PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Huang L, Yin Y, Fu Z, Zhang S, Deng H,
Liu D (2020) LoAdaBoost: Loss-based AdaBoost
federated machine learning with reduced
computational complexity on IID and non-IID
intensive care data. PLoS ONE 15(4): e0230706.
https://doi.org/10.1371/journal.pone.0230706

Editor: M. Sohel Rahman, Bangladesh University of
Engineering and Technology, BANGLADESH

Received: January 24, 2019
Accepted: March 6, 2020
Published: April 17, 2020

Copyright: © 2020 Huang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: The EHR data used is
available from MIMIC3 consortium and is
accessible at Harvard Dataverse: https://doi.org/10.
7910/DVN/CLJIUQ.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

LoAdaBoost: Loss-based AdaBoost federated
machine learning with reduced computational
complexity on 11D and non-IID intensive care
data

Li Huang'*?, Yifeng Yin?, Zeng Fu?, Shifa Zhang®®, Hao Deng’, Dianbo Liu°®28*

1 Academy of Arts and Design, Tsinghua University, Beijing, China, 2 The Future Laboratory, Tsinghua
University, Beijing, China, 3 University of Huddersfield, Huddersfield, England, United Kingdom, 4 University
of California San Diego, San Diego, California, United States of America, 5 Northeastern University, Boston,
Massachusetts, United States of America, 6 Computer Science and Atrtificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 7 Department
of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts, United States of America,

8 Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, United States of America

* dianbo @ mit.edu

Abstract

Intensive care data are valuable for improvement of health care, policy making and many
other purposes. Vast amount of such data are stored in different locations, on many different
devices and in different data silos. Sharing data among different sources is a big challenge
due to regulatory, operational and security reasons. One potential solution is federated
machine learning, which is a method that sends machine learning algorithms simultaneously
to all data sources, trains models in each source and aggregates the learned models. This
strategy allows utilization of valuable data without moving them. One challenge in applying
federated machine learning is the possibly different distributions of data from diverse
sources. To tackle this problem, we proposed an adaptive boosting method named LoAda-
Boostthat increases the efficiency of federated machine learning. Using intensive care unit
data from hospitals, we investigated the performance of learning in IID and non-1ID data dis-
tribution scenarios, and showed that the proposed LoAdaBoost method achieved higher
predictive accuracy with lower computational complexity than the baseline method.

Introduction

Health data from intensive care units can be used by medical practitioners to provide health
care and by researchers to build machine learning models to improve clinical services and
make health predictions. But such data is mostly stored distributively on mobile devices or in
different hospitals because of its large volume and high privacy, implying that traditional learn-
ing approaches on centralized data may not be viable. Therefore, federated learning that avoids
data collection and central storage becomes necessary and up to now significant progress has
been made.

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020

1/16

http://orcid.org/0000-0002-3042-9161
https://doi.org/10.1371/journal.pone.0230706
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230706&domain=pdf&date_stamp=2020-04-17
https://doi.org/10.1371/journal.pone.0230706
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/CLJIUQ
https://doi.org/10.7910/DVN/CLJIUQ

PLOS ONE

AdaBoost federated machine learning on medical data

In 2005, Rehak et al. [1] established CORDRA, a framework that provided standards for an
interoperable repository infrastructure where data repositories were clustered into community
federations and their data were retrieved by a global federation using the metadata of each
community federation. In 2011, Barcelos ef al. [2] created an agent-based federated catalog of
learning objects (AgCAT system) to facilitate assess of distributed educational resources.
Although little machine learning was involved in these two models, their practice of distrib-
uted data management and retrieval served as a reference for the development of federated
learning algorithms.

In 2012, Balcan et al. [3] implemented probably approximately correct (PAC) learning in a
federated manner and reported the upper and lower bounds on the amount of communication
required to obtain desirable learning outcomes. In 2013, Richtarik et al. [4] proposed a distrib-
uted coordinate descent method named HYbriD for solving loss minimization problems with
big data. Their work provided the bounds of communication rounds needed for convergence
and presented experimental results with the LASSO algorithm on 3TB data. In 2014, Fercoq
et al. [5] designed an efficient distributed randomized coordinate descent method for mini-
mizing regularized non-strongly convex loss functions and demonstrated that their method
was extendable to a LASSO optimization problem with 50 billion variables. In 2015, Konecny
et al. [6] introduced a federated optimization algorithm suitable for training massively distrib-
uted, non-identically independently distributed (non-IID) and unbalanced datasets.

In 2016, McMabhan et al. [7] developed the FederatedAveraging (FedAvg) algorithm that fit-
ted a global model with the training data left locally on distributed devices (known as clients).
The method started by initializing the weight of neural network model at a central server, then
distributed the weight to clients for training local models, and stopped after a certain number
of iterations (also known as global rounds). At one global round, data held on each client
would be split into several batches according to the predefined batch size; each batch was
passed as a whole to train the local model; and an epoch would be completed once every batch
was used for learning. Typically, a client was trained for multiple epochs and sent the weight
after local training to the sever, which would compute the average of weights from all clients
and distribute it back to them. Experimental results showed that FedAvg performed satisfacto-
rily on both IID and non-IID data and was robust to various datasets.

