
RESEARCH ARTICLE

No-boarding buses: Synchronisation for

efficiency

Vee-Liem SawID
1,2*, Lock Yue Chew1,2,3*

1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang

Technological University, Singapore, Singapore, 2 Data Science and Artificial Intelligence Research Centre,

Nanyang Avenue, Nanyang Technological University, Singapore, Singapore, 3 Complexity Institute, Nanyang

Technological University, Singapore, Singapore

* Vee-Liem@ntu.edu.sg (VLS); lockyue@ntu.edu.sg (LYC)

Abstract

We investigate a no-boarding policy in a system of N buses serving M bus stops in a loop,

which is an entrainment mechanism to keep buses synchronised in a reasonably staggered

configuration. Buses always allow alighting, but would disallow boarding if certain criteria

are met. For an analytically tractable theory, buses move with the same natural speed

(applicable to programmable self-driving buses), where the average waiting time experi-

enced by passengers waiting at the bus stop for a bus to arrive can be calculated. The ana-

lytical results show that a no-boarding policy can dramatically reduce the average waiting

time, as compared to the usual situation without the no-boarding policy. Subsequently, we

carry out simulations to verify these theoretical analyses, also extending the simulations to

typical human-driven buses with different natural speeds based on real data. Finally, a sim-

ple general adaptive algorithm is implemented to dynamically determine when to implement

no-boarding in a simulation for a real university shuttle bus service.

1 Introduction

In many bus systems, bus bunching is a natural repercussion where an initially staggered con-

figuration of buses ends up with multiple buses getting closer to each other [1–6]. An intuitive

mechanism that explains this phenomenon is that if there is some perturbation in the spacing

between buses or the number of people at bus stops waiting to board a bus, then a bus may

have to stop a bit longer to pick up people as well as allow people to alight. Consequently, the

bus immediately behind catches up and by the time it reaches the bus stop, there may be less

people for it to pick up. With less people, it need not stop as long as the bus ahead of it, allow-

ing it to further catch up. Eventually, the leading bus has to pick up the majority of the people

(which also increases the required stoppage time for it to allow more people to alight), whilst

the trailing bus picks up relatively fewer people. These two buses inevitably end up bunching,

due to the positive feedback which tends to slow down the leading bus and speed up the trail-

ing bus. As these two bunched buses move in a single unit, people who just miss this pair

would have to wait longer for the next bus (or for this same pair to return, if there are only two

buses), compared to the situation where the buses are staggered such that the waiting time
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would only be a fraction of it. It is therefore undesirable for buses to bunch as it significantly

delays passengers by inefficiently increasing their waiting time for a bus to arrive.

1.1 Holding back buses, stop-skipping, deadheading

There have been much efforts carried out in attempting to address bus bunching. A common

idea is to hold back some buses when bunching is perceived to be imminent, with extensions

to adaptive and dynamic controls according to real-time situations [7–19], although holding

back buses generally slows down the entire system. A holding strategy could be executed based

on the goal of sticking to a schedule or maintaining the buses’ headway.

In contrast to holding buses, some have considered the option of skipping bus stops to

speed up a slow bus [14, 20–24], as well as deadheading where an empty bus is dispatched

directly to a target bus stop [21, 24–27]. Deadheading may be theoretically viewed as a special

case of stop-skipping [24]. In the stop-skipping strategy, a simple formulation would be to des-

ignate a stretch of bus stops to be skipped and passengers who wish to go there would alight at

a bus stop just before that stretch. These passengers are forced to wait for another bus, of

course, losing priority for seats to those already on board [21, 23]. The solution method usually

involves numerically optimising some objective function, using nonlinear integer program-

ming for instance. An interesting extension to stop-skipping was investigated by Ref. [23]: A

bus would allow passengers who wish to alight at a bus stop (where it would otherwise skip) to

do so, and if so it would then also allow boarding at that bus stop. The performance of this pol-

icy, however, is quite susceptible to the passenger distribution patterns especially if every bus

stop generally has people who would like to visit. Incidentally, some of these studies aimed to

optimise both performance improvement for passengers as well as cost reduction for the tran-

sit operators [15, 22, 24].

Alternatively, a study which combined holding and stop-skipping strategies found this to

be undesirable as such tight controls may induce poorer performance [28]. Perhaps a worthy

way forward is to have buses with wide doors or “no doors” [29–31], so that multiple passen-

gers may simultaneously board and alight as compared to queuing through a single narrow

entry. However, this would risk other issues like fare evasion. Another possible approach

involves city planning where the locations of bus stops along the bus routes are engineered to

facilitate efficiency of the bus system [32]. Some other work considered optimising some

objective function, involving various algorithms to enhance the bus system [33–35], as well as

being data driven [36].

1.2 Boarding limits: A no-boarding policy

Buses can be sped up by limiting the number of people who are allowed to board the bus [37–

39], i.e. a no-boarding policy. An initial investigation on trying to speed up a bus by limiting

the number of people allowed to board was carried out by Ref. [37], where they combined this

with the holding strategy. The performance of the bus system was compared with only the

holding strategy and without any form of control. It turns out that the inclusion of boarding

limits is beneficial, as observed from their simulations. The setup there comprises buses serv-

ing a loop of bus stops, where they start from one terminal and end at that same place after

completing the loop. The optimal actions to be taken by a bus when it is at a bus stop are deter-

mined by an objective function (solved numerically, subject to a number of constraints) that

comprises waiting time of commuters at bus stops, extra time spent on buses due to holding,

as well as additional time spent at bus stops when passengers are denied boarding or if capacity

limit is reached. All buses are assumed to have identical speed, no overtaking is allowed, and
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they introduced some kind of a “dummy bus” as a boundary condition that ensures that all

passengers are picked up, after all other buses have returned to the terminal.

This model which dealt with boarding limits was subsequently improved and expanded in

Ref. [38], with a similar objective function but with many more constraints to satisfy. Once

again, the objective function that determines the action of a bus when it arrives at a bus stop is

solved numerically, this time without the inclusion of the “dummy bus”. With a more elabo-

rate model, it allowed for different finite bus capacities and different bus speeds. As before in

Ref. [37], they found that the inclusion of boarding limits would help improve the system. Fur-

thermore, the boarding limit strategy led to better comfort for passengers, since the passenger

load would be spread out more evenly compared to having no such implementation. However,

they noted that such improvements would depend on the conditions of the demand. In partic-

ular, the most significant benefit derived from the boarding limit strategy occurs when the

headways between buses are short and when passengers demand is high.

Whilst the studies in Refs. [37, 38] are based on numerical optimisation of some objective

function, Ref. [39] attempted an analytical treatment on how boarding limits would help

improve the bus system. However, their theoretical construction did not appear to consider

alighting (i.e. commuters are continually packed into the buses). Unlike those in Refs. [37, 38],

they only studied the boarding limit strategy without involving the holding strategy.

1.3 This paper: An analytical treatment on the no-boarding policy, with

numerical simulations and validation based on a real university bus loop

service

Recently, work by Ref. [1] modelled a system of buses serving a loop of bus stops as a system of

coupled oscillators [40], where each bus is represented by an autonomous oscillator. By doing

so, bunching is derived as the ramification of phase synchronisation of these individual oscilla-

tors due to coupling at the bus stops, when demand exceeds a critical threshold. In fact, that

framework revealed an insight on real buses where different human drivers have different nat-

ural speeds (frequency detuning): A system of buses having a greater degree of frequency

detuning can help bunched buses to undo bunching since these differences in natural speeds

allow a faster bus to break away from a slower one. As a result, such a system of buses do not

exhibit sustained bunching during lull times when demand for service is low (below the critical

threshold), but would contain clusters of sustained bunching or even be completely bunched

during busy periods (above the critical threshold).

With the framework of bus bunching being described as a synchronisation phenomenon,

Ref. [1] pointed out a common property of such systems of coupled oscillators, viz. they can be

periodically entrained by an external force to preserve a desired configuration, just like an

ordinary clock can be periodically perturbed by a centralised high-quality time-keeping source

to maintain its accuracy [40]. Here for this paper, we focus and expand on that property by

studying this mechanism for preventing bus bunching: The implementation of a no-boarding
policy to achieve synchronisation of buses that maintains a reasonably staggered configuration.

According to this policy, a bus would always allow alighting but disallow boarding of new pas-

sengers at bus stops if certain criteria are met. The goal of the policy is to speed up a “slow” bus

so that the bus immediately behind would not end up bunching with it. The rationale for no-

boarding is justifiable to the passengers waiting at the bus stop, since the following bus is

nearby and approaching soon.

This idea is in contrast to the holding back strategy which slows down the system instead

and lengthens the time spent by passengers on the bus [7–11, 13–15], since faster buses are

held back in favour of slower ones in order to maintain their staggered headway. Moreover, if
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buses are held down at some point along the route, then designated waiting bays must have

been planned and allocated beforehand otherwise they would obstruct traffic—something

unfeasible in dense city centres which are already short of sought after prime land. A no-

boarding policy does not require any specific engineering, making it readily applicable in any

existing city or landspace. Whilst this idea is similar to skipping bus stops [14, 20–24], it always

allows passengers to alight at their desired destinations. Plus, the instruction to the passengers

is arguably clearer: “Please do not board.” This is direct, compared to the potentially confusing,

“We are skipping this, � � �, and that bus stops.”.
In this paper, we derive a comprehensive analytical theory of the no-boarding policy which

improves upon the work in Ref. [39], as we account for passengers alighting the bus both in

our theory and simulations. The aim of the no-boarding policy here is to maintain a reason-

ably staggered headway between all buses serving a loop of bus stops. Our theory allows us to

understand the mechanism of no-boarding leading to stable headway between buses, as well as

deriving when such a no-boarding policy would fail or backfire. As was noted in Ref. [38], this

would work well for buses with short headway and high demand from their simulations. In

fact, we will find this to be true—corroborating with Ref. [38], and are actually able to work

out analytically that the no-boarding policy backfires in the lull period defined in Ref. [1], due

to buses having different natural speeds. The full mathematical derivation for this critical tran-

sition where no-boarding fails is given in Ref. [41]. This paper then concludes with extensive

simulations based on parameters measured from a real university campus loop shuttle service,

where buses serve a loop of bus stops continually with no start/stop terminal. Live data for

those buses can be found on a website that is listed as Additional Information at the end of this

paper. In contrast to Refs. [37, 38], we allow overtaking in our theoretical analysis and simula-

tions as this is commonly observed in the university shuttle bus loop service [1].

