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Abstract

The Internet is a remarkably complex technical system. Its rapid growth has also brought

technical issues such as problems to information retrieval. Search engines retrieve requested

information based on the provided keywords. Consequently, it is difficult to accurately find

the required information without understanding the syntax and semantics of the content. Mul-

tiple approaches are proposed to resolve this problem by employing the semantic web and

linked data techniques. Such approaches serialize the content using the Resource Descrip-

tion Framework (RDF) and execute the queries using SPARQL to resolve the problem. How-

ever, an exact match between RDF content and query structure is required. Although, it

improves the keyword-based search; however, it does not provide probabilistic reasoning to

find the semantic relationship between the queries and their results. From this perspective, in

this paper, we propose a deep learning-based approach for searching RDF graphs. The pro-

posed approach treats document requests as a classification problem. First, we preprocess

the RDF graphs to convert them into N-Triples format. Second, bag-of-words (BOW) and

word2vec feature modeling techniques are combined for a novel deep representation of RDF

graphs. The attention mechanism enables the proposed approach to understand the seman-

tic between RDF graphs. Third, we train a convolutional neural network for the accurate

retrieval of RDF graphs using the deep representation. We employ 10-fold cross-validation to

evaluate the proposed approach. The results show that the proposed approach is accurate

and surpasses the state-of-the-art. The average accuracy, precision, recall, and f-measure

are up to 97.12%, 98.17%, 95.56%, and 96.85%, respectively.

1 Introduction

The digital age arrives with a set of challenges for the Web due to the abundance of informa-

tion. In today’s modern society, people capture, upload, store, and digitalize almost every activ-

ity of daily life routine over the Web. Nowadays, communication devices have the capacity to

connect to the internet independently and contain sensors that are spreading useful informa-

tion without users’ intervention. Consequently, the data is increasing daily and resulting in

information overload. Searching such data had driven to the development of the linked data

and Semantic Web. It considers the machine processable metadata [1] that enhances
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information flow and can relate data from distributed data sources to make data meaningful.

This mash-up of data introduced the phrase Web 3.0. Building links between distributed data

sources is essential to Web 3.0 which is achieved using RDF. RDF resources consist of RDF tri-

ples where each triple contains a subject s that has property p with value o [2, 3]. Consequently,

a RDF triple may be viewed as a representation of an atomic fact or a claim [4].

The analogous datasets may be defined as Linked Data [5] that can be summarized as being

“simply about using the Web to create typed links between data from different sources”. Linked

data combine entities from different sources/locations to crawl them as a data-space due to its

connected links [5, 6]. This idea motivates this study to access the required information from

distributed sources and build links that help in searching. RDF triples allow entities to be que-

ried and linked together. The existing studies use RDF and SPARQL to serialize the content

and to execute the queries for searching, respectively.

RDFs are massive in size and crucial; therefore it is not easy to extract information for an

ordinary user. Although, linked data and SPARQL provides a significant improvement in

search methods. However, the complexity criteria (similar triples by RSFS and OWL rules)

and the usability criteria (the human effort) are required to read and learn RDF data [7]. For

example, SPARQL queries require structure accuracy to extract RDF elements. Such queries

do not allow the statistic analysis to evaluate the query against the RDF content; e.g., features

of a basket may not be enough as input to identify the online shopping basket. Many

approaches have been proposed for achieving this kind of searching from RDF data using

linked data and SPARQL [8–19]. Notably, such approaches respond to queries with an exact

match rather than estimating the similarity within the RDF content that leads to the original

motivation for the work in this paper. On the other hand, Hadi et al. [20] exploited a machine

learning approach to search RDF graphs. Although their approach works on statistical estima-

tion, it does not consider semantic relationships while searching RDF graphs and requires sig-

nificant improvement.

