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Abstract

Autologous transplantation of spermatogonial stem cells is a promising new avenue to

restore fertility in infertile recipients. Expansion of the initial spermatogonial stem cell pool

through cell culturing is a necessary step to obtain enough cells for effective repopulation of

the testis after transplantation. Since in vitro propagation can lead to (epi-)genetic mutations

and possibly malignant transformation of the starting cell population, we set out to investi-

gate genome-wide DNA methylation status in uncultured and cultured primary testicular

ITGA6+ sorted cells and compare them with germ cell tumor samples of the seminoma sub-

type. Seminomas displayed a severely global hypomethylated profile, including loss of

genomic imprinting, which we did not detect in cultured primary testicular ITGA6+ cells. Dif-

ferential methylation analysis revealed altered regulation of gamete formation and meiotic

processes in cultured primary testicular ITGA6+ cells but not in seminomas. The pivotal

POU5F1 marker was hypomethylated in seminomas but not in uncultured or cultured pri-

mary testicular ITGA6+ cells, which is reflected in the POU5F1 mRNA expression levels.

Lastly, seminomas displayed a number of characteristic copy number variations that were

not detectable in primary testicular ITGA6+ cells, either before or after culture. Together, the

data show a distinct DNA methylation patterns in cultured primary testicular ITGA6+ cells

that does not resemble the pattern found in seminomas, but also highlight the need for more

sensitive methods to fully exclude the presence of malignant cells after culture and to further

study the epigenetic events that take place during in vitro culture.
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Introduction

In vitro propagation of cryopreserved spermatogonial stem cells (SSCs) followed by autologous

transplantation of cultured SSCs (SSCT) into the testes is viewed as a promising new technique

to treat male survivors of childhood cancer for sub- or infertility [1–5]. Theoretically, by utiliz-

ing SSCT in this group of otherwise infertile patients, endogenous spermatogenesis can be per-

manently enhanced or rescued. SSCT has the additional benefit of using the patient’s own cells

to rescue fertility, rendering SSCT a preferred option to current clinical alternatives such as

the use of donor sperm to achieve pregnancy. The robustness of spermatogenic rescue follow-

ing SSCT has been demonstrated for various species including mice, cattle and primates [6–

10] and SSCT treated animals are capable of producing offspring which appears healthy [11–

15] and fertile, at least in rodents [12, 14–16]. The odds of successful testicular colonization

after SSCT are predominantly dictated by the number of transplanted SSCs [17]. Since the pro-

portion of true SSCs will be limited in a biopsy from a human prepubertal small testis, in vitro
propagation of the initial SSC pool is a necessary step in the SSCT protocol.

A potential risk with SSCT for clinical use is the risk of cancer induction in the recipient

originating from the transplanted cell population [18, 19]. This risk is two-fold: either primary

cancerous cells (originating from non-solid tumors) that were present in the original biopsy

can be re-introduced into the recipient upon transplantation, or normal germ/somatic cells

could give rise to a transformed line of cancer cells with malignant properties during in vitro
propagation. Several studies have been published that describe the use of different techniques,

such as cell culture or FACS, to successfully eliminate malignant cells from contaminated tes-

ticular tissue samples [20–22]. The possible secondary risk of testicular cells undergoing cul-

ture-induced malignant transformation remains largely unexplored in the context of fertility

restoration.

A common hallmark of malignant cells is the occurrence of disturbances in 5-cytosine

methylation marks, resulting in an epigenetic landscape that may differ greatly from normal

cells [23]. Such alterations in DNA methylation have been found in testicular malignant germ

cell tumors of all histological variants, including seminomas, as well its precursor lesion germ

cell neoplasia in situ (GCNIS, previously known as CIS) [24–26]. In addition to alterations in

their methylome, these malignant cells are often susceptible to and characterized by DNA

copy number variations and can in fact even be subclassified based on the occurrence of CNVs

in certain loci [27], including TGCTs [28].

Due to the available evidence that in vitro proliferation of primary (stem) cells can affect

both the genetic [29, 30] and epigenetic [31–34] integrity of the cell’s genome and possibly trig-

ger malignant transformation, we set out to study whether primary human testicular cells can

become malignant during propagation in cell culture. Sporadic genetic aberrations have been

observed in long-term cultures of induced pluripotent stem cells (iPS) and embryonic stem

cells (ES) [35, 36], displaying recurrent duplications of chromosomal regions associated with

increased genetic instability and apoptotic resistance (12q, 17p) also found in various GCNIS-

derived TGCTs.