1.4 Outline and organisation of this paper

After some preliminaries in the next section, we proceed to investigate how such a no-board-

ing policy can significantly improve passenger service. To do so, we carry out exact analytical
calculations in the case where buses move with identical natural frequency (which is the way

forward, when self-driving buses become the norm in the near future [42]) to show that the

average waiting time of passengers can be reduced dramatically compared to a system with no

such interference policy where all buses end up bunching. This is because the no-boarding pol-

icy ensures that the buses are reasonably spaced out and not bunch. In fact, two possible no-

boarding policies are explored, by looking at the phase difference of a bus from the bus imme-

diately ahead (Section 3) or immediately behind (Section 4). Our analytical results provide

clear evidence on the efficacy of this mechanism and how exactly improvement is achieved,

even though it may appear a bit simplified under our assumptions.

To illustrate and test our analytical results, we carry out extensive simulations which turn

out to agree very well with the analytical results. These simulations also provide further

insights into the actual behaviour of the bus system under the no-boarding policy. Apart from

that, we apply this no-boarding policy to a simulation of a bus system having M = 12 staggered

bus stops in a loop, served by N buses moving with different natural frequencies, in Section 5.

This setup is modelled after a university shuttle bus service [1] to see how the no-boarding pol-

icy would pan out in a real human-driven bus system, instead of programmable self-driving

buses with identical natural frequency. In addition, we describe a simple adaptive algorithm

which dynamically determines what angle (phase difference) to implement the no-boarding

policy, in a bus system where the rates of people arriving at the various bus stops differ and are

stochastic in Section 6. Those real parameters used in our simulations are measured from the
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university shuttle bus service [1], thereby providing support that our analytical theory’s results

are indeed applicable to realistic systems with varying demand for service. The simplicity of

this adaptive algorithm makes it general enough to be directly implemented in generic bus sys-

tems, which can be further improved and fine-tuned towards specific systems especially given

prior knowledge and empirical data of the real systems.

A flow diagram in Fig 1 summarises the layout and organisation of this paper.

2 Preliminary

Consider a bus loop system comprising N buses serving M staggered bus stops around the

loop. This loop can be mapped isometrically (preserving distances) to the unit circle. Each bus

i, where i 2 {1, . . ., N}, moves with its natural (angular) frequency ωi = 2πfi = 2π/Ti. With bus

stop j present in the loop, where j . . . {1, . . ., M}, each bus i must spend a stoppage τij to let pas-

sengers board or alight. We consider the process of boarding new passengers to occur after all

passengers on the bus who wish to alight have done so. This is similar to the elevator scenario

where new users would only enter the elevator after everyone currently inside (who intends to

exit at that level) has completely vacated. Hence, this stoppage τij is due to Pj≔ number of peo-

ple at bus stop j, Qij≔ number of people on bus i who are alighting at bus stop j, and l≔ load-

ing rate of passengers onto the bus which we assume is the same as the unloading rate of

passengers off the bus, i.e. τij = (Pj + Qij)/l. On average, especially if the M bus stops are equally

popular, we have Pj* Qij (i.e. the number of people originating from a bus stop is comparable

to the number of people heading to that bus stop) so that τij* 2Pj/l. However, this is not nec-

essarily true especially during peak hours due to a bias where people from one region (say

homes in the morning) tend to head towards another part of the bus route (offices, business

district). Incidentally, Pj depends on the time headway Δtij between bus i and the bus immedi-

ately ahead (temporal phase difference) together with the average rate of people arriving at bus

stop j to wait for a bus, denoted by sj, i.e. Pj = sjΔtij. This implies that the larger the headway

between bus i and the bus immediately ahead, the more people it has to pick up and conse-

quently the longer it has to stay at bus stop j—slowing it down even more and further increas-

ing Δtij. This positive feedback inevitably leads to the perennial and notorious problem of bus

Fig 1. Outline and organisation of this paper.

https://doi.org/10.1371/journal.pone.0230377.g001
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bunching which significantly reduces the bus system’s efficiency and lengthens the waiting

time for passengers.

For simplicity of the subsequent analysis to present the key ideas, we first focus on the sys-

tem of N = 2 buses serving M = 1 bus stop in a loop and the two buses have the same natural

(angular) frequency ω = 2πf = 2π/T (this T excludes stoppage at the bus stop). In steady state,
we can approximate Pj = Qij giving τij = 2Pj/l, because there is only one bus stop and every

passenger who boards there must alight there after one loop. We should emphasise that Pj and

Qij generally fluctuate instead of being equal, but are on average equal over the time scale of

several T. In particular, Pj = sjΔtij is true but Qij depends on Δtij from the previous time when

these people boarded instead of the present Δtij. This would lead to a recursive relation

between Δtij for this round in terms of Δtij for the previous round. Nevertheless over several T
so that Pj* Qij, we have

tij ¼ 2kjDtij; ð1Þ

with kj≔ sj/l< 1 being parameters that determine the strength of coupling between the buses.

This equation would hold in general for any N and M, if we have the condition Pj = Qij to be

true. We adopt this assumption in our subsequent theoretical analysis for general N and M to

enable a tractable analytical treatment towards gleaning useful insights on the bus system. In

that case, we may consider each bus stop as equally popular and so all sj = s, with k≔ s/l. In

our simulations, we find that the steady state results turn out to match with the analytical

results thereby justifying the simplification and approximation made here. Later in Section 6,

we drop such simplification that all bus stops have the same sj = s in our simulations and find

that the key results from the analytical theory carry over to realistic systems based on real-

world parameters.

The setup here is motivated and modelled from our Nanyang Technological University’s

(NTU) campus loop shuttle bus service. A bus typically completes a loop within 20 minutes,

serving M = 12 reasonably staggered bus stops. (More details in Section 3.2). Bus bunching is a

common occurrence for this loop service [1, 43]. There is no traffic light on campus, hence

work in Ref. [1] found that the primary mechanism for bus bunching in such a system is due

to the coupling amongst buses from stopping at bus stops to embark and disembark passen-

gers. There is no start/end terminal, with the buses continuously looping around the route,

though buses occasionally pull out and new buses add to the service. The interarrival times

between two buses are quite frequent, viz. as short as a couple of minutes during peak hours to

about 10 minutes during off-peak hours. Hence, if a bus implements no-boarding, it would

cost only several minutes before the next bus arrives.

We assume that there are enough buses going around to meet the demand, such that the

finite bus capacity of the buses is not reached. In other words, a passenger is not able to board

a bus only because the bus implements no-boarding. Also, it may occur that a passenger is

denied boarding by more than one bus consecutively, and the extended waiting time is tracked

by the simulations. It turns out that in steady state, the overall average waiting time would be

better than normal buses and follows the analytical results derived here.

In future work, one may move on with imposing finite bus capacity, traffic conditions, dif-

ferent loading/unloading rates, and other real-world features of specific bus systems. The effect

of traffic conditions would then extend the analysis of how the no-boarding policy would fare

in situations where buses may bunch due to uncertainty in arrival times and fluctuations due

to traffic congestion. The aim of this paper is to elucidate what a no-boarding policy can do, at

least in an idealised situation.
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In comparison with other strategies like holding, stop-skipping and deadheading, Refs. [37,

38] have shown via their simulations that the inclusion of the no-boarding policy helps

improve the performance of the bus system, as compared to only implementing the holding

strategy. We further explore the performance of the no-boarding strategy and the holding

strategy elsewhere in Ref. [44] using a reinforcement learning approach. In our setup here

where every bus stop has people boarding as well as alighting, the idea of stop-skipping would

necessarily force a fair amount of passengers to alight at an earlier stop and then board another

bus just to complete their journey. This certainly increases their total waiting and travel times,

with the inconvenience of getting off and then on a new bus. Besides that, the idea of dead-

heading implies the dedication of a bus for this purpose which reduces the number of buses

serving other bus stops. Since every bus stop has people who need service, there is no benefit

from deadheading here. Instead, deadheading would be useful if there is some particular bus

stop that serves as a hub, i.e. with significantly higher demand for service compared to other

bus stops. This is consistent with other work showing that it is not quite desirable as it has its

own problems (see second paragraph of Section 1A).

3 No-boarding policy: Looking ahead

3.1 Analytical theory for N = 2 buses serving M = 1 bus stop

3.1.1 Toppage duration, τ. In the bus loop system comprising N = 2 buses serving M = 1

bus stop, suppose the two buses never bunch due to some implemented policy, i.e. their spatial

headway or phase differenceΔθ on the unit circle is never equal to 0 or 2π radians, but is main-

tained to remain within a small range of ideal angles. In such a steady state, both buses must,

on average, spend an equal stoppage τ at the bus stop, otherwise one bus systematically stop-

ping shorter than the other would lead to bunching. Therefore, one revolution by each bus

takes a time of T + τ, with a total of s(T + τ) people arriving at the bus stop. Each of the two

buses picks up half this number of people, over an average time interval of τ/2 (since the other

τ/2 is for people to alight) at a rate of l. This gives the relationship:

1

2
sðT þ tÞ ¼

1

2
lt ð2Þ

tðk;TÞ ¼
kT

1 � k
ð3Þ

�tðkÞ ¼
X1

n¼1

kn: ð4Þ

The geometric series expansion is valid since k< 1, and looks like a convenient way of

expressing �tðkÞ [also for the general case with N buses, cf. Eq (16)]. Here, we have defined �t

equals to τ per unit T as a normalisation unit. In other words, when the two buses are in such a

steady state where they both spend an equal average stoppage τ at the bus stop, then �t is given

by Eq (4), which depends only on k≔ s/l. The number of people picked up by each bus is then

Lðs; l;TÞ ¼
1

2
lt: ð5Þ

Without any intervention, the two buses cannot remain staggered because such a configu-

ration is unstable. This would be exemplified by systems with the buses moving at different

natural frequencies, where frequency detuning leads to periodic bunching during lull periods,

otherwise sustained bunching is the outcome during busy periods [1]. To prevent bunching,
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some form of intervention has to be executed. A way to go would be to implement a no-board-
ing policy when the phase difference Δθ deviates too much from the staggered configuration.

To be precise, if bus i is at bus stop j, then bus i checks its phase difference with respect to the

bus immediately ahead, Δθ. (Alternatively, it can check its phase difference with respect to the

bus immediately behind, discussed in the next section). Since bus i is stationary at the bus stop,

then Δθ is non-decreasing (it can be momentarily unchanging if the bus immediately ahead

happens to be at a bus stop, for a system with M> 1 bus stops). If Δθ exceeds some critical

angle θ0, then according to this no-boarding policy, bus i disallows any further boarding to halt

its delay with respect to the bus immediately ahead. Of course, if there are still people on bus i
who need to alight, then bus i would wait until they have completely alighted.