To this end, a deep learning-based searching approach is proposed for RDF graphs. In this

regard, we first reuse the history-data of DBpedia documents. Second, we preprocess the

extracted RDF graphs using the W3C validation service. Third, we concatenate BOW and

word2vec feature modeling techniques for attention-based recurrent neural network novel

deep representation of RDF graphs. The attention mechanism enables the proposed approach

to understand the semantic between RDF graphs. Fourth, we train a convolutional neural net-

work for the accurate retrieval of RDF graphs using the deep representation. Finally, a convo-

lutional neural network is trained to predict the retrieval of RDF graphs. And the proposed

approach is evaluated using a 10-fold cross-validation technique on the given dataset. The eval-

uation results show the accuracy of the proposed approach. The average accuracy, precision,

recall, and f-measure are up to 97.12%, 98.17%, 95.56%, and 96.85%, respectively.

The main contributions of this study are as follows:

• An approach based on a convolutional neural network is proposed for searching RDF

graphs. To the best of our knowledge, we are the first to exploit a deep learning algorithm in

retrieval prediction of RDF graphs.

• Evaluation results of the proposed approach on the given dataset show that the proposed

convolutional neural network-based approach is accurate and surpasses the state-of-the-art.

The rest of the paper is organized as follows: Section II presents the proposed approach.

The evaluation process and results of the proposed approach are described in Section III. Sec-

tion IV explains the threats. Section V and Section VI present the related work and conclusion,

respectively.
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2 Approach

2.1 Overview

Fig 1 illustrates an overview of the convolutional neural network based searching for RDF

graphs. The proposed approach performs RDF graph retrieval prediction as follows:

1. We reuse the history-data of RDF graphs as training data.

2. We apply the W3C validation service to RDF graphs for preprocessing.

3. We concatenate BOW and word2vec feature modeling techniques for a novel deep repre-

sentation of RDF graphs.

4. A convolutional neural network is trained to anticipate the retrieval of RDF graphs. We

pass the deep representation to the classifier as input that predicts the retrieval of RDF

graphs.

The following sections introduce the key steps of the proposed approach.

2.2 Illustrating example

We consider an example to demonstrate how the proposed approach anticipates the retrieval

of RDF graphs. An excerpt of RDF graph taken from DBpedia is presented in Fig 2. The details

Fig 1. Overview of the proposed approach.

https://doi.org/10.1371/journal.pone.0230500.g001

Fig 2. An example of RDF graph.

https://doi.org/10.1371/journal.pone.0230500.g002
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on how the proposed approach deals the illustrating example are given in the following

sections.

2.3 Problem definition

A RDF d is a graph from a set of RDF graphs (D) which can be formalized as,

d ¼ < t1; t2; . . . ; tn > ð1Þ

where, t1, t2, . . ., tn represents the n number of triples in a RDF graph, and each triple consists

of subject(s), predicate(p), and object(o).

de ¼ < te1
; te2

; . . . ; ten > ð2Þ

where,

de = a complete example of a RDF graph represented in Fig 2,

te1
= first triple of the example,

te2
= second triple of the example,

.

.

ten = last triple of the example.

The proposed approach takes the problem of searching of RDF graphs as classification

problem and predicts whether a RDF graph will be retrieved or not. The retrieval anticipation

of a new RDF graph d can be defined as a function f.

c ¼ f ðdÞ c 2 fhit or missg; d 2 D ð3Þ

where, c, f, d, and D are predefined classification (hit or miss), classification function of

retrieval anticipation, a RDF graph, and a set of RDF graphs, respectively.

2.4 Preprocessing

We preprocess each of the RDF graph using the W3C Validation Service. We load each col-

lected RDF graph using Apache Jena API (http://jena.apache.org/) to validate its syntax. Then,

the validated RDF graph is loaded into the model that transforms the RDFs from serialization
format to N-Triples format. The preprocessing of a RDF graph can be formalized as,

d ¼ < t1

0

; t2

0

; . . . ; tn
0

> ð4Þ

where, t1

0

; t2

0

; . . . ; tn
0

are preprocessed n triples of the RDF graph d.

For the motivating example presented in Section 2.2, a RDF graph de after preprocessing

can be formalized as,

de ¼ < te1

0

; te2

0

; . . . ; ten
0

> ð5Þ

where, from the excerpt of preprocessed RDF graph is presented in Fig 3, te1

0

; te2

0

; . . . ; ten
0

rep-

resent the n triples (separated with a dot (.)) of the preprocessed RDF graph, respectively.

