g005
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Subsequently, the velocity is inverted to −v0 for the following 5 mm to imitate the heart beat

movement. Afterwards the velocity is adjusted back to v0 for the last 15 mm. The distance over

time of the HBA profile is shown in Fig 4b).

The described phantom experiments are performed in-vitro and do not involve human sub-

jects. The datasets are acquired with the described imaging devices (pre-clinical MPI scanner,

spectral-domain OCT system). The MPI data processing is implemented in Julia, while the

OCT data processing is written in Matlab.

3 Results

The results are divided into three parts. First, the positions and the resulting velocities deter-

mined by 4D MPI catheter tracking are validated for three motion profiles SP, BA, and HBA.

The mean absolute error (MAE) is calculated for the distance traveled only in x and for the dis-

tance traveled in x, y, z. The same is done for the velocities of the profiles. Second, we compare

the IP and the MT volume reconstruction using the IVOCT and MPI data from the standard

profile. The influence on both reconstruction methods in terms of bending artifacts is analyzed

for the BA profile. Additionally, the HBA profile is used to investigate heart beat artifacts on

both reconstruction methods. Third, the DICE factor is calculated for both reconstruction

methods. In addition, the stenosis length is quantified for all reconstruction methods/profiles

and compared to its ground-truth value.

3.1 Statistical validation of 4D MPI catheter tracking

For the standard profile the distance in x over time between M1 = 18 mm and M2 = 6 mm is

shown in Fig 6a). From 18 mm to 11 mm the tracked x positions (black) are in good agreement

with the expected x positions (red).

Between 11 mm to 6 mm the tracked x positions (black) seem to diverge slightly from the

expected values (red). The mean values are used to fit a regression line (blue). The MAE for

the distance in x is 0.44 mm ± 0.44 mm. The absolute error (AE) of the velocity using the

regression line is 0.21 mm s-1 with a relative error (RE) of 16.8% as given in Table 1. For the

BA profile the distance in x over time between 18 mm and 6 mm is presented in Fig 6b). Over-

all the tracked x positions (black) are in good agreement with the expected x positions (red).

Only in the first segment a small deviation is visible. Again, all three measurements are shown

Fig 6. a) MPI measurements for standard profile: The measured distance in x over time between 18 mm and 11 mm is

in good agreement with the expected values. Expect in the last part the positions in x marginally deviate. b) MPI

measurements for BA profile: The first change of velocity is not captured by the measurement. After the first change

the measured distances in x over time are in agreement with the different velocity v0 and v1 with only slight deviations.

https://doi.org/10.1371/journal.pone.0230821.g006
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as a box plot and illustrate the distribution of the tracked positions. The mean values are used

to determine a regression line (blue).

The MAE for the distance in x is 0.26 mm ± 0.16 mm for the first segment, 0.35 mm ± 0.11

mm for the second segment and 0.20 mm ± 0.22 mm for the third segment. The AE and RE

regarding the velocity of the regression in all three segments for the BA profile are given in

Table 2.

For the HBA profile the distances in x over time between 18 mm and 6 mm are shown in

Fig 7a. Overall, the tracked x positions resemble the movement of the catheter being pulled

back and forth. The turning points between velocities −v0, v0 and again −v0 can be clearly iden-

tified. However, in the first two segments the velocity is underestimated as the tracked x posi-

tions are not in full accordance with the expected x positions (red). In the third segments the

tracked x positions agree with the expected values. The distances in y and z over time are pre-

sented in Fig 7b and 7c) and shows that the stenosis phantom has been inserted slightly diago-

nal as the y-values increase and the z-values decrease depending on the x-position. For a

straight insertion we would expect a straight line in both dimensions. Only at the time points

when the velocities change the tracked positions in x differ from the expected positions in x.

The three measurements are depicted as box plots to show the distribution of the measure-

ments. The regression lines for each segment are plotted in blue. The mean absolute error for

the distance in x is 0.64 mm ± 36 mm for the first segment, 0.51 mm ± 55 mm for the second

segment and 0.38 mm ± 45 mm for the third segment. In Fig 7d) the velocity in x over time is

shown and the inversion of the velocity is visible. The absolute and relative error of the velocity

using the regression line in x are 0.38 mm/s (30.0%) for the first segment, 0.49 mm/s (39.4%)

for the second segment and 0.04 mm/s (3.2%) for the third segment. The errors regrading the

HBA profile are given in Table 3.

3.2 Volume reconstructions

In Fig 8 the 4D volume reconstructions are compared for all motion profiles and both recon-

struction methods. The volumes are shown with x cropped to the MPI FoV. A ground-truth

volume with boundary information created by the parameters from the CAD sketch is

depicted as a reference. The 4D boundary points are colored related to the underlying time,

whereas the color map is shifted with respect to the time values of the positions xM1
¼ 18mm.