3.1.2 Lower bound to θ0: θmin. Note that there is a lower bound to θ0 where no-boarding

is implemented if Δθ> θ0. This lower bound arises, because if θ0 is too small, then the buses

would too frequently disallow boarding whenever Δθ> θ0 with the repercussion that they are

not picking up people faster than people arriving at the bus stop—leading to an unbounded

growth of people at the bus stop waiting for service. We can calculate the lower bound to θ0,

denoted as θmin as follows. In Fig 2(a) (top panel), bus A implements the no-boarding policy

since it sees Δθ = θmin, and leaves the bus stop. Fig 2(b) (top panel) is the moment when bus B

just arrives at the bus stop, and the phase difference remains as θmin—strictly speaking, since

bus B is now at the bus stop, it is bus B that measures its phase difference with respect to bus A.

Fig 2. N = 2 buses serving M = 1 bus stop in a loop. The buses travel clockwise, and implement the no-boarding

policy if Δθ> θ0. Top panel: Shown here is the situation where θ0 is the lower bound θmin, before the system is picking

up people slower than people arriving at the bus stops. Bottom panel: In steady state, the phase difference Δθ(t)
fluctuates around the effective angle θeff, which is bounded by θ0 (i.e. θeff < θ0). On average, bus A and bus B would

stop over the same duration τ and pick up the same number of people L. Since bus B is lagging due to its large phase

difference with respect to bus A, a portion of (1 − π/θeff) × 100% of the people waiting for bus B would have to wait

longer to board bus A instead, because bus B would have implemented the no-boarding policy when Δθ> θ0. Hence if

θeff is closer to π, then fewer people would have to be denied boarding by bus B. A closer-to-antipodal configuration

would improve the overall average waiting time, given by Eq (15).

https://doi.org/10.1371/journal.pone.0230377.g002
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Therefore, the phase difference is Δθ = 2π − θmin < π. As bus B remains at the bus stop, bus A

advances until in Fig 2(c) (top panel) where Δθ grows to θmin. If the time taken by bus A to go

from (b) to (c) is less than τ, then bus B has to implement no-boarding and stop for a duration

less than τ given in Eq (3). Consequently, bus B picks up less than L people given in Eq (5)—

monotonically creating a growing list of disgruntled people waiting for service. This θmin is the

critical lower bound such that bus B is able to spend exactly τ to be able to pick up the required

L number of people. Since the time interval from (b) to (c) is (2θmin − 2π)/ω (the time taken by

bus A to travel) and this equals to τ (the stoppage duration of bus B), we get

2ymin � 2p

o
¼

2p�t

o
ð6Þ

xminðkÞ≔
ymin

2p
¼

1

2
1þ �tðkÞð Þ; ð7Þ

where we have defined xmin ≔ θmin/2π being a normalisation unit. We find that this minimum

angle depends on k. If demand is higher, then the lower bound to the angle for implementing

no-boarding is larger, i.e. the buses should be given greater leeway and duration to actually let

people board since there are more people demanding service.

3.1.3 Average waiting time, W. An important parameter which quantifies the efficiency

of a bus system is how long a passenger takes to complete the journey, i.e the total trip time,

which includes the waiting time at the bus stop and the time spent on the bus. Without the no-

boarding intervention, bus bunching is inevitable, and so for the N = 2, M = 1 system, the

bunched pair is effectively one large bus with twice the capacity of a single bus and twice the

loading/unloading rate. If the system’s two buses can “magically” remain antipodally stag-

gered, the average waiting time would be halved. It is easy to see that if an unlucky person

barely misses a bus: in the bunched case the waiting time is roughly one full revolution;

whereas in the antipodally staggered case it is only about half a revolution.

Note that since the no-boarding policy always allows passengers who wish to alight to do

so, it never extends their time spent on the bus. In other words, with the total trip time being

the sum of the waiting time at the bus stop and the time spent on the bus, since the latter is

unaffected, an improvement on the waiting time at the bus stop directly implies an improvement
in the total trip time. This is in contrast to the holding strategy where there is a trade-off

between waiting time and time spent on the bus: If a bus is held down, then the time spent on

the bus is lengthened for those passengers on the bus.

We can work out the average waiting time more precisely, where people are assumed to be

arriving at the bus stop uniformly over time at a fixed rate of s. These people should obey the

first-come-first-served rule, i.e. the person who arrived at the bus stop earlier would be ahead

on the waiting list to board the bus, after everybody on the bus has alighted. In addition, a bus

is assumed to have only one door for one person to alight or board at a time, at a rate of l. This

simplifies our calculations for the average waiting time of people at the bus stop for a bus to

arrive, as it eliminates the possibility for multiple passengers simultaneously alighting or

boarding. With one door, it is clear that the ordering on the waiting list of people is well-

defined and a person ahead of the list necessarily gets up the bus first.

When the no-boarding policy is implemented at Δθ> θ0, the (so-called “slower”) bus at the

bus stop disallows further boarding and leaves. Subsequently, the other (so-called “faster”) bus

would stop at the bus stop and the phase difference approaches the antipodal configuration.

After this “faster” bus leaves, the cycle repeats with the “slower” bus stopping and the phase dif-

ference widening. The effective phase difference between this pair of buses is θeff, where the

actual phase difference Δθ(t) fluctuates around θeff over the long term. The implemented angle
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for no-boarding θ0 would bound Δθ(t) and so θeff < θ0. Occasionally though, Δθ(t) can exceed

θ0. This happens when there are still people on the bus who wish to alight and the bus must

oblige, even though Δθ(t)>θ0. Through numerical simulations (next subsection), we find that

θeff is reasonably represented by the median of the buses’ phase difference in steady state.

In the bottom panel of Fig 2, bus B is the “slower” one due to its large phase difference with

respect to bus A. As a result, bus B would implement the no-boarding policy when Δθ> θ0,

and people after that would have to wait further to board bus A. On the other hand, bus A

always picks up everybody. To calculate the average waiting time for people at the bus stop

before being able to board, we consider the waiting times to board bus A and bus B separately.

Since people are assumed to be arriving at the bus stop uniformly over time and one person

boards/alights at a time, all we need to do is to identify the luckiest and unluckiest people with
respect to each bus, viz. the one who arrives at the bus stop just when the bus is there and about

to leave or the last person to be allowed boarding before the no-boarding policy is imple-

mented (hence would experience the shortest waiting time), as well as the one who arrives at

the bus stop right after the previous bus had just left the bus stop or was just being denied

boarding by the previous bus (hence would experience the longest waiting time). Once we

know the waiting times for the luckiest and unluckiest people, the average is just half of the

sum of their waiting times. Also as mentioned earlier, in steady state, each bus picks up the

same number of people (on average). So bus B, being “slower”, would pick up L people (on

average), and then implement no-boarding and leave, leaving the rest of the people to wait for

bus A—who would also pick up a total of L people (on average). Let us now look at each bus:

1. For waiting to board the “slower” bus B, the unluckiest person is the one who is at the bus

stop when bus A just left. Since the effective phase difference is θeff, this person needs to

wait for θeff/ω = θeff T/2π before bus B arrives, and a further τ/2 for passengers alighting

before this person could board.

The so-called luckiest person to board bus B is the last person allowed to board before the

no-boarding policy is implemented. This last person would have waited θeff/ω − (T + τ)/2

for bus B to arrive. This duration is (T + τ)/2 less than the unluckiest person because bus B

would pick up half of the total number of people per revolution [which is half of s(T + τ) on

average], who would have accumulated at the bus stop over a time period of (T + τ)/2 since

bus A had left. After bus B arrives, this person has to wait a further τ/2 for people to alight

with another τ/2 for those ahead to board first, before finally boarding, i.e. a total of θeff T/

2π − T/2 + τ/2.

(From here, we can see that the person who is just denied boarding by bus B would have

waited θeff/ω − T/2 − τ/2, and then wait for another T − θeff/ω for bus A to arrive—which is

a total of T/2 − τ/2. This will be used below).

Hence on average, the waiting time to board bus B is

WB ¼
1

2

yeffT
2p
þ

1

2
t

� �

þ
yeffT
2p
�

1

2
T þ

1

2
t

� �� �

ð8Þ

¼
yeffT
2p
�

1

4
T þ

1

2
t: ð9Þ

2. For waiting to board the “faster” bus A, the unluckiest person who was just denied boarding

by bus B has to wait a total of T/2 − τ/2 for bus A to eventually arrive (as mentioned above),

plus τ/2 for people to alight before this person could board. In contrast, the luckiest person

who just arrives when bus A is at the bus stop and about to leave would have zero waiting

PLOS ONE No-boarding buses: Synchronisation for efficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0230377 March 23, 2020 10 / 34

https://doi.org/10.1371/journal.pone.0230377


time. Thus on average, the waiting time to board bus A is

WA ¼
1

2

1

2
T

� �

þ ð0Þ

� �
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¼
1

4
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Since bus A and bus B pick up, on average, an equal number of passengers each time, the

overall average waiting time for this system is

W ¼
1

2
WA þWBð Þ ð12Þ

¼
1

2
T

yeff
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4
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4
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In the third line, we normalise the effective phase difference between the two buses by

x≔ θeff/2π with x 2 [xmin, 1], xmin = θmin/2π> 1/2 [Eq (7)]. Note that Eq (7) implies that

whilst the ideal situation is the antipodally staggered configuration where θeff = π or x = 1/2,

the lower bound to implement no-boarding is necessarily deviated due to �t, as the bus has to

stop for alighting/boarding. Like �t, we have defined �W as the waiting time per unit T. In con-

clusion, the no-boarding policy linearly reduces the average time for passengers waiting to

board the bus with respect to the effective phase difference between these two buses. The

implemented angle θ0 must be such that the effective angle θeff is not smaller than θmin in

Eq (7) otherwise the bus system is not picking up people at a rate higher than the rate of people

demanding service.

3.2 Simulations based on real bus loop service data

A recent study on Singapore’s Nanyang Technological University’s (NTU) campus shuttle bus

system comprising N buses serving M = 12 reasonably staggered bus stops in a loop was car-

ried out to investigate the mechanisms of bus bunching [1]. The study reported that these

buses typically have different natural speeds, due to different human drivers’ driving styles.