2.5 Deep feature representation

A BOW representation of each RDF graph provides a boolean (0 or 1) array or a term fre-

quency array using all repository terms [21] (shown in Fig 4) and does not incorporate the

semantic similarity among terms. Moreover, problems like high dimensionality and sparse

data are observed in the bag-of-n-words feature representation [22]. To this end, a neural
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network-based features representation model (word2vec) is proposed to learn and understand

the semantic relationship between terms (predicates in our case) [23]. However, word2vec only

considers semantics of individual terms rather than a sequence of words. Notably, a significant

improvement is required to combine the sequence of terms, the syntax of terms, the semantic

relationship among terms. In this perspective, a deep representation of RDF graphs is pro-

posed. Fig 5 illustrates an overview of the deep representation of RDF graphs. The long short

term memory (LSTM) cells are exploited [24] as a memory unit in the hidden layer that resolve

the vanishing gradient problem [25]. LSTM cells can memorize the sequence of terms in both

forward direction and backward direction.

The construction of deep representation involves the extraction of |U|- dimensional repre-

sentation (BOW) using predicate repository, the learning of |V|-dimensional representation

word2vec using |U|-dimensional representation, and the learning of LSTM cells (deep repre-

sentation) using |S|-dimensional representation. This process returns the |D|-dimensional

representation of the given RDF graph. The |D|-dimensional representation has a sequence

network (recurrent neural network) that contains a hidden layer with n hidden units (h = h1,

h2, . . .‥, hn). The recurrent neural network takes |V|-dimensional representation (y = y1, y2,

. . .‥, yn) as an input and returns a |D|-dimensional representation (z = z1, z2, . . .‥, zn). Every h
transforms the previous state si−1 and a term yi into the next state si and output word zi. Every

hidden unit repeatedly performs the function f in recurrent neural network:

f : fsi� 1; yig ! fsi; zig ð6Þ

where each si has the information of ith term in h, whereas the output zn of hn represents the

complete RDF graph.

Additionally, an attention mechanism is employed to learn from the predicates of the RDF

graph. An attention vector with the weighted summation of all outputs zi can be formalized as,

an ¼
Xn

i¼1

aizi ð7Þ

where αi is the weight of each word yi that defines the importance of yi for classification. A

Fig 3. Preprocessed example of RDF graph.

https://doi.org/10.1371/journal.pone.0230500.g003

Fig 4. Traditional feature representation model.

https://doi.org/10.1371/journal.pone.0230500.g004
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bidirectional recurrent neural network learns representation with input word sequence (for-

ward and backward). A complete deep representation of d can be formalized as,

d ¼ zn þ an þ an þ zn ð8Þ

where, + represents the concatenation of vectors.

The hyper-settings of the proposed deep representation model as follows: 300 LSTM units,

0.2 dropout probability, 0.001 learning rate, and binary cross-entropy based loss function with

Adam optimizer. We set 100 epochs for the training. Notably, the proposed model is imple-

mented in Python Keras Library [26]. To the best of our knowledge, we are the first to apply

deep representation to learn the RDF graph representation. We use deep representation to

train a convolutional neural network for the retrieval anticipation of RDF graphs.

2.6 Deep learning classifier

Fig 6 illustrates an overview of deep learning classifier. We leverage the convolutional neural

network for retrieval prediction of RDF graphs. We select the convolutional neural network

because of the following reasons: 1) its deep semantic relationship learning capabilities among

words [27]; 2) it avoids the gradient problem of recurrent neural network [28] by applying dif-

ferent filter sizes.

To train the convolutional neural network, the deep representation is forwarded to convolu-

tional neural network that contains 3 layers of CNN, filter 128, kernel size 1, loss function

binary-crossentropy, and activation tanh. Then, the output of the convolutional neural network is

passed to a flatten layer [29] that returns a 1-dimensional vector. Finally, the dense layer connects

the neurons between layers and the output layer returns the retrieval prediction of RDF graphs.