Table 1. The mean absolute error (MAE) is given for the distance in x-direction with its standard deviation (SD).

Additionally, the absolute error (AE) along with the relative error (RE) of the velocity using the 3D regression line

between tM1 and tM2 is also reported.

Errors Standard profile

MAE Trajectory 1D-x [mm] 0.44 ± 0.44

AE (RE) Velocity [mm/s] 0.21 (16.8%)

https://doi.org/10.1371/journal.pone.0230821.t001

Table 2. The mean absolute error (MAE) for the distance in x-direction for the BA profile is given with its standard deviation (SD). The AE along with the RE of the

velocity using the 3D regression line between tM1 and tM2 is also reported.

Errors BA profile segment 1 BA profile segment 2 BA profile segment 3

MAE Trajectory 1D-x [mm] 0.26 ± 0.16 0.35 ± 0.11 0.20 ± 0.22

AE (RE) Velocity [mm/s] 0.44 (35.4%) 0.07 (10.8%) 0.22 (17.9%)

https://doi.org/10.1371/journal.pone.0230821.t002
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The envelopes of all volume reconstructions show deviations compared to the ground-truth

volume. The stenosis lengths are highlighted with red arrows. The MT reconstruction method

leads to stenosis lengths and relative positions that are almost equal to the ground-truth vol-

ume for all motion profiles. The IP reconstruction method shows a larger deviation of the ste-

nosis relative position. Furthermore, an obvious deviation of the depicted stenosis length

using the IP volume reconstruction method are depicted for the BA and HBA profiles. Espe-

cially, for the BA profile with underlying deceleration of the catheter, the length is obviously

increased.

In order to consider the complete pullback time for the BA and HBA profile, the related 4D

volumes without cropping the x-axis are shown in Figs 9 and 10, respectively. Considering the

BA profile (Fig 9), the overall IP volume results in an increased length with constant helical

pitch p0. In contrast, the MT volume does not overestimate the total volume and especially the

Fig 7. a) The measured distances in x agree with the set catheter movement. The turning points are clearly visible. The

velocity, however, is underestimated in the first two segments. In the third segment the measured distances in x agree

with the expected positions in x. b) The measure distance in y and c) z shows that the stenosis phantom is inserted

slightly diagonal and the back and forth movement is also noticeable in the y and z dimension. d) The inversion of the

velocity is visible and the mean velocity value are within the range of the expected velocities. However, the spread of

the velocity is quite high.

https://doi.org/10.1371/journal.pone.0230821.g007

Table 3. The mean absolute error for the distance in x-direction with its standard deviation (SD) is presented for the HBA profile. The absolute and relative error of

the velocity using the 3D regression line between tM1 and tM2 is also reported.

Errors HBA profile segment 1 HBA profile segment 2 HBA profile segment 3

MAE Trajectory 1D-x [mm] 0.64 ± 0.36 0.51 ± 0.55 0.38 ± 0.45

AE (RE) Velocity [mm/s] 0.38 (30.0%) 0.49 (39.4%) 0.04 (3.2%)

https://doi.org/10.1371/journal.pone.0230821.t003
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Fig 8. Reconstructed volumes for all motion profiles w.r.t. the ground-truth volume (top) for the cropped MPI FoV. The distances

x = 18 and x = 8 mm correspond to the time points tM1 and tM2. The IP and MT volume reconstructions are labeled (left). The phantom

boundary points are colored w.r.t. the time color map (right). The stenosis lengths are depicted with red arrows.

https://doi.org/10.1371/journal.pone.0230821.g008
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stenosis length. The varying catheter velocity, as depicted in Fig 6b), is apparent for the MT

method by different densities of boundary points between xM1
and x2 = 10.2 mm compared to

the points between x2 and x3 = 8 mm. In case of the HBA profile (Fig 10), the IP volume also

shows a relevant overestimation of the total volume. Furthermore, in the volume reconstruc-

tion beyond x = 8 mm a second stenosis appears. The MT volume again presents an improved

reconstruction method. Considering the tracked catheter motion, the 3D boundary points

are arranged over time such that several boundary points overlay each other between x1 and

x4 = 14 mm. Hence, the colored 4D volume (bottom) represents a catheter trajectory with a

turning point within the stenosis.