Here, we investigated genome-wide methylation patterns and genomic CNVs in freshly

sorted and long-term cultured and sorted integrin alpha-6 (ITGA6) positive human testicular

cells (n = 4 cultures) and compared these methylation patterns to primary seminoma tumors

(n = 3), focusing on genome-scale DNA patterning as well as known oncogenic regions.

Selection of ITGA6 positive cells was based on its localization to the plasma membrane of sper-

matogonia in the in vivo human testis [37] and previous demonstrations of the testis-repopu-

lating capacity of the ITGA6+ testicular cell subpopulation, both before and after culturing

[38–41].
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Materials and methods

Ethical approval

This study does not report research involving human participants. We used spare human tes-

ticular tissue fragments with written or oral informed consent from prostate cancer patients

(n = 4) ranging in age from 49–83, that underwent bilateral orchidectomy as part of their can-

cer treatment at the Academic Medical Center (AMC), Amsterdam, The Netherlands. In

accordance with Dutch law, spare tissues can be used for research with permission of the

patients without further permission of an ethical committee since no additional interventions

were needed to obtain these samples. Seminoma DNA samples, also used in a previous study

[25], were obtained with informed consent from patients in the Netherlands and were handled

according to the Code for Proper Secondary Use of Human Tissue as directed by the Dutch

Federation of Medical Scientific Societies (https://www.federa.org/codes-conduct).

Patient samples

Adult testicular donor tissues were cryopreserved in 1× MEM, 20% FCS, 8% DMSO upon

retrieval and stored for later cell isolations. Haematoxylin-eosin stainings of testicular cross

sections were used to confirm the presence of all germ cell stages and revealed normal sper-

matogenesis in all donor tissues. Seminoma samples were stage I tumors that did not show

metastases during follow-up. Seminoma samples were obtained and used directly after surgery.

Part of the biopsies were submitted to the pathology department for histological examination

and alkaline phosphatase (dAP) reactivity assays [42], the remainder was subjected to DNA

isolation as described in previous work [25]. Lymphocyte infiltration scoring showed moder-

ate to high infiltration in two of the tumors (L11-119: 57.5%-66.1% and L11-123: 68.4%-

71.1%) and moderate infiltration in the remaining tumor (L10-358: 37.3%-52.5%) with an

expected overestimation of 10–20% lymphocyte component.

Primary testicular cell isolation and culture

Biopsies were thawed and the germ cell fraction located on the basal membrane of seminifer-

ous tubules was isolated as described previously [43]. Briefly, testicular biopsies were subjected

to a two-step enzyme digestion (1mg/mL type I collagenase (4196, Worthington), 1mg/mL

type II hyaluronidase (H2126, Sigma) and 1mg/mL trypsin TRL3 (3707, Worthington), fol-

lowed by 1mg/mL type I collagenase and 1mg/mL type II hyaluronidase) and the resulting sin-

gle-cell suspension was plated overnight in 1× MEM containing 20% FCS. The next day,

floating cells (containing the germ cell fraction) were separated from the attached cell fraction

via gentle pipetting and transferred to a new culture flask. This mixed primary testicular cell

(PTC) fraction was then either directly subjected to magnetic-activated cell sorting for ITGA6

+ cells (day 0; d0-PTC) to enrich for spermatogonia or first brought into culture and then

sorted (long-term; LT-PTC). The medium used for PTC culture contained StemPro-34 SFM

medium (10639–011, Life Technologies) supplemented with several key growth factors pro-

moting spermatogonial stem cells self-renewal (GDNF, EGF, PDGF, LIF) as described else-

where [43]. Cells were cultured at 37˚C and 5% CO2 and passaged using trypsin/EDTA at 80–

90% confluence, which took on average 13 days for the first passage and from that point on

every 7 to 10 days over a period of 50–54 days. Medium was refreshed twice a week.