More recently, Koneveny et al. [8] modified the global model update of FedAvg in two
ways, namely structured updates and sketched updates. The former meant that each client
would send its weight in a pre-specified form of a low rank or sparse matrix, whereas the latter
meant that the weight would be approximated or encoded in a compressed form before send-
ing to the server. Either way aimed at reducing the uplink communication costs, and experi-
ments indicated that the reduction can be two orders of magnitude. In addition, Bonawitz
et al. [9] designed the Secure Aggregation protocol to protect the privacy of each client’s model
gradient in federated learning, without sacrificing the communication efficiency. Later, Smith
et al. [10] devised a systems-aware optimization method named MOCHA that considered
simultaneously the issues of high communication cost, stragglers, and fault tolerance in multi-
task learning. Zhao et al. [11] addressed the non-IID data challenges in federated learning and
presented an improved version of FedAvg with a data-sharing strategy whereby the test accu-
racy could be enhanced significantly with only a small portion of globally shared data among
clients. The strategy required the server to prepare a small holdout dataset G (sampled from
IID distribution) and globally share a random portion ¢ of G with all clients. The size of G was
defined as ff = number of examples in G x 100%. There existed two trade-offs: first, test accu-

total number of examples in all clients

racy and o; and second, test accuracy and §. A rule of thumb was that the larger o or § was, the
higher test accuracy would be achieved. It is worth mentioning that since G was a separate

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 2/16

https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

dataset from the clients’ data, sharing it would not be a privacy breach. Since no specific name
was given to this method in Zhao et al.’s literature [11], we referred to it as “FedAvg with data-
sharing” in our study. Bagdasaryan et al. [12] designed a novel model-poisoning technique
that used model replacement to backdoor federated learning. Liu et al. used a federated transfer
learning strategy to balance global and local learning [13-16].

Most of the previously published federated learning methods focused on optimization of a
single issue such as test accuracy, privacy, security or communication efficiency; yet none of
them considered the computation load on the clients. This study took into account three issues
in federation learning, namely, the local client-side computation complexity, the communica-
tion cost, and the test accuracy. We developed an algorithm named Loss-based Adaptive
Boosting FederatedAveraging (LoAdaBoost FedAvg), where the local models with a high cross-
entropy loss were further optimized before model averaging on the server. To evaluate the pre-
dictive performance of our method, we extracted the data of critical care patients’ drug usage
and mortality from the Medical Information Mart for Intensive Care (MIMIC-III) database
[17] and the eICU Collaborative Research Database [18]. The data were partitioned into IID
and non-IID distributions. In the IID scenario LoAdaBoost FedAvg was compared with FedAvg
by McMahan et al. [7], while in the non-IID scenario our method was complemented by the
data-sharing concept before being compared with FedAvg with data-sharing by Zhao et al.
[11]. Our primary contributions include the application of federated learning to health data
and the development of the straightforward LoAdaBoost FedAvg algorithm that had better per-
formance than the state-of-the-art FedAvg approach.

Materials and methods
FedAvg: The baseline in IID scenario

Developed by McMahan et al. [7], the FedAvg algorithm trained neural network models via
local stochastic gradient descent (SGD) on each client and then averaged the weight of each cli-
ent model on a server to produce a global model. This local-training-and-global-average pro-
cess was carried out iteratively as follows. At the ™ iteration, a random C fraction of the clients
were selected for computation: the server first sent the average weights at the previous iteration
(denoted w*~!) to the selected clients (except for the 1% iteration where the clients started its

average
model from the same random weight initialization); each client independently learnt a neural
network model initialized with w'~! on its local data divided into B minibatches for E epochs,

average
and then reported the learned weights (denoted w| where k was the client index) to the server
for averaging (see Fig 1). The global model was updated by the average weights of each itera-
tion. FedAvg was utlized as the baseline method in IID scenario where both the training and
test data were identically independently distributed.

FedAvg with data-sharing: The baseline in non-IID scenario

As demonstrated in the literature [7], FedAvg exhibited satisfactory performance with IID
data, but its accuracy could drop substantially when trained on non-IID data. This was
because, with non-IID sampling, stochastic gradient could no longer be regarded as an unbi-
ased estimate of the full gradient according to Zhao et al. [11]. To address the challenge, they
proposed an improved version of FedAvg: a data-sharing strategy complemented FedAvg via
globally sharing a small subset of training data between all the clients (see Fig 2). Stored on
the server, the shared data was a dataset distinct from the clients’” data and assigned to clients
when FedAvg was initialized. Thus, this strategy improved FedAvg with no harm to privacy
and little addition to the communication cost. The strategy had two parameters that were o,

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 3/16

https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

t-1
Waverage

Fig 1. Communication between the clients and the server under FedAvg.

https://doi.org/10.1371/journal.pone.0230706.9001

the random fraction of the globally-shared data distributed to each client, and f, the ratio of
the globally-shared data size to the total client data size. Raising these two parameters could
lead to a better predictive accuracy but meanwhile make federated learning less decentralized,
reflecting a trade-off between non-IID accuracy and centralization. In addition, it is worth
mentioning that Zhao et al. also introduced an alternative initialization for their data-sharing
strategy: the server could train a warm-up model on the globally shared data and then

shared
data

a X

shared
data

shared
data

data

Fig 2. FedAvg complemented by the data-sharing strategy: Distribute shared data to the clients at initialization.
https://doi.org/10.1371/journal.pone.0230706.g002

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 4/16

https://doi.org/10.1371/journal.pone.0230706.g001
https://doi.org/10.1371/journal.pone.0230706.g002
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

distribute the model’s weights to the clients, rather than assigning them with the same ran-
dom initial weights. In this work, we kept the original initialization method to leave all com-
putation on the clients. FedAvg with data-sharing was used as the baseline method in non-IID
scenario where both the training and test data came from non-identically independently
distributions.