3 Evaluation

This section defines the research questions to evaluate the proposed approach, explains how

RDF graphs are collected, presents the metrics and evaluation process of the proposed

approach, and discusses the results while answering the research questions.

Fig 5. Deep representation model.

https://doi.org/10.1371/journal.pone.0230500.g005

Fig 6. Overview of the deep learning-based classifier.

https://doi.org/10.1371/journal.pone.0230500.g006
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3.1 Research questions

The proposed approach is evaluated by investigating the following research questions:

• RQ1: How accurate the proposed approach in retrieval prediction of RDF graphs?

• RQ2: Does the proposed classifier outperform other machine/deep learning classifiers in

retrieval prediction of RDF graphs?

• RQ3: Does features’ preprocessing influence in predicting the retrieval of RDF graphs?

The RQ1 examines the accuracy of the proposed approach. In this perspective, the proposed

approach is compared with the state-of-the-art approaches: a graph-based retrieval of RDFs

(GRSearch) [30] and machine learning-based retrieval of RDFs (MLSearch) [20]. We also

compare the proposed approach with the two baseline algorithms: random prediction algo-
rithm and zero-rule algorithm to double-check the performance of the proposed approach.

The RQ2 compares the performances of different machine/deep learning classifiers to

reveal whether the proposed approach outperforms other machine/deep learning classifiers in

retrieval prediction of RDF graphs.

The RQ3 examines the influence of the features’ preprocessing. In this perspective, we com-

pute and compare the performance of the proposed approach with and without preprocessing.

3.2 Dataset

We collect the DBpedia dataset (https://wiki.dbpedia.org/data-set-30). DBpedia 2016-10

release contains 13 billion pieces of information out of which 1.7 billion were extracted from

the English edition of Wikipedia. We use only 1.7 billion RDF triples (English version) to eval-

uate the proposed approach; however, we ignore all syntactically invalid triples, as mentioned

in Section 2.4. Note that we divide the data into four different search categories: Triple-pattern
requests with multiple responses; e.g., British actors and their birth regions, Extended triple-pat-
tern requests with multiple responses; e.g., Movies having award-winning feminist actors, Triple-
pattern requests with zero responses; e.g., MIT graduates born in Steve Jobs’s death place, and

Extended triple pattern requests with zero responses; e.g., People who influenced by Egyptian
writers to evaluate the proposed approach.

3.3 Process and metrics

Algorithm 1 shows the process to compute the best classifier (CNN) as mentioned in Section 2.

Algorithm 1 consists of three parts. In the first part (Line 1), we set cross-validation (some-

times called rotation estimation) [31] M on D. We divide D into ten segments notated as

Mi(i = 1, 2, . . .., 10). We subtract the RDF graphs that belong to Mi and mark them as testing

RDF graphs Test, and the remaining RDF graphs are marked as training RDF graph Train. In

the second phase (Lines 2-11), we apply the M-fold cross-validation and train/test the classifi-

ers (MNB, LR, RF, SVM, LSTM, and CNN). For each iteration of cross-validation, we first sep-

arate the training dataset Train and testing dataset Test (Line 3). Then, we train the classifiers

with Train and evaluate each classifier with Test (Lines 4-10). In the last phase (Lines 12-13),

we compute and compare the metrics (accuracy, precision, recall, and F1) of each classifier,

and return the best classifier.

Algorithm 1 Identification of Best Machine/Deep Learning Algorithm for the Proposed

Approach
Input: DBpedia RDF graphs D
Output: Best machine learning classifier for Searching � D from D
1: Mi(i = 1, 2, 3, . . .. . ., 10); Train = Mj; Test = Mi; j 6¼ i
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2: for each cross-validation m from M do
3: Traini =

S
i2[1,10]^j6¼i Mj

4: Train a Multinomial Naive Bayes (MNB) classifier with training
data Train.
5: Train a Logistic Regression (LR) classifier with training data
Train.
6: Train a Random Forest (RF) classifier with training data Train.
7: Train a Support Vector Machine (SVM) classifier with training
data Train.
8: Train a Long Short Term Memory (LSTM) classifier with training
data Train.
9: Train a Convolutional Neural Network (CNN) classifier with train-
ing data Train.
10: Take the trained MNB, LR, RF, SVM, LSTM, and CNN for retrieval
prediction of each RDF graph with testing data Test.
11: end for
12: Calculate the accuracy, precision, recall, and F1 of MNB, LR, RF,
SVM, LSTM, and CNN.
13: Compare their predicted value with actual value.
14: return Best Classifier.