Fig 9. Complete IP volume reconstruction compared to MT volume reconstruction for the bending profile.

https://doi.org/10.1371/journal.pone.0230821.g009

Fig 10. Complete IP volume reconstruction compared to MT volume reconstruction for the heart beat profile.

https://doi.org/10.1371/journal.pone.0230821.g010

PLOS ONE In-Vitro MPI-guided IVOCT catheter tracking in real time

PLOS ONE | https://doi.org/10.1371/journal.pone.0230821 March 31, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0230821.g009
https://doi.org/10.1371/journal.pone.0230821.g010
https://doi.org/10.1371/journal.pone.0230821


3.3 Quantitative volume results

We determine the envelopes of the 3D boundary points of the IP and MT methods and quan-

tify the volume reconstruction results using the DICE metric

DICE ¼
1

N

XN

i¼1

2 �
j Ui \ Vi j

j Ui j þ j Vi j
; ð4Þ

whereas Ui are the 2D projected shapes of the reconstructed envelopes for method IP and MT,

respectively, compared to the ground-truth 2D projected shapes Vi for all angles from 1 to

N = 180˚. The mean DICE for all repetitions are listed in Table 4. The stenosis length is deter-

mined in x-direction as full at half width of the envelope decay of the volume shapes for all

reconstructions, profiles and experimental repetitions. In case of the HBA profile, the stenosis

length is determined as summation of the two stenosis lengths.

Discussion

The 4D catheter trajectory is tracked by the MPI for three different catheter motion profiles.

The statistical validation of all motion profiles and repetitions reveal small MAEs in x-direc-

tion of around 0.5mm, which is in good accordance with the estimated determination accu-

racy [44]. The ground truth for the trajectory in terms of the position in x, y and z directions is

not known, since it is hardly possible to track the catheter’s position within the MPI scanner

with a second instance, e.g., an optical system. The ground truth for the trajectory is only

known in terms of the pullback velocity and distance in 3D over a defined period. Therefore,

the calculated MAEs in x-direction contain a small uncertainty because the y and z ground

truth positions are assumed to be constant zero. The absolute and relative errors of the veloci-

ties determined by a regression line in 3D are comparable to the ground truth velocity of the

IVOCT adapter. They show varying relative errors in the range of 3.2%–39% for all motion

profiles and their segments. For the BA profile the first change of velocity could not be cap-

tured by the measured values. One reason could be that the velocity change is close to the bor-

der of the FoV. The voxel intensities representing the marked catheter tip have circle shaped

form in the MPI images. If this circle shape has not entered the FoV completely, the center of

mass localization algorithm might misinterpret the position. In addition, in case of the HBA

profile deviations occur around the turning points seen in Fig 7a), which lead to an underesti-

mation of the velocity. These deviations can be linked to the catheter setup with a proximal

actuator such that the pullback is increased by the shrinkage and stretching of the flexible cath-

eter. It is also worth noting that the back and forth motion of the catheter is also visible in the

y- and z-positions seen in Fig 7b and 7c) as the vessel phantom is not placed perfectly in accor-

dance with the x-axis.

The novel MT volume reconstruction method based on MPI catheter tracking demon-

strates a qualitative improvement in comparison to the IP method (Fig 8). Even in case of the

SP profile without additional motion artifacts, the IP method shows worse results by means of

Table 4. DICE quantification and related stenosis lengths in mm for 3D and 4D reconstruction methods for

motion profiles SP, BA, and HBA, respectively.

SP profile BA profile HBA profile

DICE IP 0.86 0.66 0.58

DICE MT 0.88 0.89 0.86

Stenosis IP (RE) 1.52 (1.3%) 3.91 (160%) 3.82 (154%)

Stenosis MT (RE) 1.15 (23%) 1.49 (0.6%) 1.19 (21%)

https://doi.org/10.1371/journal.pone.0230821.t004
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the DICE metric. The illustrated results of the motion artifact profiles underline the need of a

catheter tracking over time. In addition to the catheter tracking in 3D [7, 10, 34, 35], the time

synchronization of the IVOCT and MPI data leads to an optimized arrangement of OCT A-

scans in 3D space. The DICE metrics and stenosis lengths in Table 4 emphasize the relevant

errors in case of the IP method. Nevertheless, inaccuracies in volume shapes occur for all

methods and profiles (DICE< 0.9), as other imaging artifacts have an influence on the IVOCT

and MPI data. For example, non-uniform rotational distortions (NURD) of the catheter might

appear due to the catheter setup. Furthermore, the boundary segmentation in the IVOCT data

as well as the catheter tip segmentation in the MPI data contain inaccuracies.

In future work, the results can be further improved by a correction of additional artifacts

and image enhancements. On the one hand, a rotation tracking with MPI may be possible

with an asymmetric marking of the catheter tip. On the other hand, the phantom centerline

and catheter trajectory can be tracked using a multi-contrast MPI imaging approach [29–32,

46, 47] visualizing the marker and the blood pool tracer inside the phantom. Both approaches

can be used to minimize the effect of NURD artifacts.

Conclusion

A novel approach for MPI-guided IVOCT catheter tracking is presented considering both the

3D catheter trajectory and the time synchronization of IVOCT and MPI data in order to

reconstruct volumes of a known vessel phantom shape in 4D. A DICE coefficient of up to 89%

is achieved for different IVOCT motion artifact studies. The presented approach estimates the

stenosis length for simulated artifacts more precisely with a relative error of up to 0.6% in com-

parison to 160% of the standard method.
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