LoAdaBoost FedAvg

We devised a variant of FedAvg named LoAdaBoost FedAvg that was based on cross-entropy
loss to adaptively boost the training process on those clients appearing to be weak learners.
Since in our study the data labels were either 0 (survival) or 1 (expired), binary cross-entropy
loss was adopted as the error measure of model-fitting and calculated as

_Zb}ilogf(xi) + (1 _yi)log (1 _f(‘xi))] (1)

where N was the total number of examples, x; was the input drug feature vector, y was the
binary mortality label, and f was the federated learning model. The objective function of each
client model under FedAvg and LoAdaBoost learning was to minimize Eq 1, which measured
goodness-of-fit: the lower the loss was, the better a model was fitted. Our method utilized the
median cross-entropy loss L:. .. of clients that participated in the previous global round ¢ - 1
as a criterion for boosting Client k. Retraining for more epochs would be incurred if, after
training for E/2 epochs at the current global round ¢, Client k’s cross-entropy loss L}’ was
above L'"!. . The reason for using the median loss rather than average lied in that the latter
was less robust to outliers that were significantly underfitted or overfitted client models. Com-
munication between clients and the server under LoAdaBoost is demonstrated in Fig 3. Not
only the model weights but also the cross-entropy losses were communicated between the cli-

ents and the server. At the " iteration, the server delivered the average weights w'"! and the

average
median loss Liﬂ’e}ﬁun obtained at the t — 1™ iteration to each client; then, each client learnt a neu-
ral network model in a loss-based adaptive boosting manner, and reported the learnt weights
w," and the cross-entropy loss L;" to the server. The global model was parametrized by the
average of w;".

Algorithm 1 shows how LoAdaBoost worked in detail. The server started a neural network
model by randomly initializing the weight w,, which was then distributed to each client. The

initial value of median training loss (L? .) of client models was set to 1.0, and the number of

median

t—1 t—1
Lmedian' waverage

wi, LY,

t-1 = t-1 t-1
Lmedi(m' wfwérnge Lmediam Waverage

t gt
wi, Ly

t—-1 t—1 t gt
Lmedian' waverage w3, LZ

Fig 3. Communication between the clients and the server under LoAdaBoost FedAvg.

https://doi.org/10.1371/journal.pone.0230706.g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 5/16

https://doi.org/10.1371/journal.pone.0230706.g003
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

clients participating in federated learning () was determined by the product of the client per-
centage C and the total client count K. At least one client model would be trained in each
global round. At the tth round, Client k was initialized with the average weight from the

t— Ithround w'.! , and trained on the local data for E/2 epochs to obtain weight w;” and loss

average’

L;” before retraining. For odd E, E/2 would be rounded up to the nearest integer. If L} was

t—1
median’

not greater than the median loss from the previous round L computation on Client k

would be finished, with w{" and ;" sent to the server. Otherwise, the client would be retrained
for another E/2 epochs. Now, the new loss was denoted L;" where the superscript 1 indicated
the first retraining round. If L;" was still above L. , Client k would be retrained for E/2 — 1

median’®
more epochs. This process was repeated for retraining round r = 1,2,3, . . ., each round for max

t—1
median

(E/2 = r+ 1,1) epochs, and stopped until the retrained loss ;" dropped below L or the
total number of epochs (including initial training and retraining) reached 3E/2. Lastly, L;” and
the final w,” were sent to the server.

Algorithm 1 LoAdaBoost FedAvg. The K clients are indexed by k, C is the fraction of

clients that perform computation at each global round, and E is the number of local epochs
1: server initializes weight wy

2: Llrjnedian —10

3: m+— max(C - K, 1)

4: for each global round t =1, 2, ... do

5: S; < (random set of m clients)

6: for each client k € S in parallel do

7 train neural network model f; for % epochs to obtain w;(‘o and Li‘o
8: if Li <Ltl = then

9: W —)’

10: else

11: W, < Retrain(fy, E, L')

12: return w,, L to server

13:

14: function Rerramv f, E, L.

15: for each retrain round r =1, 2, ... do

16: train f, for max ({—r+1,1) epochs to obtain w;" and L{
17: if L' > L.}, or total training epochs >% then

18: return w,’

Depending on its cross-entropy loss, each client would be trained for at least E/2 epochs
and at most 3E/2 epochs. We set the maximum training epochs to 3E/2 to control computa-
tional complexity of LoAdaBoost, aiming to prevent it from running more average epochs than
FedAvg. The median cross-entropy loss of clients from the ¢ — 1th global round L'

median

was used
as the criterion for retraining clients at the tth round. In the worst-case scenario, no improve-
ment of training loss was made on each client after the initial E/2 epochs, and about half of the
clients were retrained for the full E additional epochs. Thus, the expected number of epochs
per client per global round would be at most E.

LoAdaBoost was adaptive in the sense that the performance of a poorly-fitted client model
after the first E/2 epochs was boosted via continuous retraining for a decaying number of
epochs. The quality of training was determined by comparing the model’s loss L;" with the
median loss L’ L. . In this way, our method was able to ensure that the losses of most (if not
all) client models would be lower than the median loss at the prior iteration, thereby making
the learning process more effective. In addition, because at one iteration only a few of the client
models were expected to be trained for the full 3E/2 epochs, the average number of epochs run
on each client would be less than E, meaning a smaller local computational load under our

method than that of FedAvg. Furthermore, since both L'~ and L;" were a single value

median

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 6/16

https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

transferred at the same time with w;" between the server and Client k, little additional commu-
nication cost would be incurred by our method.

Similar to other stochastic optimization-based machine learning methods [11, 19-21], an
important assumption for our approach to work satisfactorily was that the stochastic gradient
on the clients’ local data was an unbiased estimate of the full gradient on the population data.
This held true for IID data but broke for non-IID. In the latter case, an optimized client model
with low losses did not necessarily generalize well to the population, implying that reducing
the losses through adding more epochs to the clients was less likely to enhance the global mod-
el’s performance. This non-IID problem could be alleviated by combining LoAdaBoost FedAvg
with the data-sharing strategy, because the local data became less non-IID when integrated
with even a small portion of IID data.