The selected metrics are commonly adopted metrics for the performance evaluation of clas-

sification algorithms [32–37]. Therefore, we calculate the retrieval related accuracy, precision,

recall, and f-measure for the performance evaluation of the proposed approach on the given

RDF graphs that can be defined as,

Acc ¼
TP þ TN

TP þ TN þ FP þ FN
ð9Þ

Pre ¼
TP

TP þ FP
ð10Þ

Rec ¼
TP

TP þ FN
ð11Þ

F1 ¼
2 � Pre � Rec

Pre þ Rec
ð12Þ

where, Acc, Pre, Rec, and F1 represent the accuracy, precision, recall, and f-measure of the pro-

posed approach in retrieval prediction of RDF graphs, respectively. TP represents the number

of RDF graphs that the proposed approach predicts correctly as hit, TN represents the number

of RDF graphs that the proposed approach predicts correctly as miss, FP represents the num-

ber of RDF graphs that the proposed approach predicts incorrectly as hit, and FN represents

the number of RDF graphs that the proposed approach predicts incorrectly as miss.

3.4 Results

RQ1: Accuracy of the proposed approach. We answer the RQ1 by performing a compar-

ison between the proposed approach and the state-of-the-art approaches: MLSearch and

GRSearch. We also compare the proposed approach with a random prediction algorithm and

a zero-rule algorithm. We consider both algorithms because the proposed approach is the first

approach to leverage deep learning algorithms for retrieval prediction of RDF graphs.

The evaluation results of the proposed approach and the baseline approaches are presented

in Table 1. Approaches are presented in the first column of the table. The results of
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performance metrics (Acc, Pre, Rec, and F1) for each classifier are presented in Columns 2-5 of

the table, respectively. Each row of the table presents the performance of the corresponding

approach, respectively. The average Acc, Pre, Rec, and F1 of the proposed approach, MLSearch,

and GRSearch are (97.12%, 85.21%, and 78.63%), (98.17%, 87.52%, and 69.20%), (95.56%,

79.19%, and 66.31%), and (96.85%, 83.15%, and 67.72), respectively.

Table 2 shows the evaluation results of random prediction, zero-rule, and the proposed

approach. Approaches are presented in the first column of the table. The results of perfor-

mance metrics (Acc, Pre, Rec, and F1) for each classifier are presented in Columns 2-5 of the

table, respectively. The rows of the table present the performance of the approaches, respec-

tively. The average Acc, Pre, Rec, and F1 of the proposed approach, random prediction, and

zero-rule are (97.12%, 65.40%, and 87.62%), (98.17%, 65.93%, and 80.12%), (95.56%, 55.56%,

and 83.26%), and (96.85%, 60.36%, and 81.66), respectively.

The observations from Tables 1 and 2 are as follows:

• The proposed approach outperforms the baseline approaches, random prediction, and zero-

rule classifiers in Acc, Pre, Rec, and F1, respectively.

• The improvement of the proposed approach upon MLSearch in Acc and F1 is 13.98% =
(97.12%—85.21%) / 85.21% and 16.52% = (96.85%—83.12%) / 83.12%, respectively.

• The improvement of the proposed approach upon GRSearch in Acc and F1 is 23.52% =
(97.12%—78.63%) / 78.63% and 43.02% = (96.85%—67.72%) / 67.72%, respectively.

• The improvement in the performance of the proposed approach upon random prediction in

Acc and F1 is 40.86% = (92.12%—65.40%) / 65.40% and 57.17% = (94.86%—60.36%) /
60.36%, respectively.