Magnetic-activated cell sorting

To enrich the initial testicular cell fractions for spermatogonia before and after culture, we per-

formed magnetic assistant cell sorting (MACS) for cells expressing the ITGA6 membrane
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protein [38–40]. Cells were harvested using 0.25% trypsin/EDTA, filtered using a 40 μm sterile

filter and labeled with biotinylated anti-ITGA6 antibody (BioLegend, 1μl ab per 5 × 105 cells)

in 100 μl MACS buffer (0.5%BSA, 2mM EDTA in sterile PBS) for 30 minutes at 4˚C, followed

by incubation with 1:5 (v:v) anti-biotin micro magnetic beads (Miltenyi Biotec) in 100 μl

MACS buffer for 15 minutes at 4˚C. Cell-bead complexes were then washed 3× in MACS

buffer and transferred to a magnetic stand to separate labeled cells from non-labelled cells

using a Large Cell separation column (Miltenyi Biotec).

DNA isolation and bisulfite conversion

Genomic DNA was isolated from ITGA6+ PTCs using the QIAamp DNA Mini Kit (Qiagen,

51306) and eluted in low-TE buffer (10 mM Tris-HCl, 0.1 mM EDTA in sterile H20, pH 8.0).

Concentration and quality of DNA was measured on a ND-1000 (Thermo Scientific) spectro-

photometer and 1 μg of high quality DNA (absorbance 260/230� 1.8; 260/280� 2.0) was sub-

jected to bisulfite conversion using the EZ DNA Methylation Gold Kit (Zymo Research). High

bisulfite conversion rates were confirmed by single curves using high resolution melt analysis

(HRMA) of theH19 imprinting control region 1 (H19-IC1) in sperm control DNA as

described elsewhere [44], as well as a two-step verification using internal control probes on the

Human Methylation-450k BeadChip microarrays. Primers used for HRMA were as follows:

forward ATGTAAGATTTTGGTGGAATAT and reverse ACAAACTCACACATCACAACC.

Human Methylation-450k BeadChip microarray analysis

Methylation profiles of uncultured and cultured ITGA6+ PTCs were generated using Human-

Methylation 450k BeadChip microarrays (Illumina), which cover 485,577 genomic CpG sites

and capture� 99% of RefSeq genes. Sample preparation and bisulfite quality checks were con-

ducted at the department of Clinical Genetics at the Academic Medical Center (AMC),

Amsterdam, the Netherlands. Bisulfite-converted DNA samples were hybridized to the arrays

at Service XS, Leiden, the Netherlands according to manufacturer’s protocol. BeadChip images

were scanned using an Illumina iScan array scanner and data was extracted into GenomeStudio
(v2011.1, Methylation Module v1.9.0) using default analysis settings. Data in this study

were further processed using R (v3.1.1, platform: x86_64-w64-mingw32/x64) and Rstudio

(v0.98.1091) for Windows 7 (64 bits); packages included lumi (v2.20.1), limma (3.22.7) and

ggplot2 (v1.0.0). The data set supporting the results of this article is available in the Gene

Expression Omnibus repository, accession number GSE72444.

Data preprocessing

Raw scanner data (.iDat files) were imported into R and preprocessed using lumi [45]; prepro-

cessing steps included removal of non-CpG probes and non-CpG SNP probes, CpG probes

not passing the fluorescence detection limit (detectable signal in 95% of samples, p� 0.01),

CpG probes known to have multiple targets in the genome and CpG probes with SNPs at or

within 10bp of a target CpG (allele frequency� 0.05) [46]. Preprocessing with these criteria

resulted in 452,354/485,577 probes suitable for downstream analysis. Fluorescence values of

preprocessed CpG probes were subjected to optimized color-bias adjustment and quantile

normalization [47] followed by BMIQ-based correction for type I and type II probe bias [48].

Data processing yielded both ß values (in,methylated / (in,unmethylated + in,methylated)), where in is

intensity signal of the nth probe and related M-values (log2(ßn / 1–ßn) where ßn is the ß value

of the nth probe) for each probe as methylation estimates. We used an extended annotation file

(available in the Gene Expression Omnibus repository, accession number GPL18809) and the
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VariantAnnotation package for CpG annotation, adding a number of functional genomic clas-

ses to the standard annotation manifest provided by Illumina.