The MIMIC-III database

The performance evaluation concerned with the MIMIC-III database [17], which contains
health information for critical care patients at a large tertiary care hospital in the US. Included
in MIMIC-III are 26 tables of data ranging from patients’ admissions, to laboratory measure-
ments, diagnostic codes, imaging reports, hospital length of stay and more. We processed
three of these tables, namely ADMISSIONS, PATIENTS and PRESCRIPTIONS, to obtain two
new tables as follows:

o ADMISSIONS and PATIENTS were inner-joined on SUBJECT_ID to form the PERSONA-
L_INFORMATION table which recorded AGE_GROUP, GENDER and the survival status
(MORTALITY) of all patients.

o Each patient’s usage of DRUGS during the first 48 hours of stay (that is, STARTDATE -
ENDDATE = two days) at the hospital was extracted from PRESCRIPTIONS to give the
SUBJECT_DRUG_TABLE table.

Further joining these two tables on SUBJECT_ID gave a dataset of 30,760 examples, from
which we randomly selected 30,000 examples to form the evaluation dataset where DRUGS
were the predictors and MORTALITY was the response variable. The summary of this dataset
was provided in Table 1.

The drug feature contained 2814 different drugs prescribed to the patients. Table 2 shows
the first six drugs D5W (that is, 5% dextrose in water), Heparin Sodium, Nitro-glycerine, Doc-
usate Sodium, Insulin and Atropine Sulphate. If a drug was prescribed to a patient (identified
by SUBJECT_ID), the corresponding cell in the table would be marked 1, and 0 otherwise. For
instance, Patient 9 was given D5W and Insulin while none of the first six drugs were offered to
Patient 10.

The evaluation dataset was shuffled and split into a training set of 27,000 examples and a
holdout set of 3,000 examples for implementing data-sharing strategy. As with the literature
[7], the training set was partitioned over 90 clients in two ways: IID in which the data was

Table 1. Summary of the evaluation dataset.

representation count
SUBJECT_ID integer: IDs ranging from 2 to 99,999 30,000
GENDER binary: 0 for female and 1 for male 17,284/12,716
AGE_GROUP binary: 0 for ages less than or equal to 65 and 1 for greater 13,947/16,053
MORTALITY binary: 0 for survival and 1 for expired 20,841/9,159
DRUGS binary: 0 for not prescribed to patients and 1 for prescribed 2814 dimensions

https://doi.org/10.1371/journal.pone.0230706.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 7/16

https://doi.org/10.1371/journal.pone.0230706.t001
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE AdaBoost federated machine learning on medical data

Table 2. Example rows and columns of DRUGS.

SUBJECT_ID D5W Heparin Sodium Nitro-glycerine Docusate Sodium Insulin Atropine Sulphate
9 1 0 0 0 1 0
10 0 0 0 0 1 0
11 0 0 0 1 1 0
12 1 0 0 0 1 0
13 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0230706.t002

randomly divided into 90 clients, each consisting of 300 examples; and non-IID in which the
data was firstly sorted according to AGE_GROUP and GENDER, and then split into equal-
sized 90 clients. Using the skewed non-IID data, we would be able to assess the robustness of
our model to scenarios when IID data assumption cannot be made, which is more realistic in
the healthcare industry.

Parameter sets

The neural network trained on each client consisted of three hidden layers with 20, 10 and 5
units, respectively, using the rectified linear unit (ReLu) activation functions. There were 56,
571 parameters in total. The stochastic optimizer chosen in this study was Adaptive Moment
Estimation (Adam), which requires less memory and is more computationally efficient accord-
ing to empirical results [22]. We used the default parameter set for Adam in the Keras frame-
work: the learning rate 7 = 0.001 and the exponential decay rates for the moment estimates 3,
=0.9 and B, = 0.999. In addition, while setting the minibatch size B to 30, we experimented
with the number of epochs E = 5,10 and 15 and the fraction of clients C = 10%, 20%, 50% and
100% (same as in the work of McMahan et al. [7]).

As for parameters of the data-sharing strategy, we experimented with various combinations
of as (10%, 20% and 30%) and SBs (1%, 2% and 3%). For instance, @ = 10% and 8 = 1% meant
only 0.1% (that is, 270 examples) of the total non-IID data were shared across the clients, each
receiving 27 random examples. Small @ and 8 were chosen to implement the data-sharing
strategy because we only sought to demonstrate that data-sharing could narrow the perfor-
mance gap between learning on IID and non-IID data. Large values were unnecessary for this
purpose, though both a and 8 could be increased to further enhance the performance, at the
expense of decentralization [11].

Evaluation metrics

Evaluation metrics were twofold. First, the area under the ROC curve (AUC) was used to
assess the predictive performance of a federated learning model. Here, ROC stands for the
receiver operating characteristic curve, a plot of the true positive rate (TPR) against the false
positive rate (FPR) at various thresholds. For a given threshold, TPR was the ratio of the num-
ber of mortalities predicted by the global model to the total number of mortalities in the test
dataset, while FPR was calculated as 1 — specificity where specificity was the ratio of the number
of predicted survivals to the total number of survivals. In our study, 10-fold cross validation
was performed to reduce the level of randomness. In IID evaluation, we partitioned the
MIMIC III data of 27,000 examples into 90 clients (each holding 300 examples) and further
randomly split the clients into 10 folds (each containing 9 clients). In non-IID evaluation, the
data was sorted by patients’ age and gender before partitioning. Then, each fold was regarded
as the test data in turn and the remaining nine folds were used to train FedAvg and

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 8/16

https://doi.org/10.1371/journal.pone.0230706.t002
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

LoAdaboost. Predictions for every fold were recorded and compared against the true labels,
and AUC ROC at convergence was calculated. This process was repeated for five times, result-
ing in a set of five cross-validation AUC values. FedAvg and LoAdaboost were compared in
terms of average and standard deviation of these values.