• The improvement in the performance of the proposed approach upon zero-rule in Acc and

F1 is 5.13% = (92.12%—87.62%) / 87.62% and 16.17% = (94.86%—81.66%) / 81.66%,

respectively.

We present the accuracy distribution of 10-fold cross-validation for the proposed approach

and baseline approaches in Fig 7. We compare the F1 distributions of each approach and plot

one bean against each approach. Each short horizontal line within a bean illustrates the F1 on

a ith fold, whereas the long horizontal line illustrates the average F1. We observe that the pro-

posed approach outperforms the baseline approach in each fold. Notably, the average F1 of the

proposed approach is significantly large as compared to the best performances of the baseline

approach.

Table 1. Comparison against baseline approaches.

Acc Pre Rec F1

Proposed Approach 97.12% 98.17% 95.56% 96.85%

MLSearch 85.21% 87.52% 79.19% 83.15%

GRSearch 78.63% 69.20% 66.31% 67.72%

https://doi.org/10.1371/journal.pone.0230500.t001

Table 2. Comparison against random prediction and zero-rule.

Acc Pre Rec F1

Proposed Approach 97.12% 98.17% 95.56% 96.85%

Random Prediction 65.40% 65.93% 55.65% 60.36%

Zero-rule 87.62% 80.12% 83.26% 81.66%

https://doi.org/10.1371/journal.pone.0230500.t002
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We also employ ANOVA (one-way) to confirm the significance of the proposed approach

and the basline approach. It may examines whether the single factor (i.e., different approaches)

is the only difference that drives to the difference in performance. Note that ANOVA is con-

ducted independently on the Acc, Pre, Rec, and F1. Table 3 presents the results of ANOVA that

shows F> Fcric and PValue< (alpha = 0.05) are true for each Acc, Pre, Rec, and F1. It indicates

that using different approach (the single factor) has a significant difference in the perfor-

mances of both approaches. The preceding analysis concludes that the proposed approach is

accurate in retrieval anticipation of RDF graphs.

RQ2: Performance comparison of machine/deep learning algorithms. We answer the

RQ2 by applying the most adopted machine/deep learning text classification algorithms

(CNN, LSTM, MNB, LR, RF, and SVM) due to their competitive performance [27, 37–39]. The

evaluation of the proposed approach with SVM yields most accurate results and outperforms

the other classifiers on the given dataset.

Table 4 presents the evaluation results of CNN, LSTM, SVM, LR, RF, and MNB. The first

column of the table presents the cross-validations. Columns 2-5 of the table present the perfor-

mance results of Acc, Pre, Rec, and F1 for each classifier, respectively. Rows of the table present

the performance of a particular classifier, respectively.

The average Acc, Pre, Rec, and F1 of CNN, LSTM, SNM, MNB, LR, and RF are (97.12%,

89.96%, 85.21%, 83.24%, 90.54%, and 91.33%), (98.17%, 91.06%, 87.52%, 77.14%, 93.69%, and

92.27%), (95.56%, 88.94%, 79.19%, 83.24%, 95.15%, and 94.88%), and (96.85%, 89.99%,

83.15%, 80.07%, 94.41%, and 93.56), respectively.

Fig 7. Distribution on accuracy.

https://doi.org/10.1371/journal.pone.0230500.g007
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The observations from the Table 4 are as follows:

• The CNN classifier surpasses all other classifiers in accuracy, precision, recall and F1. The rea-

son is that CNN is better for extracting position invariant features as compared to LSTM and

performs well with high dimensional feature sets [40].

• The CNN classifier surpasses all the other machine learning classifiers. It converts non-line-

arly classifiable and inter-dependent feature data into a higher-dimensional hyperplane if

the classification of the data is not possible linearly.

• Although, the existing research [41] reports MNB classifier is effective in classification; how-

ever, it does not work well with the proposed approach on the given dataset. One possible

reason is that the input predicates (features) to the classifier for training are inter-related,

and MNB classifier performs well if the features are independent [27, 42]. The evaluation

results of MNB on the given dataset are not effective as compared to SVM, LR, and RF with

the proposed approach.