There are distinctively slow drivers and fast drivers. Their average periods around the loop

without stopping are within a range of 12 to 18 minutes, i.e. fi 2 [0.93, 1.39] mHz. Further data

analysis on this shuttle bus system found that the ratio of the rate of people arriving at each bus

stop to the rate of people loading up the bus, k≔ s/l, averaged over all M = 12 bus stops, is of

the order of k* 0.020 during lull periods and k* 0.065 during busy periods. This informa-

tion implies that with the people taking about a second to get up the bus so that l* 1 person

per second, then the arrival rate of people at a bus stop is s* 0.020 person per second (1.2 per-

son per minute) during lull periods and s* 0.065 person per second (almost 4 people per

minute) during busy periods.
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Based on these real data for M = 12 bus stops, we can test our analytical theory of the no-

boarding policy for a realistic simulated system having N = 2 buses serving M = 1 bus stop in a

loop. Let the two buses have identical natural period of T = 12 minutes to complete one loop

without stopping. Identical natural period would be applicable to programmable self-driving

buses which would be rolled out in the near future [42]. The case of human-driven buses with

different natural periods is investigated in Section 5. Normally, there are three or four buses

serving the route, with up to seven or even eight buses during busy times. Since we are only

dealing with two buses here, we consider a lull period with k = 0.010. This would then produce

reasonable number of people demanding service and they are able to fit within the buses’ usual

capacity of an order of 50 passengers. Nevertheless, we emphasise here that these results hold

for any value of k even in busy periods, since there is nothing in the theory that specifically

restricts to the lull period or any value of k. Our use of a lull k = 0.010 in this subsection is sim-

ply because we are here considering N = 2 buses and pushing up k would make the number of

people on each bus higher—which is fine, unless a maximum bus capacity is additionally

imposed. Subsequently when we generalise to N buses (last part of this section, below), then

more people (higher k, busy period) can be served without unrealistically carrying “hundreds

of people per bus”.

Anyway, suppose each person takes l = 1 second to board or alight, which translates to a

people arrival rate of s = 0.010 person arriving per second or one person arrives every 100 sec-

onds. Since k = 0.010 is a value applicable to M = 12 bus stops in the NTU bus system, for our

simulations with only M = 1 bus stop, we should multiply this arrival rate by 12 to generate a

comparable proportion of people using the service, i.e. a person arriving every 100/12 seconds.

Note that typically people would travel from one part of the loop to another, travelling say an

average of about half a loop (or less, since people can take the bus service going in the opposite

direction for a shorter path), rather than making one full loop. As our simulations with M = 1

bus stop force people to travel one full loop, we halve the arrival rate in order to more realisti-

cally reflect the number of people on the two buses. Therefore, we have one person arriving

every 100/6 seconds or rounded down to 16 seconds (because the simulations run on discrete

time steps of 1 second).

In the usual situation with no intervention which corresponds to setting θ0 = 360˚ = 2π
radians, the two buses bunch and would remain so since their natural speeds are identical. In

steady state, our simulation results are as follows: The average waiting time for passengers is

0.515±0.299 units of T = 12 minutes (0.299 is one standard deviation, since people arrive uni-

formly over time with some having to wait longer than others for the bus to arrive), the time

spent on the bus is 1.032 units (there is no uncertainty here, since every passenger spends this

same amount of time on the bus), giving a total travel time of 1.546±0.299 units. Both buses

spend �t ¼ 0:067 units stopping at the bus stop (there is no uncertainty here, since the bunched

pair of buses always spend this same amount of time stopping at the bus stop) to allow alight-

ing followed by boarding (bunched buses share the load). Each bus load carries L = 24 people.

These value of �t and L are exactly the values predicted by Eqs (4) and (5). In addition, Eq (15)

gives for θeff = 2π radians (x = 1) and k = 1/16, an average waiting time of �W ¼ 0:517 units

which is in agreement with our simulation value.

Next, we show results for this lull period where a person arrives every 16 seconds at this sin-

gle bus stop, with the no-boarding policy in action. We carry out separate simulations for vari-

ous (but fixed) θ0 2 {180˚, 181˚, . . ., 360˚} (360˚ means no implementation). Fig 3(a) indicates

excellent agreement between the analytical theory and the simulation results (which are aver-

aged over many rounds during steady state). The stoppage duration is typically averaged

around �t ¼ 0:067 units for both buses [with standard deviation of the order of 0 to 0.025
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units, depending on the actual θ0 being implemented, since Δθ(t) fluctuates around θeff and

depends on θ0], and the number of people that they pick up is about L = 24 each (with standard

deviation of the order of 0 to 20 people, depending on θ0). These graphs also affirm that when

the implemented angle is below the lower bound θ0 < θmin, then τ and consequently L are less

than the demand level [see also Fig 5, which shows the lower bound θmin for any k].

Fig 3. (a) Graphs of �t and L versus θ0 for each of the two buses. These simulation results agree with Eqs (4) and (5), as

well as the lower bound θmin from Eq (7). Shown here [as well as in (b)] is for k = 1/16, and these features similarly

hold for any value of (fixed) k. (b) Graphs of Δθ(t) versus time for each of the two buses. The no-boarding policy kicks

in if Δθ> 225˚.

https://doi.org/10.1371/journal.pone.0230377.g003
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Fig 3(b) shows the phase difference for one of these runs between the two buses, measured

from each with respect to the other (so they always sum up to 360˚) as a function of time. They

start off antipodally staggered and very quickly one bus “goes chasing after” the other “slower

one”. Here, the no-boarding policy is implemented if Δθ> θ0 = 225˚ which prevents them

from bunching, and they settle on a steady state where their phase difference fluctuates around

the median of 204.5˚ or mean of 209.5˚. From the simulations, the average waiting time is

0.294±0.163 units, certainly much shorter than the bunched case of 0.515 units. It turns out

that according to Eq (15), it is the median phase difference of θeff = 204.5˚ corresponding to an

average waiting time of �W ¼ 0:301 units, which closely matches the simulation value. In con-

trast, the mean phase difference plugged into Eq (15) gives 0.308 units, which is a slight

overestimate.

These all generalise to various implemented angles θ0 as shown in Fig 4. Shown here is a

collection where each simulation data point is an independent run with different (but fixed)

θ0. In each plot of Fig 4(a), 4(c) and 4(d), the (red) dash line is the analytical result from Eq

(15), whilst the (blue) dots are simulations points. Fig 4(a) shows a “naïve” plot of the simula-

tion results for the average waiting time versus the implemented angle θ0. There is some con-

spicuous shift between the analytical line and the simulation points. This is because the

effective phase difference θeff is smaller than the implemented one θ0, with the exception of the

“horizontal tail” of points for θ0 * 360˚. That horizontal tail appears because for those

extremely large θ0, the no-boarding policy is unable to prevent bunching and once bunched

the buses stay bunched, i.e. their effective phase difference is 360˚. But what is a suitable repre-

sentative value of θeff < θ0 in general? Fig 4(b) plots the relationship between θ0 and the mean

as well as median angles, as measured from the steady state part of the simulations. The mean

seems to be biased, in the sense that the gradient of the “mean line of points” is not parallel to

y = x, i.e. as the implemented angle θ0 gets smaller, the degree of shift on the mean angle is

smaller. On the other hand, the median angle shows a more consistent shift across various

implemented angles θ0. Consequently in Fig 4(c), when the simulation data points are adjusted

based on the mean phase difference, there is still a noticeable deviation from the analytical

line. Nevertheless, this difference is not too glaring when adjusted based on the median phase

difference in Fig 4(d).

Furthermore, we run separate simulations for this bus system where the no-boarding policy

is implemented at various (but fixed) angles θ0 2 {180˚, 181˚, . . ., 360˚}, for various (but fixed)

values of k 2 {1/100, 1/99, . . ., 1/5}. With these extensive simulation data, we find that the ana-

lytical theory’s predictions are in excellent agreement with the simulation results. In particular,

it holds for any (fixed) k which comprises both lull and busy periods. In fact, the analytical

curve for θmin(k) in Eq (15) fits nicely as displayed in Fig 5, where simulations show that if

θ0 < θmin, then the waiting times for the passengers blow up to multiple (tens of) revolutions.

As explained, this is because the buses are disallowing boarding too frequently whenever their

phase difference deviates too much from the staggered configuration and Δθ> θ0 executes no-

boarding, to the point where the bus system is not meeting the demand for service. The num-

ber of people at the bus stop would grow unbounded as time goes to infinity, when θ0 < θmin.

If θ0 > θmin, then this number remains bounded although it may not always drop to zero since

the no-boarding policy would leave some people there.

3.3 N = 2 buses serving many bus stops

With more than M = 1 bus stops, each additional bus stop systematically contributes towards

an additional stoppage due to τ where the bus allows alighting/boarding. Obviously such inter-

mediate stoppages at each such bus stop in between would bump up the waiting time. The
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overall trend corresponds to the analytical result for N = 2 buses serving M = 1 bus stop [see

Fig 6(b), below]: the average waiting time decreases linearly with a decrease in θ0 where no-

boarding is implemented if Δθ> θ0. In particular, the general gradient of the simulation points

matches the analytical line but is shifted upwards due to additional stoppages at other bus

stops. On top of that, in Fig 6(b) with M = 12 staggered bus stops being 30˚ apart from each

other, we observe discrete jumps at 210˚, 240˚, 270˚, 300˚, 330˚, where these additional bus

stops are located between the two buses.

3.4 N buses serving M bus stops—Analytical theory and simulations

We can directly generalise the analytical theory from N = 2 buses to any N� 2 buses serving

M = 1 bus stop. Here are the results:

Fig 4. Graphs of �W versus: (a) θ0, (c) the mean, as well as (d) median phase differences, respectively. The effective phase difference θeff during

steady state being the median phase difference between the two buses more closely matches the predicted value from Eq (15), compared to the mean

phase difference. Note that below the lower bound θ0 = θmin, �W blows up by two orders of magnitude (not plotted): �W ¼ 10:4 at θ0 = 191˚, �W ¼ 31:5

at θ0 = 190˚, �W ¼ 54:6 at θ0 = 189˚, . . .. Similar graphs can be obtained for any value of k. (b) The relationship between θ0 and the mean as well as

median phase differences as measured from the simulations.

https://doi.org/10.1371/journal.pone.0230377.g004
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1. The stoppage duration for each bus is

�tðk;NÞ≔
t

T
¼

2k
N � 2k

¼
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n¼1

2k
N

� �n

: ð16Þ

The geometric series expansion is valid, since k< 1 and N� 2.