Second, we defined average epochs of clients as the expected number of epochs to run on a
single client in a complete federated learning process and used the metric to measure the
computational complexity of federated learning algorithms.

SISy (£ + retraining epochs for Client k at ¢th global round) 2)
m

where T was the total number of global rounds taken by an algorithm to converge and m was
the number of clients participating in computation at each global round. Under FedAvg, aver-
age epochs would be a constant value of E times the number of global rounds, while under our
adaptive method it would be varying because each client expectedly ran for a different number
of epochs. In the experiments, we set a maximum number of global rounds, then carried out
10-fold cross validation with different random seeds for five times, and finally calculated
cross-validation AUCs and average epochs.

Results

LoAdaBoost was evaluated against the baseline FedAvg algorithm in IID scenario and FedAvg
with data-sharing in non-IID sceniaro. We adpoted the data-sharing strategy on non-IID data
because there was a performance gap between the two scenarios, as depicted in Fig 4. The fig-
ure shows test AUCs versus global rounds during a single cross-validation run of FedAvg with
varying numbers of local epochs E. Same as the work by McMahan et al.[7], each curve in the
figure was made monotonically increasing via taking the highest test-set AUC achieved over
all previous global rounds. It is apparent that FedAvg on IID data consistently exhibited a
higher test AUC than on non-IID data for all different Es.

0.85 - T T T T T T
0.80 | g
0.75 :
0.70 |~ .
(@) /
2 /
< 0.65 1
(%] /
2
0.60 — |ID scenario: E=5 |
non-lID scenario: E=5
0.55 - - 1D scenario: E=10
non-lID scenario: E=10
0.50 --- 1ID scenario: E=15
non-lID scenario: E=15
045 ! I 1 1 1 1 1

2 4 6 8 10 12 14
global rounds

Fig 4. Performance gap between IID and non-IID data.
https://doi.org/10.1371/journal.pone.0230706.g004

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 9/16

https://doi.org/10.1371/journal.pone.0230706.g004
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

Throughout the evaluation, 10-fold cross-validation with five repetitions was carried out to
obtain an accurate estimate of predictive performance: 27,000 examples of the MIMIC III data
were divided into 90 equally-sized clients, which were further randomly split into 10 folds,
each containing nine clients. In cross validation, each fold was regarded as the test set in turn
and the other nine folds were used to train models. The remaining 3,000 examples were uti-
lized as the holdout set to implement the data-sharing strategy in non-IID scenario.

Evaluation in IID scenario

Fig 5 compares the predictive performance (test AUC versus global rounds) of FedAvg and
LoAdaboost with C = 10% and E = 5, 10 and 15 using the same training and test data as in
Fig 4. Given the same E, our method seemed to converge slightly slower (lagging a couple of
global rounds) but nonetheless to a higher test AUC than FedAvg.

We speculate the reason for this lagged convergence as follows. At the first few global
rounds where each client model was underfitting, learning FedAvg would be more efficient
because each client was trained to the full five epochs. After a few global rounds, some client
models would start to be overfitted and impose an adverse effect on the predictive perfor-
mance of the averaged model on the server. So, learning speed of FedAvg would be lowered.
On the other hand, our method would be less affected by individual overfitted client models,
because the loss-based adaptive boosting mechanism would enable underfitted models to be
trained for more epochs and overfitted ones to be trained for less epochs than five. Finally,
when all clients became overfitted, Fed Avg and our method would cease to learn, though the
convergence AUC for the latter would be higher.

In addition, both algorithms converged faster with a larger value of E. With E equal to 5,
they began to converge at the 15th global round; with E equal to 10, they had already con-
verged at the 10th round; and with E equal to 15, at the 5th round FedAvg had already con-
verged while our method began to converge to a higher point.

0.85 T T T T T T T
0.80 | .
. s Pia 3
075} 7
/'I// ’
m W
0.70 k"7
&
)
2
< 0.65|
8
0.60 - - 7 [— FedAvg, E=5 1
‘ // LoAdaboost FedAvg, E=5
0.55 | // - - FedAvg, E=10
/ - LoAdaboost FedAvg, E=10
0.50 | L --- FedAvg, E=15 .
///' -~ LoAdaboost FedAvg, E=15
045 1 L 1 1 il 1 1
2 4 6 8 10 12 14

global rounds

Fig 5. Comparison of FedAvg and LoAdaboost on IID data. LoAdaBoost converged slightly slower than FedAvg, but
to a higher test AUC.

https://doi.org/10.1371/journal.pone.0230706.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020

10/16

https://doi.org/10.1371/journal.pone.0230706.g005
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE AdaBoost federated machine learning on medical data

Table 3. IID scenario: 10-fold cross validation results with varying C and E.

C E FedAvg LoAdaBoost p-value
AUC average epochs AUC average epochs
10% 5 0.7891+-0.0002 75 0.7940+-0.0001 68 0.03
10 0.7876+-0.0010 100 0.7900+-0.0007 73 0.03
15 0.7897+-0.0006 75 0.7907+-0.0010 52 0.03
20% 5 0.7905+-0.0003 75 0.7971+-0.0005 69 0.03
50% 5 0.7903+-0.0003 80 0.7932+-0.0005 75 0.03
100% 5 0.7888+-0.0002 75 0.7887+-0.0003 72 0.78

https://doi.org/10.1371/journal.pone.0230706.t003

To make the superiority of our method more credible, 10-fold cross validation was carried
out with different combinations of C and E, and was repeated for five times under each experi-
mental setting. Wilcox signed rank test was performed on the AUC sets for FedAvg and our
method. Average cross validation AUC (with standard deviation), average epochs, and p-val-
ues for the statistical test are shown in Table 3.