• The performance results of LR and RF are very close to the SVM. A larger dataset may reveal

that one of them is better than SVM.

Table 3. Results of ANOVA analysis.

Source of Variation SS df MS F p-value F-crit

Acc
Between Approaches 0.02777 1.00000 0.02777 26.54565 0.00007 4.41387

Within Approaches 0.01883 18 0.00105

Total 0.04659 19

Pre
Between Approaches 0.01746 1 0.01746 30.57721 0.00003 4.41387

Within Approaches 0.01028 18 0.00057

Total 0.02774 19

Rec
Between Approaches 0.02696 1 0.02696 17.56680 0.00055 4.41387

Within Approaches 0.02762 18 0.00153

Total 0.05458 19

F1
Between Approaches 0.02212 1 0.02212 27.75361 0.00005 4.41387

Within Approaches 0.01435 18 0.00080

Total 0.03647 19

https://doi.org/10.1371/journal.pone.0230500.t003

Table 4. Comparison against machine learning algorithms.

ML Classifier Acc Pre Rec F1

CNN 97.12% 98.17% 95.56% 96.85%

LSTM 89.96% 91.06% 88.94% 89.99%

SVM 85.21% 87.52% 79.19% 83.15%

MNB 83.24% 77.14% 83.24% 80.07%

LR 90.54% 93.69% 95.15% 94.41%

RF 91.33% 92.27% 94.88% 93.56%

https://doi.org/10.1371/journal.pone.0230500.t004
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The preceding analysis concludes that CNN works better than the other classifiers with the

proposed approach.

RQ3: Influence of features’ preprocessing. The different RDF graphs may have similar

predicates (features) or may have superlative/comparative words in predicates. Passing such

data as features to a machine learning algorithm is an overhead. It reduces performance and

increases the computational cost of machine learning algorithms.

We answer the RQ3 by performing the comparison between the evaluation results of the

proposed approach with and without features’ preprocessing. The evaluation results are pre-

sented in Table 5. The preprocessing input settings are presented in the first column of the

table. Columns 2-5 of the table present the performance results of Acc, Pre, Rec, and F1. The

rows of the table present the performance of the proposed approach to the different settings of

preprocessing, respectively. The improvement in the performance of the proposed approach

with different preprocessing settings is presented in the last row of the table.

From the Table 5, we make the following observations:

• The preprocessing enabled proposed approach achieves significant improvement in perfor-

mance. The evaluation results suggest that the performance improvement in Acc, Pre, Rec,

and F1 are up to 16.71%, 14.38%, 11.22%, and 12.82%, respectively.

• The preprocessing disabled approach significantly decreases the Rec from 95.56% to 85.92%.

The decrease in Rec returns incorrect results against the requested query. One possible rea-

son of the decrease in performance is the similar or superlative/comparitive words in the

predicates of the given triples.

The preceding analysis concludes that preprocessing of the features is essential to the pro-

posed approach.

3.5 Threats to validity

There could be some elements that may affect the performance of the proposed approach. The

followings are the threats to the validity of the proposed approach.

• The selection of evaluation metrics is the first threat to construct validity. We select Acc, Pre,

Rec, and F1 metrics for the evaluation of the proposed approach. Because, they are the most

adopted metrics [32–37] for the evaluation of classification problems.

• The leverage of NLTK for the preprocessing of the extracted features (as mentioned in Sec-

tion 2.5) is a threat to construct validity. We select NLTK due to its performance and popu-

larity [37]. The use of any other natural language processing repository may affect the said

results of the proposed approach.

• The generalizability of the proposed approach is a threat to external validity. We focus the

RDF graphs from an open-source dataset (DBpedia) for the evaluation of the proposed

approach. We cannot guarantee the results of the proposed approach with other datasets.

Table 5. Influence of preprocessing.