2. The lower bound to θ0 is

xminðk;NÞ≔
ymin

2p
¼

1

N
1þ �tðk;NÞð Þ: ð17Þ

3. The average waiting time for passengers at the bus stop before a bus arrives is as follows.

For N buses, there are N − 1 piecewise continuous line segments. The i-th line segment,

Fig 5. Graph of θmin versus k.

https://doi.org/10.1371/journal.pone.0230377.g005
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where i = 1, 2, . . ., N − 1, is given by
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W
T
¼

iðiþ 1Þ

2N
xþ

1

2
�

i
N
þ

1

4
�tðk;NÞ; ð18Þ

where 1/(i + 1)� x� 1/i and x≔ θeff/2π.

Eq (16) is derived by having a total of s(T + τ) people per revolution being carried by the N
buses, so each bus carries s(T + τ)/N and they do so over an average time interval of τ/2 (since

the other τ/2 is for people to alight). This gives s(T + τ)/N = lτ/2, which leads to Eq (16). For

Eqs (16) and (17) though, we directly calculated all these expressions individually and case-by-

case by hand up to N = 6 in the manner similar to the N = 2 buses serving M = 1 bus stop case

in Section 3A, and then write down the generalisation to any arbitrary N = 2, 3, . . . buses

Fig 6. (a) Simulation results for N = 2, 3, 4, 5, 6, 7, 8 buses, respectively, serving M = 1 bus stop. The demand level is fixed at k = 1/16. (b) Simulation

results for N = 2, 3, 4, 5, 6, 7, 8 buses, respectively, serving M = 12 bus stops. The demand level is fixed at k = 1/100. The analytical curves are for those

serving M = 1 bus stop. The simulation points have average waiting times which are higher than their corresponding analytical curves, since these buses

serve M = 12 bus stops. Furthermore, there are discrete jumps on the simulation points whenever an extra bus stop is present. (c) Graphs of the

piecewise continuous curves for N = 2, 3, 4, 5 as given by Eq (18) with �t=4 subtracted away, together with the corresponding smooth curves Eq (18) that

pass through the boundary points of each line segment, for the respective N. These smooth curves are hyperbolas, and approach an “L”-shaped

asymptotic curve as N!1. (d) Legend for (a) and (b).

https://doi.org/10.1371/journal.pone.0230377.g006
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serving M = 1 bus stop. In particular for Eq (18) the calculation steps are exactly those for

N = 2 buses, which are applied systematically and tediously to more and more buses, one by

one, calculating the luckiest and unluckiest people to board each bus, taking note of the pro-

portion of load carried by each bus or each group of bunched buses.

Let us illuminate the content of Eq (18). For N buses, there are N − 1 piecewise continuous

line segments labeled by i = N − 1, N − 2, . . ., 1, corresponding to increasing x from xmin to 1.

The gradient of the line segment labelled by i = N − 1 is the steepest, and these line segments

monotonically become less steep as we decrease i until i = 1 (but all have positive slope). The

line i = N − 1 is the situation where all N buses are unbunched. For i = N − 2, there is a pair of

bunched buses, with the remaining all unbunched. For i = N − 3, there is a triad of three buses

bunched into one unit, with the remaining all unbunched. This goes on until i = 1, where all N
buses bunch into one single unit.

Fig 6(a) shows the simulation results for N = 2, 3, 4, 5, 6, 7, 8, respectively, serving M = 1

bus stop in a loop, with the corresponding analytical curves Eq (18). Note that the gap between

the analytical curve and the simulation points is due to this plot being with respect to the

implemented angle θ0 instead of the effective angle θeff. With N buses, there are N − 1 indepen-

dent local phase differences between adjacent buses, since these N local phase differences sum

up to 2π. Eq (18) with N> 2 assumes that all N − 1 independent effective angles between any

local pair of adjacent buses are equal, whereas in the actual system, they are not and sometimes

even differ substantially. Making a single representative θeff out of those different local phase

differences would introduce bias, sometimes giving grossly wild results especially with larger

N. Plotting against θ0 would cleanly circumnavigate this and not artificially tamper with the

data points, though we would have that shift between the analytical curve and the simulation

points since θeff < θ0.

As mentioned, each of these line segments in Eq (18) represents different situations corre-

sponding to different number of bunched buses. For example with N = 3, when the imple-

mented angle for no-boarding θ0 is such that θmin < θeff < 180˚, the three buses are not

bunched. However, if θ0 is larger such that 180˚ < θeff < 360˚, then two of these buses would

bunch such that the system becomes a two-bus system where one of them comprises two

bunched buses with twice the loading rate. It turns out that this is actually less efficient than a

system with two unbunched buses where they have the same loading rate. Intuitively, this is

because in the former the bunched pair is so-called “faster” due to its double loading rate and

chases after the lone “slower” bus which has to implement no-boarding. The lone bus only

picks up 1/3 of the demand, whilst the bunched pair picks up 2/3 of the demand (1/3 each).

Similar ramifications are true for N = 4, 5, 6, 7, 8 buses, as shown in Fig 6(a). The bunched pair

becomes “faster” and grows into larger bunched group of buses, if the implemented angle θ0 is

large. A bus system with larger bunched group of buses performs less efficiently compared to

smaller bunched group of buses.

With many bus stops, each bus stop adds additional waiting time, just like the case of N = 2

buses discussed in the preceding subsection. Fig 6(b) shows simulation results for N = 2, 3, 4,

5, 6, 7, 8 buses, respectively, serving M = 12 bus stops. In these simulations, we set k = 0.010.

Nevertheless, similar results hold for any (fixed) value of k. As the number of buses increases,

since we keep the demand level to be the same lull k = 0.010, having more buses would spread

out the load and so each bus would spend shorter �t at the bus stops [Eq (16)]. Therefore, the

jump at each bus stop diminishes with larger N.

We do not proceed to repeat the laborious calculations for the general case of N buses serv-

ing M bus stops, because the analytical results from N buses serving 1 bus stop are sufficient to

describe and understand the behaviour as θ0 is changed. As the simulation results indicate in

Fig 6(b), the precise corrections from what would be painstakingly going through each piece of
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individual case-by-case calculations only amounts to adjusting for the small shifts due to addi-

tional bus stops without affecting the already known behaviour of the system.

There is one important remark regarding decreasing the implemented angle θ0 towards

θmin. For each N, as y0 ! y
þ

min, after the linear decrease, the average waiting time begins to

increase before eventually blowing up by several orders once θ0 < θmin [see Fig 6(a) and 6(b)].

These increases in the average waiting time when y0 ! y
þ

min are more prominent with more

buses, suggesting that with more buses the system is more susceptible to perturbations which

nudge the buses to implement no-boarding too soon as its Δθ(t) gets larger than θ0. In particu-

lar, adding more buses does not always seem to lead to the expected improved average waiting

time near θmin. For instance in Fig 6(b), the simulated best average waiting time for N = 8

buses is higher than 0.2 units, way above its theoretical minimum of less than 0.1 units. In con-

trast, the N = 3 and N = 4 systems do achieve simulated best average waiting times below 0.2

units, which are better than the N = 8 system. Therefore, whilst it is desirable to implement θ0

as small as possible, one needs to beware that setting it too close to θmin would risk having the

system implement no-boarding too frequently due to fluctuations in Δθ(t).
Incidentally, note that in the expression for the average waiting time in Eq (18), the k-

dependence solely arises from �t. If we define the quantity Vðx;NÞ≔ �Wðx; k;NÞ � �tðk;NÞ=4,

then this quantity is purely a function of x 2 [xmin, 1], for each N. We can immediately write

down some properties of V(x, N) [see also Fig 6(c)]:

1. The set of boundary points for each of the N − 1 line segment constituents for each curve of

constant N is

1

i
;
1

2
þ

1

2N
ð1 � iÞ

� �

; i ¼ 1; 2; . . . ;N
� �

: ð19Þ

The leftmost boundary point is when i = N, i.e.

1

N
;

1

2N

� �

; ð20Þ

whilst the rightmost boundary point is when i = 1, i.e.

1;
1

2

� �

: ð21Þ

The rightmost boundary point for any curve of constant N is the same point. This is where

all buses bunch into a single unit, and the average waiting time is half units of T (plus �t=4).

2. The curve

VðxÞ ¼
1

2
þ

1

2N
1 �

1

x

� �

ð22Þ

passes through all those points in Eq (19). This equation shows that the overall decrease in

average waiting time as x decreases (or as θ0 approaches the staggered configuration) is in

fact, hyperbolic.

3. With Eq (22), it is clear that as N!1, the curves shift upwards and leftwards, approaching

an “L”-shaped asymptotic curve defined by the horizontal line y = 1/2 (from x = 0 to x = 1)

and the vertical line x = 0 (from y = 0 to y = 1/2). This is a manifestation of a larger group of
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bunched buses being less efficient than a smaller bunched group due to greater asymmetry

in the system. Higher N also allows for further reduction in waiting time, since there are

more buses—with diminishing returns, however.

4. The set of leftmost boundary points for each curve of constant N, viz.

1

N
;

1

2N

� �

;N ¼ 2; 3; 4; . . .

� �

; ð23Þ

as well as their common rightmost boundary point (1, 1/2), all lie on the straight line

y = x/2.

5. Eq (18) readily extends to include the degenerate situation of N = 1 bus. Here, θeff = 2π as

measured from itself to itself since there is just one bus serving the loop, and the average

waiting time is always half units plus �t=4. So Eq (18) is just the point ð1; 1=2þ �t=4Þ for

N = 1, with i = 0, x = 1 (or θeff = 2π), �t ¼ 2k=ð1 � 2kÞ. In this case, k has to be less than 1/2

in order for that lone bus to meet the demand for service.

4 No-boarding policy: Looking behind

Looking at the bus immediately ahead seems natural, since the number of people to be picked

up is directly determined by how long ago the bus immediately ahead has left. But is this the

only way to decide on a no-boarding policy? Instead of looking at the bus immediately ahead,

it is also possible to consider measuring the phase difference with respect to the bus immedi-
ately behind [13, 17]. When a bus is boarding people at a bus stop, if the phase difference with

respect to the bus immediately behind Δθ is less than some threshold θ0, it is an indication that

it is “too slow” and bunching may be imminent. To prevent this, it should disallow further

boarding and leave. Similar calculations can be carried out, analogous to the looking-ahead

rule in Section 3. Firstly, the average stoppage time spent by each of the N buses serving 1 bus

stop in a loop is the same as in Section 3, given by Eq (16). Therefore, the average number of

people picked up is also the same as in Section 3.