For all combinations of Cs and Es, our method exhibited less computational complexity
(that is, fewer average epochs) than FedAvg. With C = 10%, 20% and 50%, our method consis-
tently achieved higher cross validation AUCs than FedAvg (p = 0.03); with C = 100%, the lat-
ter’s AUC was marginally higher (0.7888 versus 0.7887, and p = 0.78). However, implementing
C of 100% might not be beneficial in practice, because involving all clients in federated learn-
ing was computationally costly and would not necessarily lead to the best predictive perfor-
mance (0.7905 for Fed Avg with C = 20% and 0.7940 for LoAdaBoost with C = 10%).

Evaluation in non-IID scenario

The data distribution became non-IID after sorting the examples by age and gender. FedAvg
with data-sharing [11] was the state-of-the-art method that narrowed the performance gap
between IID and non-IID [11]. The data-sharing strategy implemented on FedAvg could effec-
tively counter the adverse effect of non-IID data distributions. To facilitate a fair comparison,
we adopted the strategy and evaluated LoAdaBoost with data-sharing against Zhao et al’s
method. Like IID, we prepared data for cross validation by partitioning the non-IID examples
into 90 clients, each holding 300 examples, and randomly divided the clients into 10 folds,
each containing nine clients.

Fig 6 compares predictive performance (test AUC versus global rounds) of FedAvg and
LoAdaboost with the distribution fraction a = 10%, 20% and 30%, respectively. The globally
shared data size §, client fraction C and epoch count E were set to 1%, 10% and 5, respectively.
For all as, both methods started convergence by the 10th global round; given the same ¢, our
method achieved a higher test AUC than FedAvg.

Unlike IID evaluation where our method converged slower than FedAvg, here both meth-
ods had roughly the same convergence speed. We speculate the reason to be that learning on
each client model with non-IID data became more difficult than with IID data, and so training
for constantly five epochs across all client models was no longer advantageous.

Same as IID evaluation, 10-fold cross validation was performed for five times. We fixed C
to 10% and E to 5 while varying o from 10% to 30% and 8 from 1% to 3%. As shown in
Table 4, both methods’ AUCs at convergence increased with a larger value of @ or § (that is,
more data was shared with each client). More importantly, our method always achieved a
higher AUC with fewer average epochs.

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 11/16

https://doi.org/10.1371/journal.pone.0230706.t003
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

0.8} AL YL
Yt
0.7} AL §
AR
,// ,l" 4
S o6} T]
=] ’ 7
§ : Z 7
05} Fl A FedAvg with data-sharing, alpha=10% 1
e - LoAdaboost with data-sharing, alpha=10%
. - - FedAvg with data-sharing, alpha=20%
0.4} LoAdaboost with data-sharing, alpha=20% |-
FedAvg with data-sharing, alpha=30%
LoAdaboost with data-sharing, alpha=30%
03 Il Il Il Il fl

2 4 6 8 10
global rounds

Fig 6. Comparison of FedAvg and LoAdaboost on non-IID data with data-sharing strategy.
https://doi.org/10.1371/journal.pone.0230706.9006

With o = 20% and 8 = 1% (that is, each client received only 54 additional examples, 0.2% of
the total data), both methods obtained higher cross validation AUCs than those in IID scenario
(0.7954 versus 0.7842 for FedAvg with data-sharing and 0.8016 versus 0.7916 for LoAdaBoost
with data-sharing). Furthermore, it is worth mentioning the trade-off between the size of
shared data and predictive accuracy: if more data was distributed across the clients, the higher
AUCs would be obtained, and vice versa.

Moreover, we further investigated the effect of increasing client percentage on predictive
performance by fixing o = 10%, 8 = 1% and E = 5 and varying C. The 10-fold cross validation
results are displayed in Table 5. Our method obtained higher cross validation AUCs than
FedAvg with data-sharing with C = 10%, 20%, 50% and 100%, and in all cases each client
model under LoAdaboost with data-sharing was expected to run less epochs per global round
than under FedAvg with data-sharing.

Evaluation on eICU data

To demonstrate the robustness of our method, we included in experiments another critical
care dataset from the eICU Collaborative Research Database [18]. The eICU data was in nature

Table 4. Non-IID scenario: 10-fold cross validation results with varying e and f.

B

1%

2%
3%

https://doi.org/10.1371/journal.pone.0230706.t004

o

10%
20%
30%
10%
10%

FedAvg with data sharing LoAdaBoost with data sharing p-value
average epochs AUC average epochs
0.7842+-0.0016 40 0.7916+-0.0015 36 0.03
0.7954+-0.0012 40 0.8016+-0.0015 35 0.03
0.8167+-0.0011 40 0.8203+-0.0011 34 0.03
0.7913+-0.0010 40 0.7984+-0.0008 35 0.03
0.8033+-0.0010 40 0.8063+-0.0010 34 0.03

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 12/16

https://doi.org/10.1371/journal.pone.0230706.g006
https://doi.org/10.1371/journal.pone.0230706.t004
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

Table 5. Non-IID scenario: 10-fold cross validation results with varying C.