Preprocessing Acc Pre Rec F1

Enable 92.12% 94.17% 95.56% 94.86%

Disable 78.93% 82.33% 85.92% 84.08%

Improvement 16.71% 14.38% 11.22% 12.82%

https://doi.org/10.1371/journal.pone.0230500.t005
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4 Related work

The WWW is an information space where RDF graphs and other web resources are identified

by URLs that may be interlinked and are accessible over the Internet. It is difficult to get the

right URLs against asked queries due to the information overload caused by the current digital

era. To address this problem, Tim Burner Lee introduced the semantic web that provides a

common framework and allows data to be shared and reused across applications. It considers

semantics for searching rather than keyword matching and query responses. Linking data

together from different resources is the key to the semantic web. Moreover, linking data is

essential to connect and search data over the semantic web. Linked data rely on RDF graphs

that contain data in RDF format. Many approaches have been proposed on the efficient search

of RDF graphs. Such approaches mainly focus on classical RDF searching e.g., keyword-based

searching or graph-based searching.

Tran et al. [43] introduced the idea of generating summary-graphs for the original RDF

graph to generate and rank candidate SPARQL queries. Then, Zhang et al. [44] proposed a

solution to this idea. Moreover, Yang et al. [45] proposed tree patterns to connect keywords

specified by the users where the tree patterns are ordered by their size relevance, and Zheng

et al. [46] proposed a method to search semantically equivalent structure patterns. Finally, De

Virgilio [47] proposed an RDF keyword-based query vis Tensor calculus and later extended it

to a distributed environment via MapReduce [48].

Nagarajan et al. [49] presented ontology-based multi-model semantic information retrieval

system. It is based on the idea of integrating domain knowledge and images and retrieves the

required multi-modal information using a fuzzy rule set. It also provides the image semantic

by constructing visual words using the probabilistic latent semantic. Other researches [50–52]

also proposed formalize and semantic visualization models based on the fuzzy rule set.

Nhuan et al. [53] proposed an approach that determines the degrees of equality between

relations (properties) defined by different vocabularies. They consider the occurrences of

matching pairs of RDF triples to find the intervals representing lower and upper levels of prop-

erty equality. Consequently, they obtained a graph of similar properties where the interval-

based strength of edges represents degrees of similarity between properties.

Jaafar et al. [54] proposed a fuzzy knowledge-based framework to realize a nature and visu-

alized F-RDF retrieval operation, to help an end-user to enhance the querying and accessing

Web data.

Gupta et al. [18] introduced a ranking function based on fuzzy logic to enhance Informa-

tion Retrieval. The function based on the computation of term-weighting schemas such as

term frequency, inverse document frequency, and normalization. The state-of-the-art [15–18]

has described the difficulties in the understanding of a semantic search engine. The motive

behind is to propose an approach based on RDF, and the automatic identification of content

over the WWW.

As a conclusion, researchers have proposed different approaches [8–19, 55, 56] for retriev-

ing information using RDF; however, it requires significant improvement. Moreover, none of

them employs machine learning classification algorithms to address this problem. Notably, the

proposed approach differs in that the existing approaches as we are first to apply the support

vector machine for the retrieval of RDF graphs.

5 Conclusion

In this digital era, Web users share almost every moment of daily life on the Internet that

causes information overload. Consequently, it is difficult to accurately retrieve the required

information without understanding the syntax and semantics of the content. To this end, in
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this paper, a deep learning-based approach for searching RDF graphs is proposed that treats

RDF graph requests as a classification problem. The proposed approach applies a deep learning

classifier on the given dataset for the retrieval anticipation of RDF graphs. The proposed

approach introduces a new way to search the RDF graphs and helps the Web users in answer-

ing their queries. We perform the 10-fold cross-validation for the evaluation of the proposed

approach using the open-source RDF graphs of DBpedia. The evaluation results show that the

proposed approach is accurate.

The broader impact of this study is to indicate that the triples in the RDF graphs are a rich

source of information for accurate retrieval prediction of RDF graphs. Our results motivate

future research on the retrieval anticipation of RDF graphs. We want to investigate a retrieval

prediction of RDF graphs with a deep learning approach with deep hyperparameter settings.

This will also confirm the generalizability of the proposed approach.
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