The threshold θ0 for implementation of no boarding must be less than 2π/N in a system

with N buses. For example let N = 2 and set θ0 = 181˚, where no boarding is implemented if Δθ
< 181˚. Consider the staggered configuration where the two buses have a phase difference of

180˚. According to this threshold θ0 = 181˚, whenever one bus is at a bus stop, it measures Δθ
= 180˚ which is less than θ0 = 181˚ and implements no boarding. This would always be the

case, and nobody would ever be picked up! Hence in general, one should choose θ0 < 2π/N.

For N = 2, we can calculate this upper bound more precisely to be

xmaxðk;NÞ≔
ymax

2p
¼

1

2
1 � �tðk;NÞð Þ: ð24Þ

The derivation is analogous to calculating the lower bound to θ0 in the looking-ahead rule

in Section 3. For N> 2 however, the corresponding method does not work since looking

behind is not equivalent to looking ahead.

Recall from the previous section on looking ahead where increasing θ0 from 2π/N to 2π
would lead to the N buses undergoing transitions where buses progressively bunch into one

large group. This is different for looking behind. For all values of θ0 2 (0, 2π/N), the N buses

are always in a completely unbunched configuration (and increasing θ0 beyond 2π/N would

lead to the buses always implementing no boarding, as explained above). The analytical results

for the average waiting time for a passenger waiting at a bus stop for a bus to arrive, in a system
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of N buses serving 1 bus stop is:

�Wðx; k;NÞ≔
W
T
¼ �

N � 1

2

� �

xþ
1

2
þ

1

4
�tðk;NÞ; ð25Þ

where x≔ θeff/2π. This relation between �W and x is the same as that of Eq (18) with i = N − 1

(which corresponds to N unbunched buses), i.e. it has the same gradient in terms of magni-

tude, and peaks with a value of 1=2þ �t=4 (when x = 0) where all buses bunch into one single

unit. [In Eq (18), it also peaks with the same value at x = 1 where all buses bunch into one sin-

gle unit.] However, the gradient here has an opposite sign since it is a larger Δθ from behind

that improves the separation of the buses compared to a smaller Δθ from ahead. Fig 7(a) shows

the average waiting time for N = 2, 3, 4, 5, 6, 7, 8 buses, respectively, serving M = 1 bus stop in

a loop, with Fig 7(b) showing the corresponding situation with M = 12 bus stops. Just like the

previous section, additional bus stops bump up the waiting time since the bus has to spend

some stoppage there for alighting/boarding. In these graphs, the simulation points are plotted

with respect to implemented angles, which are generally smaller than the effective angles (anal-

ogous to looking-ahead in the previous section, where the implemented angle is larger than

the effective angle). This leads to the shift between the simulation points and the analytical

curves.

In comparison with looking immediately ahead, here looking immediately behind never

allows any bunching. In fact, simulations show that the system does achieve a best average

waiting time which is close to the theoretical minimum. In particular, the N = 8 system has the

best result, with sub-0.1 units of average waiting time. However, the range θ0 for implementing

the no-boarding policy gets narrower with increasing N, in contrast to the implementation

with respect to the bus immediately ahead where the range of θ0 grows with increasing N.

5 No-boarding policy on buses with different natural frequencies

In the previous two sections, we assumed that buses move with the same natural frequency.

This allowed us to analytically calculate the average waiting time of the passengers waiting at

the bus stop for a bus to arrive, complemented by simulations. Let us now test the no-boarding

Fig 7. (a) Simulation results for N = 2, 3, 4, 5, 6, 7, 8 buses, respectively, serving M = 1 bus stop. The demand level is fixed at k = 1/16. (b) Simulation

results for N = 2, 3, 4, 5, 6, 7, 8 buses, respectively, serving M = 12 bus stops. The demand level is fixed at k = 1/100. The analytical curves are those

serving M = 1 bus stop. The simulation points have average waiting times which are higher than their corresponding analytical curves, since these buses

serve M = 12 bus stops. Furthermore, there are discrete jumps on the simulation points whenever an extra bus stop is present.

https://doi.org/10.1371/journal.pone.0230377.g007
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policy on a bus system where the buses move at different natural frequencies, as this is typical

in human-driven buses.

As mentioned in Section 3B, the NTU campus bus system comprises N buses serving

M = 12 reasonably staggered bus stops in a loop. The average periods of the buses around the

loop without stopping are within a range of 12 to 18 minutes, or fi 2 [0.93, 1.39] mHz. Ref. [1]

found that for the system served by N = 2 buses with f1 = 1.39 mHz and f2 = 0.93 mHz, the crit-

ical k = kc≔ 0.028 marks a phase transition: 1) If k< kc, the two buses are in the lull phase

such that they periodically bunch. The bunching occurs periodically because the fast one is

able to pull away, opening up the phase difference from the slower one, and subsequently lap-

ping it. 2) On the other hand, if k> kc, these two buses are in the busy phase where they are

phase locked. Here, the phase locked pair is bunched permanently. Although the fast bus tries

to pull away, the coupling strength at the bus stop is too large such that they bunch again—

repeatedly at every bus stop. For N> 2, this value of �k � kc ¼ 0:028 marks the approximate

critical coupling strength where the system transitions from the lull phase with no permanent

bunching occurring if k < �k, to the busy phase where at least one sustained phase-locked pair

of buses exists if k > �k.

Let us now investigate the no-boarding policy applied to these situations in the NTU shuttle

buses. We shall run simulations with the following setups:

1. A system with N = 2 buses having frequencies 1.39 and 0.93 mHz, respectively, in the lull

phase with k = 0.010.

2. The system in (1), but in the busy phase with k = 0.030.

3. A system with N = 3 buses having frequencies 1.39, 1.16 and 0.93 mHz, respectively, in the

lull phase with k = 0.010.

4. The system in (3), but in the busy phase with k = 0.040.

5. A system with N = 6 buses having frequencies 1.39, 1.31, 1.24, 1.08, 1.00 and 0.93 mHz,

respectively, in the lull phase with k = 0.010.

6. The system in (5), but in the busy phase with k = 0.063.

For each setup, we apply the no-boarding policy by looking immediately ahead [Fig 8(a)],

and repeat with the no-boarding policy by looking immediately behind [Fig 8(b)]. Fig 8(a) and

8(b) show the average waiting time in each case.

The no-boarding policy is effective, as expected from the analysis in the previous two sec-

tions, in the busy phase where otherwise the buses would experience sustained phase locking.

However, the no-boarding policy backfires when the system is in the lull phase. For the latter,

the buses with frequency detuning only bunch periodically, with the fast one pulling away

from the slow one after they leave the bus stop. The implementation of the no-boarding policy

does not prevent the buses from bunching in the lull phase, because the fast bus can gradually

defy the policy’s efforts to maintain their phase difference due to its positive relative velocity.

In fact, the no-boarding policy turns out to periodically make one of the buses end up not pick-

ing up anybody over a significant part of their time when the policy is enforced. See the video

found here: https://www.youtube.com/watch?v=SBNqvTr1AjQ (please enable the caption to

see the live description in the video), which annotates what happens when the N = 2 bus sys-

tem implements the no-boarding policy whenever Δθ> 200˚ by measuring the phase differ-

ence from the bus immediately ahead, during the lull phase (k = 0.010). That video is also

given as supplementary information.
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5.1 Deviation from the analytical curve in the busy phase

It is interesting to note that unlike the previous setup with buses having identical natural fre-

quency, buses with frequency detuning can potentially unbunch. Consequently for the no-

boarding policy by looking at the bus immediately ahead, here the buses do not get stuck in

the (N − 1)-1 bus system since buses can unbunch. This is manifested by the N = 3 and N = 6

systems in the busy phase [middle and bottom plots on the right column of Fig 8(a)], where

the simulation points do not lie on the expected curve for an (N − 1)-1 system but we see that

they manage to unbunch themselves to more efficient configurations. Furthermore for the

N = 6 system, having six buses with different frequencies turn out to be better than forcefully

implementing the no-boarding policy over a wide range of implemented angle θ0. On the

other hand, if the no-boarding policy is based on looking at the bus immediately behind [Fig

8(b)], then the no-boarding policy generally improves the waiting time in the busy phase

(right column), since it never allows any bunching in the first place.

6 A simple general adaptive algorithm for dynamically determining

θ0

For this section, we focus solely on the look-ahead version. A similar application would work

with the look-behind version as well. In real bus systems, various sources of stochasticity

Fig 8. (a) Simulation results for N = 2, 3, 6 buses, respectively, serving M = 12 bus stops in a loop. The no-boarding policy is applied by looking at the

bus immediately ahead. Note that θ0 = 360˚ corresponds to no-implementation. The left column is in the lull phase where the no-boarding policy

backfires and increases the passenger waiting time, as compared to no implentation (or 360˚). On the other hand, the right column is in the busy phase

where the no-boarding policy correctly reduces the average waiting time as expected, by preventing the buses from forming permanent bunched

clusters. (b) The corresponding simulation results as in (a), but with the no-boarding policy by looking at the bus immediately behind. Note that θ0 = 0˚

corresponds to no-implementation.

https://doi.org/10.1371/journal.pone.0230377.g008

PLOS ONE No-boarding buses: Synchronisation for efficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0230377 March 23, 2020 23 / 34

https://doi.org/10.1371/journal.pone.0230377.g008
https://doi.org/10.1371/journal.pone.0230377


would imply that the precise value of θmin, i.e. the lower bound to the angle to implement no-

boarding θ0 (which would in principle minimise the average waiting time) does not quite exist

or would be fluctuating with time. Therefore, we describe a simple algorithm for picking θ0

which is adaptive towards real-world stochasticity and varying demand levels kj for each bus

stop. Before we present this algorithm, we first give some real-world parameters measured

from the NTU campus shuttle buses [1]. With this, we can use these parameters to define our

simulation environment to mimic a realistic system, where we then implement the adaptive

algorithm to dynamically pick θ0 which minimises the average waiting time.

6.1 Passenger arrival rates for the 12 bus stops in the NTU loop campus

shuttle bus service

Ref. [1] presented data on the NTU loop campus shuttle bus service for the Blue route, mea-

sured over the full working week from 16th to 20th of April, 2018 (live data are found here:

https://baseride.com/maps/public/ntu/). More specifically, there are two phases: 1) lull, from 4

pm to 5 pm served by 3 buses; and 2) busy, from 9 am to 10 am served by 6 or 7 buses. In that

paper, loop averages are obtained where the values for k are averaged over all 12 bus stops.