C FedAvg with data sharing LoAdaBoost with data sharing p-value
AUC average epochs AUC average epochs
10% 0.7842+-0.0016 40 0.7916+-0.0015 36 0.03
20% 0.7869+-0.0008 50 0.7893+-0.0005 46 0.03
50% 0.7831+-0.0005 40 0.7877+-0.0006 35 0.03
100% 0.7609+-0.0004 40 0.7900+-0.0003 35 0.03
https://doi.org/10.1371/journal.pone.0230706.t005
Table 6. Summary of the eICU dataset.
representation count
PATIENT_UNIT_STAY_ID integer: six-digit patient ID 22,500
HOSPITAL_ID integer: hospital IDs ranging from 63 to 458 45
MORTALITY binary: 0 for survival and 1 for expired 21393/1107
DRUGS binary: 0 for not prescribed to patients and 1 for prescribed 1399 dimensions

https://doi.org/10.1371/journal.pone.0230706.t006

non-IID, containing patient data from different hospitals across the US. We sampled 9,000
examples from 30 hospitals, each consisting of 300 examples and serving as a client in the non-
IID scenario. The summary of this data is shown in Table 6.
Same as MIMIC III, DRUGS prescribed to patients during the first 48 hours of stay were
used to predict MORTALITY of patients. In addition, another randomly chosen 90 examples
was prepared as the holdout set (that is, # = 1%) for implementing the data-sharing strategy.
For IID evaluation, we shuffled those 9,000 examples and then partitioned them into 30 clients,
each containing 300 examples. The clients were randomly divided into 10 equally-sized folds.
Nine folds were regarded as the training set and the remaining fold was used as the test set.
Throughout the evaluations, C and E were set to 10% and 5, respectively. In non-IID scenario
with data-sharing strategy, a was set to 10%. Fig 7 shows the evaluation results of a single run

of cross validation.

0.70 T T T
0.65 gom e mimm—e = 1
/‘ = 4
0.60 | et ez W) s g s v
sElTT e P
g
< 0.55 / 1
8 /
0.50 1ID: FedAvg
' IID: LoAdaboost 1
non-11D: FedAvg
0.45 non-lID: LoAdaboost 1
non-lID: FedAvg with data-sharing
non-lID: LoAdaboost with data-sharing
0.40 N N

40 60
global rounds

Fig 7. Comparison of FedAvg and LoAdaboostFedAvg on eICU data.

80

100

https://doi.org/10.1371/journal.pone.0230706.g007

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020

13/16

https://doi.org/10.1371/journal.pone.0230706.t005
https://doi.org/10.1371/journal.pone.0230706.t006
https://doi.org/10.1371/journal.pone.0230706.g007
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

Table 7. Evaluation on eICU data: 10-fold cross validation results.

data distribution method AUC average epochs p-value
1ID FedAvg 0.5693+-0.0057 400 0.03
LoAdaBoost 0.6057+-0.0077 262
non-I1ID FedAvg 0.6512+-0.0043 300 0.03
LoAdaBoost 0.6548+-0.0048 271
FedAvg with data-sharing 0.6253+-0.0088 350 0.03
LoAdaBoost with data-sharing 0.6412+-0.0065 272

https://doi.org/10.1371/journal.pone.0230706.t007

Federated learning outcomes on eICU were different from those on MIMIC III data. Learn-
ing became more difficult as both the baseline and our method took 50 or more global rounds
to converge. In addition, as displayed in the figure, AUCs with non-IID data were close to 0.65
but dropped to roughly 0.6 when data-sharing was adopted, while AUCs with IID data were
notably lower for both methods. Therefore, learning on non-IID seemed easier than on IID,
which resonated with the evaluation results of language modeling on the Shakespeare dataset
in McMahan et al.’s work [7]. What was consistent with evaluation on MIMIC III data was
that LoAdaBoost converged to higher AUCs with fewer average epochs than FedAvg, whether
the scenario be IID, non-IID or non-IID with data-sharing. This finding was confirmed by the
results of 10-fold cross validation with five repetitions (see Table 7).

Discussion

Distributed health data in large quantity and of high privacy can be harnessed by federated
learning where both data and computation are kept on the clients. In this study, we proposed
LoAdaBoost FedAvg that adaptively boosted the performance of individual clients according to
cross-entropy loss. Under the federated learning scheme, the data held on each client was ran-
dom in IID scenario and came from different distributions in non-IID scenario; and the ran-
domly chosen clients participating in each round of learning would also be different.
Therefore, if the number of epochs E was fixed as in the case of FedAvg, there could highly
likely be certain underfitted or overfitted clients at each global round, which would adversely
affect model averaging at the server. On the other hand, our method firstly trained each client
for very few epochs, then defined the goodness-of-fit of each client by comparing its cross-
entropy loss with the median loss from the previous round, and finally achieved performance
boosting by further training poorly-fitted clients for more epochs, well-fitted ones for less, and
over-fitted ones for none. In this manner, all clients would expectedly be more appropriately
learnt than those of Fed Avg. Experimental results with IID data and non-IID data showed that
LoAdaBoost FedAvg converged to slighly higher AUCs and consumed fewer average epochs of
clients than FedAvg. Our approach can also be extended to learning tasks in other fields, such
as image classification and speech recognition, wherever the data is distributed.

As a final point, federated learning with IID data does not always outperform that with
non-IID data. Evaluation on the eICU data is such an example; and another one is the lan-
guage modeling task on the Shakespeare dataset [7] where learning on the non-IID distribu-
tion reached the target test-set AUC nearly six times faster than on IID. In cases like this, the
data-sharing strategy becomes unnecessary. Moreover, according to Zhao et al. [11], weight
divergence would occur in neural network models trained on clients holding data from differ-
ent distributions, and was positively correlated with the degree of data skewness. The predic-
tive accuracy of FedAvg could be reduced by up to 55% due to high weight divergence. When
non-IID data is severely skewed, LoAdaBoost may also lose its competitive advantage. This is

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 14/16

https://doi.org/10.1371/journal.pone.0230706.t007
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

because the weights of clients’ models can all diverge from the well-tuned weight that could
have been obtained in centralized learning [11], and the measure of median client-training
loss may no longer be an effective indicator of the overall training quality of federated learning.
In the continuation of our study, we will investigate what kind of medical datasets may result
in superior modeling performance with non-IID distribution and why this occurs. Further-
more, we will try to improve the LoAdaBoost FedAvg algorithm to make learning on such
datasets even easier.

Author Contributions

Conceptualization: Li Huang, Dianbo Liu.

Data curation: Li Huang, Yifeng Yin, Zeng Fu, Hao Deng, Dianbo Liu.
Formal analysis: Yifeng Yin, Zeng Fu, Hao Deng, Dianbo Liu.
Investigation: Dianbo Liu.

Methodology: Li Huang, Zeng Fu, Shifa Zhang, Dianbo Liu.
Project administration: Dianbo Liu.

Resources: Dianbo Liu.

Supervision: Dianbo Liu.

Validation: Yifeng Yin, Dianbo Liu.

Visualization: Li Huang, Dianbo Liu.

Writing - original draft: Li Huang, Yifeng Yin, Dianbo Liu.
Writing - review & editing: Li Huang, Yifeng Yin, Dianbo Liu.

References

1. RehakD, Dodds P, Lannom L. A model and infrastructure for federated learning content repositories.
In: Interoperability of Web-Based Educational Systems Workshop. vol. 143. Citeseer; 2005.

2. Barcelos C, Gluz J, Vicari R. An agent-based federated learning object search service. Interdisciplinary
journal of e-learning and learning objects. 2011; 7(1):37-54. https://doi.org/10.28945/1355

3. Balcan MF, Blum A, Fine S, Mansour Y. Distributed learning, communication complexity and privacy.
In: Conference on Learning Theory; 2012. p. 26—1.

4. Richtarik P, Takac M. Distributed Coordinate Descent Method for Learning with Big Data. arXiv preprint
arXiv:13102059. 2013.

5. FercoqO, Qu Z, Richtarik P, Taka¢ M. Fast distributed coordinate descent for non-strongly convex
losses. In: Machine Learning for Signal Processing (MLSP), 2014 |IEEE International Workshop on.
IEEE; 2014. p. 1-6.

6. Kone¢ny J, McMahan B, Ramage D. Federated optimization: Distributed optimization beyond the data-
center. arXiv preprint arXiv:151103575. 2015.

7. McMahan HB, Moore E, Ramage D, Hampson S, et al. Communication-efficient learning of deep net-
works from decentralized data. arXiv preprint arXiv:160205629. 2016.

8. Konec¢ny J, McMahan HB, Yu FX, Richtarik P, Suresh AT, Bacon D. Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:161005492. 2016.

9. BonawitzK, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al. Practical secure aggrega-
tion for federated learning on user-held data. arXiv preprint arXiv:161104482. 2016.

10. Smith V, Chiang CK, Sanjabi M, Talwalkar AS. Federated multi-task learning. In: Advances in Neural
Information Processing Systems; 2017. p. 4424—-4434.

11. ZhaoY, LiM, LailL, Suda N, Civin D, Chandra V. Federated Learning with Non-1ID Data. arXiv preprint
arXiv:180600582. 2018.

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 15/16

https://doi.org/10.28945/1355
https://doi.org/10.1371/journal.pone.0230706

PLOS ONE

AdaBoost federated machine learning on medical data

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated learning. arXiv pre-
print arXiv:180700459. 2018.

Liu D, Miller T, Sayeed R, Mandl K. FADL: Federated-Autonomous Deep Learning for Distributed Elec-
tronic Health Record. arXiv preprint arXiv:181111400. 2018.

Huang L, Liu D. Patient Clustering Improves Efficiency of Federated Machine Learning to predict mor-
tality and hospital stay time using distributed Electronic Medical Records. arXiv preprint
arXiv:190309296. 2019.

Liu D, Dligach D, Miller T. Two-stage Federated Phenotyping and Patient Representation Learning. In:
Proceedings of the 18th BioNLP Workshop and Shared Task; 2019. p. 283-291.

Liu D, Sepulveda N, Zheng M. Artificial neural networks condensation: A strategy to facilitate adaption
of machine learning in medical settings by reducing computational burden. arXiv preprint
arXiv:181209659. 2018.

Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, et al. MIMIC-II|, a freely accessible
critical care database. Scientific data. 2016; 3:160035. https://doi.org/10.1038/sdata.2016.35 PMID:
27219127

Pollard TJ, Johnson AE, Raffa JD, Celi LA, Mark RG, Badawi O. The elCU Collaborative Research
Database, a freely available multi-center database for critical care research. Scientific data. 2018; 5.
https://doi.org/10.1038/sdata.2018.178 PMID: 30204154

Bottou L. Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMP-
STAT’2010. Springer; 2010. p. 177—-186.

Rakhlin A, Shamir O, Sridharan K, et al. Making Gradient Descent Optimal for Strongly Convex Sto-
chastic Optimization. In: ICML. vol. 12. Citeseer; 2012. p. 1571-1578.

Ghadimi S, Lan G. Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization. 2013; 23(4):2341-2368. https://doi.org/10.1137/120880811

Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.

PLOS ONE | https://doi.org/10.1371/journal.pone.0230706 April 17, 2020 16/16

https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/pubmed/30204154
https://doi.org/10.1137/120880811
https://doi.org/10.1371/journal.pone.0230706