These loop averages produced data points which have relatively little noise, as the inhomoge-

neity amongst the bus stops are averaged away. The lull period for that week was measured to

have a loop average of k = 0.024±0.004 whilst the busy period at peak demand was measured

to have a loop average of k = 0.065±0.017. This peak demand was due to a selection of ten time

series with the largest demand to obtain a representative value for the highest demand, where

each time series is a tracking of one bus during that time interval. As discussed in the previous

section, a phase transition between lull and busy was theoretically predicted to occur at

�k ¼ 0:028, given buses with natural frequencies fi 2 [0.93, 1.39] mHz. This value �k denotes the

critical value of k where the buses do not experience sustained bunching if k < �k but clusters

of phased-locked buses emerge when k > �k.

This loop average value of k was obtained by fitting the equation τ = kΔt to the data points

(Δt, τ), where the components are averages of the time headways Δtij and stoppages τij over all

12 bus stops, respectively. Note that in the NTU buses, passengers alight and board simulta-

neously via different doors, and so the stoppage is primarily due to the number of people accu-

mulated during Δtij at the bus stop, who are then boarding during τij. The error in k is the

square root of the mean squared deviation of each data point’s corresponding k from the best

fit line’s k. The relatively small errors in the loop average values of k are consistent with the fact

that they have reasonable fit with coefficient of determination r2 values of 0.59 and 0.77 for the

lull and busy periods, respectively. As mentioned earlier, the loop average irons out the inho-

mogeneity amongst the various bus stops’ kj.
If we do this linear fit for each individual bus stop however, the measured values of Δtij and

τij display a much greater error and deviation from the best fit line. The results are summarised

in Table 1. We find that the individual bus stop’s error in kj are generally much larger than

their loop average values for both the lull and busy periods, respectively. In fact, the variance is

more pronounced during the busy period: Some bus stops like H14/15, CH, H8 have noticably

small kj, with H4 conspicuously having a negative kj. However, their Δkj is very large with their

r2 values being close to 0. This may be due to surges of people (students) collectively heading

out to the bus stops at preferred times, say for example, to meet the 9.30 am lectures. The num-

ber of people going to the bus stops is thus not uniform over time, but experiences times when

many people appear at the bus stops, as well as times when fewer people are there. The great

stochasticity on individual bus stops may also be due to people crossing the road to take the

bus service in the opposite direction when that bus arrives, since this is a loop service and
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people travelling antipodally (or near antipodally) may take a bus in either direction. The pur-

pose of this crude linear fit is to set up a simulation environment (next subsection) to illustrate

the adaptive algorithm on dynamically determining the best θ0 in a stochastic and non-station-

ary environment (two subsections later).

The τij-intercepts for each bus stop are primarily around the order of + 10 seconds to + 30

seconds, which is due to the fact that buses have to wait for clear traffic before rejoining the

road (in fact, there are zebra crossings right in front of some of the bus stops, so some people

would be crossing the road right after they alighted—impeding the bus from departing) and

that the positional data are only updated once in approximately every 10 seconds (which

implies that any delay would be recorded in multiples of + 10 seconds). This is consistent with

the loop average’s τ-intercept values being about + 20 seconds, as discussed in Ref. [1].

6.2 A simulated environment to model the NTU system

For our simulated environment to model the NTU system, we assume that the buses are pro-

grammable such that they all move with the same natural period of T = 720 seconds (excluding

stoppages). We generate the rates of people arriving at each of the 12 bus stops according the

their kj values from Table 1 for simulations on the lull and busy periods, respectively. To create

some variations in kj with time, at every fixed time interval, we sample kj,sample for each bus

stop according to a normal distribution with mean kj and standard deviation Δkj. Note how-

ever that this may allow for negative values of kj,sample to be sampled, which is invalid and

unphysical. To overcome this, we truncate the normal distribution to take only values from 0

to 2kj in order to maintain the distribution to center around kj. (For H4 during the busy period

with negative kj, we take |kj| as the mean). These sampled kj,sample will be taken as the values for

sj≔ average rate of people arrival at the respective bus stops, with l≔ loading/unloading rate

set at 1 person per second. Once kj,sample have been sampled, the number of people arriving at

bus stop j is then determined by a Poisson distribution with λPoisson = kj,sample. As mentioned,

the values for kj,sample are resampled every fixed time interval to reflect the varying demand

level with time, and this fixed interval is a hyperparameter for this model, i.e. one is free to set

any value as desired for the model. We let this interval be the period of each bus T = 720 sec-

onds, i.e. kj,sample for each bus stop are resampled from their respective truncated normal dis-

tributions every 720 seconds or 12 minutes, which seems realistic.

Whilst the 12 bus stops are not perfectly staggered around the loop in the NTU campus,

they are quite reasonably spaced out [1]. We place them equally spaced out in our simulated

Table 1. (a) The values of kj and their errors, for each of the 12 bus stops in the NTU loop campus shuttle bus service, during the lull period (4 pm to 5 pm). These results

are obtained from data measured over the entire working week of 16th to 20th of April, 2018. (b) The corresponding values during the busy period (9 am to 10 am).

(a) Lull
Bus stop H4 IC SPMS WKW CEE LWN H3/16 H14/15 CH H10/11 H8 H2

kj 0.001 0.023 0.015 0.005 0.016 0.040 0.018 0.035 0.024 0.030 0.007 0.010

Δkj 0.030 0.022 0.031 0.026 0.018 0.031 0.021 0.023 0.068 0.032 0.036 0.030

τij-intercept (s) 23.3 17.3 17.4 19.3 10.9 22.0 13.2 9.9 25.8 29.3 23.9 19.8

r2 0.00 0.19 0.07 0.01 0.16 0.41 0.22 0.39 0.18 0.13 0.01 0.04

(b) Busy
Bus stop H4 IC SPMS WKW CEE LWN H3/16 H14/15 CH H10/11 H8 H2

kj -0.019 0.063 0.026 0.033 0.008 0.027 0.067 0.001 0.006 0.063 0.003 0.031

Δkj 0.082 0.096 0.077 0.068 0.053 0.077 0.052 0.152 0.069 0.077 0.093 0.071

τij-intercept (s) 34.5 22.4 21.2 13.8 16.1 17.6 6.8 24.3 25.3 20.7 23.6 15.6

r2 0.02 0.25 0.08 0.16 0.01 0.12 0.25 0.00 0.00 0.16 0.00 0.07

https://doi.org/10.1371/journal.pone.0230377.t001
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environment. Also, we ignore traffic conditions and let the buses move with constant speed

when they are not at a bus stop. These should not be considered as unrealistic simplifications,

because of the fact that the simulation environment repetitiously draws out kj,sample from the

truncated normal distribution every T = 720 seconds. They are then further subjected to Pois-

son distributions to determine how many people actually arrive at each bus stop, thus already

generating pretty high stochasticity in the simulated environment.

If buses move with identical natural speeds, they may not be able to unbunch once they are

bunched at a bus stop. To overcome this so that the buses may continue to explore other values

of θ0 instead of remaining bunched, we dictate in this simulated environment that if buses

bunch at a bus stop, then they may randomly decide to leave. This mechanism thus allows

buses with identical natural speeds to unbunch and carry on as if the system gets reset with

bunched buses getting repositioned.

6.3 A simple general adaptive algorithm for dynamically determining θ0

Our proposed simple adaptive algorithm for selecting the angle to implement no-boarding θ0

motivated by the classical multi-armed bandit in reinforcement learning [45]. In this setup,

each bus is an agent, and they only experience one state repeatedly. Each time, they can select

one out of a set of actions, measure the reward, and subsequently arrive at the same state to

select one action, ad infinitum. The set of actions comprises discrete integer values of θ0 2

(360˚/N, 360˚), where N buses are serving the loop. This range of allowed θ0 would ensure that

θ0� 360˚/N never gets picked, which would otherwise always implement no-boarding, as we

have found in the analytical theory. Once θ0 is picked, this is the value where no-boarding

would be implemented if Δθ> θ0 (until the next time the Q-value gets updated and a new

θ0new gets selected, described below). At the start of the run, a value of θ0 is randomly chosen

from its allowed integer values. Each value of θ0 has a Q-value associated with it, also randomly

initialised to some sufficiently high value. These Q-values represent the average waiting time of

people at the bus stop for a bus to arrive, associated with that θ0. Hence, we aim to minimise
the average waiting time here, instead of typically maximising the reward in reinforcement

learning [45]. One may choose to let each bus (agent) have its own set of Q-values, or all buses

share one single Q-table. Here, we adopt the simple setup with one shared Q-table.

When a bus arrives at a bus stop, it allows passengers who wish to alight there to do so.

Once this has completed, this bus measures the phase difference Δθ from the bus immediately

ahead of it. If Δθ� θ0, then it proceeds to allow boarding until there is nobody left to board

and leave, otherwise Δθ> θ0 triggers the implementation of no boarding and the bus leaves.

For people who are boarded, their waiting times are recorded so that the average waiting time

is subsequently calculated. For the case where nobody is boarded and the bus just leaves, the

waiting times thus far for people denied boarding at the bus stop are recorded instead. This

ensures that the bus receives feedback on performance, even in cases where no-boarding is

always implemented and nobody gets boarded. In reality, the information on how long a per-

son has waited at a bus stop for a bus to arrive may be collected by a mobile app, where a per-

son registers the intention to board a bus after just arriving at a bus stop. For the NTU campus

shuttle bus system, perhaps a nifty way to do so instead, would be to install WiFi routers at bus

stops since essentially students, staff, and anybody who regularly present themselves in NTU

would access the university WiFi service. By installing WiFi routers at bus stops, not only does

the university provide internet service for people spending time at bus stops, but the routers

also count how many people are present at a bus stop waiting for a bus to arrive, automatically
and in real time. Of course, this is just an approximate data collection mechanism, since some

people may have multiple devices or there may be guests who do not log in to the NTU WiFi
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automatically. Nevertheless, such an approximation should suffice to obtain a representative

average waiting time which requires no effort from the passengers since their devices connect

to the WiFi routers automatically.

After some fixed time interval U, the average waiting time �W of all passengers waiting at

the bus stop for a bus to arrive during this time interval is calculated. This “reward” �W is

updated to the Q-value associated with θ0 by the rule [45]:

Qy0
 Qy0

þ að �W � Qy0
Þ: ð26Þ

Here, α 2 (0, 1] is the learning rate for the Q-values. After this update, a new action is

selected by a bounded ε-greedy criterion: With a probability of 1 − ε, the bus picks a new θ0new

corresponding to that whose Q-value is minimum, otherwise a new θ0new is picked randomly

from [θ0 − lower, θ0 + upper]. We choose lower = 30˚ and upper = 5˚ which bounds the ε-

greedy exploration with a bias towards lower values of θ0, in order to keep the exploration con-

trollable and headed towards the prior knowledge of the optimal θ0 to be near and above

*360˚/N, based on the analytical theory in Section 3. We set α = 0.2 and ε = 0.2. These are not

decayed but kept constant, to be able to continually adapt to the non-stationary environment

with varying kj. Furthermore, we set U = 2T, so the Q-value is updated every 1440 seconds or

24 minutes. It is the average waiting time �W for passengers during this interval U which is sent

into Eq (26).

6.4 Simulation results on the adaptive algorithm for determining θ0 on the

NTU system

Fig 9 summarises the results of our adaptive algorithm to dynamically determine θ0, applied

on the simulated environment of the NTU system, both in the lull (served by N = 3 buses) and

Fig 9. Top row: Graphs of best and actual expected θ0 versus time for lull (left), busy (middle), and a lull case with frequency detuning (right).

Bottom: Graphs of best and actual expected average waiting time versus time for lull (left), busy (middle), and a lull case with frequency detuning

(right). In each plot, the actual curve is the thin dotted curve, whereas the best expected curve is the thick curve. The red horizontal line in the bottom

graphs represents the average waiting time when the no-boarding policy is not implemented.

https://doi.org/10.1371/journal.pone.0230377.g009
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busy periods (served by N = 7 buses), respectively. In each case, a large θ0 is initially chosen. As

the simulation runs, various θ0 are explored according to the algorithm to minimise the aver-

age waiting time of people waiting at a bus stop for a bus to arrive. The plots (left column for

lull, middle column for busy) show, as a function of time: 1) the best θ0 to implement, together

with the actual θ0 taken (which with probability ε is not the current best action, for explora-

tion); 2) the best Q-value (representing the best expected average waiting time, based on the

present Q-table), together with the actual average waiting time. Although we start with a large

θ0, through reinforcement learning, the system is able to eventually seek the optimal θ0, and

remain near that value since it has learnt that this has the best Q-value and occasionally bumps

around to the next best Q-values when stochasticity drives up the average waiting time. This

algorithm is also able to adapt to non-stationary situations, since ε is kept fixed to maintain

exploration.

Furthermore, when applied to a lull situation where buses have frequency detuning, the sys-

tem is able to adapt and find the optimal θ0 to minimise waiting time. The right column in Fig

9 is the adaptive algorithm applied to “setup (1)” from the previous section, where there are

N = 2 buses with different natural frequencies, and each of the M = 12 bus stops have

k = 0.010. The system is given an initially small θ0 * 200˚, but is able to explore and find the

optimal θ0 * 340˚ which is slightly better than no implementation of the no-boarding policy

[cf. top left plot in Fig 8(a)]. Here, we use lower = 15˚, upper = 15˚ for the exploration, since we

have no prior assumption about what the optimal θ0 should be.

The purpose of this description is to provide a means of picking an optimal θ0 under uncer-

tain and stochastic real-world conditions, with some suggested hyperparameters like α = 0.2,

ε = 0.2, lower = 30˚, upper = 5˚ (or lower = upper = 15˚ if no prior assumption is made),

U = 2T. Whilst this prescription is intended to be general enough to be applicable to generic

bus systems, when more specific details of a particular bus system are known, one may cer-

tainly fine-tune the hyperparameters and even make modifications (like giving each bus its

own Q-table, instead of a commonly shared one) to improve this simple algorithm for specific

bus systems.

7 Discussion and concluding remarks

Here is a summary of the results presented in this paper:

1. The construction of an analytical theory of how no-boarding significantly improves the bus

system, as compared to the corresponding situation with no such implementation. This is

for the case where buses have identical speed.

2. Extensive simulation results validate the theory.

3. The analytical theory comprises looking at the headway immediately ahead or immediately

behind. The latter is generally better than the former.

4. Simulation results for the case where buses have different natural speeds show that no-

boarding works only during the busy period, with an analytical derivation for this critical

transition given in Ref. [41].

5. An adaptive algorithm is implemented on a simulation based on parameters measured

from a real university loop shuttle bus service, illustrating how the no-boarding policy

works in a real bus system.

This paper has thus improved upon the previous studies on the no-boarding policy [37–39]

by providing a thorough theoretical framework that includes both alighting and boarding,
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elucidating the mechanism on how no-boarding improves and maintains the headways

amongst buses, as well as exactly determining when no-boarding works (busy period with

high demand) and does not (lull period with low demand).

Whilst the global average waiting time becomes more favorable, this comes with local cost

as those denied boarding would experience increased waiting times. This social aspect defi-

nitely deserves further scrutiny. Sometimes passengers may have the urgent need for service,

or certain weather conditions (heat, thunderstorm, heavy snow) are simply inconsiderately

painful for these passengers to experience extended waiting time at the bus stop. It is arguably

less of being a pain point when a passenger is on the bus, albeit slowly moving, compared to

having to wait in the open at a bus stop [37, 38, 46]. As a possible rectification, it may be a wor-

thy consideration to allow passengers a choice on whether to obey the no-boarding implemen-

tation or defect and just continue boarding. A passenger defection against an implementation

of the no-boarding policy would optimise their own local cost, at the expense of bumping up

the global cost since this would raise the average waiting time for all passengers. These dynam-

ics would seem to be rich and interesting, where the buses would have to co-evolve their no-

boarding implementation strategies together with the passengers’ strategies on whether to

obey or defect (defecting potentially risks incurring a fine, for instance). These social and game

theoretic aspects arising from the no-boarding policy would be studied systematically and

reported elsewhere.

In particular, we have recently studied what happens when the no-boarding policy is not

mandatorily enforced but defections are allowed [47]. This setup mimics the El Farol Bar prob-

lem [48], where each agent (player or commuter facing the no-boarding policy but allowed the

option to defect) is given two choices and the winners are those in the “minority group”, i.e.

the smaller group is deemed as winners [49–54]. This is a typical problem on social-resource

allocations like customers attending a bar with limited seats [48], a lunch/dinner crowd trying

to get their meals from a number of possible restaurants [55–58], the parking space problem

[59, 60], with even applications to financial markets where for instance if there are fewer buy-

ers than sellers, then demand is weak and the price is low such that the buyers are “winners”

(and vice versa) [61–63, 63–67]. One of the key results of the minority game framework is that

there exists a herding phase whereby many agents may tend to choose the same action under

certain conditions, which is bad in terms of resource allocation optimisation since many peo-

ple not using implies excess resource whilst many people using implies overcrowding. For the

no-boarding policy with allowance for defections, the herding phase with overwhelming defec-

tions would spell disaster and nullify the intended prevention of bus bunching. Nevertheless,

we found [47] that since commuters face different groups of other commuters each time a no-

boarding policy is implemented, this differs from the classical minority game which assumes

that the same group of agents play each other repeatedly and therefore, there is no herding

behaviour. The conclusion here is that if a strict no-boarding policy is seen as too drastic, then

an allowance for defections in a controlled manner (imposing a fine if there are too many

defectors and giving rebates to cooperators to encourage cooperation) seems to be a viable way

to improve the efficiency of the bus system by preventing bus bunching.

From a different perspective and in a separate paper, we have also carried out an interesting

approach where we allow a simulation of buses to “learn to be buses” as well as discover strate-

gies to improve the efficiency of the system—without human input or prior knowledge [44].

The idea there is similar to the sensational AlphaZero programme which successfully domi-

nated three different games of Go, Chess, and Shogi by reinforcement learning [68]. In our

work in Ref. [44] (not to be confused with Section 6 in this paper), we allow each of the N
buses serving a loop of M bus stops to either stay or leave whenever they are at a bus stop and

there is nobody to alight (note that we do not allow for stop-skipping, as we do not wish to
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force commuters to stay on the bus for another round or having to get off at an earlier stop).

The reward for the buses is that the system maintains a reasonably staggered configuration,

analogous to the reward for AlphaZero being to win the game. It turns out that, quite remark-

ably, reinforcement learning by interacting with other buses and without human input lead to

the emergence of the no-boarding and holding strategies with a desirable effect of minimising

the average waiting time of commuters at the bus stop for a bus to arrive. More specifically, the

no-boarding strategy that they learn matches the analytical results derived in this paper—

including the upper bound strictly below 360˚/N where no-boarding is implemented [see Eq

(24)]. Furthermore, the buses also learn cooperative strategies where they are able to unbunch

(if they happen to bunch) and return to a more ideal configuration.

The no-boarding policy may be viewed as an entrainment mechanism of a system of self-

oscillators, as pointed out and discussed in Ref. [1]. Here, the entrainment mechanism for the

bus system is triggered by Δθ exceeding a chosen θ0 (or Δθ< θ0 in the look-behind version),

and then a “corrective forc” is applied by disallowing boarding on the slower bus. The effect is

the staggered synchronisation of buses where instead of the buses getting phase-locked with a

phase difference of 0˚, they are phased-locked with the ideal phase difference of *360˚/N.

This staggered synchronisation achieves significant reduction in the average waiting time of

passengers. In fact, we have understood and shown mathematically how the no-boarding and

holding strategies would create stable anti-bunched configurations of buses serving a loop of

bus stops, by comparing it to the local unidirectionally coupled Kuramoto oscillators which

also possess stable staggered configurations if certain conditions are met [41]. On top of that,

this idea of synchronisation may also be useful in other systems, for example in the context of

collaborative multicentre vehicle routing optimisation [69, 70].

Although this study focuses on a loop where buses would continuously move without any

start or end, the no-boarding policy is directly applicable to various topologies, viz. loops, lin-

ear bus routes with a start terminal and an end terminal, as well as bus routes with branches,

etc., as the key idea is to disallow boarding when a slow bus is considered as being too slow.

Thus, the main results of this work in terms of improvement of passengers’ average waiting

time is applicable to bus systems elsewhere apart from our NTU loop campus shuttle bus ser-

vice, without the need for any sophisticated engineering or design of the bus routes and addi-

tional complex infrastructure.
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