DMR identification

We used DMRforPairs (v1.2.0) [49] to identify CpG dense regions and define DMRs in the

dataset using default settings. For statistical analysis of candidate DMRs we opted to use M-val-

ues as opposed to ß-values due to the higher rates of true discovery [50]. A genomic interval

was classified as a DMR when it contained at least 4 CpGs within a distance of� 200bp from

each other and showed a significant difference in median M-value of� 1.4 (Benjamini-Hoch-

berg adjusted p-value� 0.05, Mann Whitney U test) between two samples.

Copy number variation analysis

Copy number variations were calculated using a previously published approach [51] that we

modified to also include CpGs on the X chromosome. CpG probes were divided over 8,949

chromosomal bins and median probe fluorescence was calculated for each bin in a DNA meth-

ylation microarray control dataset of 10 female blood samples with stable copy numbers.

Based on the fluorescence levels in this control set, a baseline was defined for stable copy num-

bers of all autosomes (chromosomes 1–22) and chromosome X. Bins where the median probe

fluorescence in an experimental sample (PTC, SE) was significantly different from bin fluores-

cence in the control set were assigned as having a CNV in that sample, designated as +1 for

gains and –1 for losses. Cutoff levels for the designation of chromosomal copy number variants

provided in S1 File were adapted from [51], distinguishing between homozygous deletions

(�–0.96, brown), hemizygous/mosaic deletions (�–0.24, red), neutral (between 0.12 and –

0.24, grey), duplications (� +0.12, green) and high-copy gains (� +0.72, blue).

Reverse transcriptase PCR & qPCR

Reverse transcriptase and quantitative polymerase chain reactions (PCR) were carried out

using amplified RNA from the same cells that were used for DNA methylation profiling. RNA

was isolated using a MagnaPure LC machine (Life Technologies) and amplified using an Ova-

tion RNA-Seq System V2 kit (NuGEN Technologies) prior to analysis. Integrity of the starting

RNA was verified by Bio-Analyzer gel electrophoresis analysis (RIN scores ranged from 7.1 to

9.8). Oligonucleotide primer sequences used for the detection of ITGA6, DISL3 (rt-PCR) and

POU5F1, EPN2,HeatR6 (qPCR) transcripts are listed in S1 Table. Primer oligonucleotides

used in this study were designed to be intron-spanning to avoid amplification of genomic

DNA during the reaction. RT-PCR reactions were set up using 1x PCR buffer containing 0.5U

Taq polymerase (both Roche), 0.5 μM of forward and reverse primer and 2mM dNTPs in a

final volume of 25 μl.

Quantitative PCR reactions were carried out in triplicate 10 μl reactions and reactions were

set up using 2.5 ng amplified cDNA, 2x Roche cyber green mix (SY Green Master mix, Roche),

0.2 μM of forward and reverse primer in a final volume 10 μl. Fluorescence per cycle was mea-

sured on a LightCycler480 PCR machine (Roche). Specificity of the PCR reactions was ascer-

tained through detection of single bands on agarose gel of the amplified products. We utilized

the LinReg method [52] to calculate the starting concentration (N0 value) of POU5F1, EPN2
andHeatR6 transcripts in a given sample based on the fluorescence level per cycle number.

Products of PCR were separated on a 3% agarose TBE gel containing ethidium bromide and

visualized on a Gel Doc XR system (Bio-Rad).
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Results

To study the possible transformation of normal human testicular cells into malignant cells

during prolonged cell culture, we generated genome-scale 5-mC profiles of ITGA6+ enriched

primary testicular cells (PTC, n = 4) both before culture (d0-PTC) and after long-term culture

(LT-PTC), as well as three primary seminoma lesions (SE, n = 3) (Fig 1A). The general consen-

sus in the literature is that spermatogonial stem cells (SSC) represent the fraction of male germ

cells that are able to self-renew and differentiate into sperm via the process of spermatogenesis

(reviewed in [53]). A distinction is made between SSCs and spermatogonia, the latter of which

is an umbrella term for sperm cell precursors including both veritable SSCs as well as more dif-

ferentiated premeiotic germ cell types that do not possess stem cell potential. We have previ-

ously demonstrated that our culture method, either with or without selection of ITGA6+ cells,

yields a population of cells that have the ability to migrate to the basal membrane of the semi-

niferous tubules after xenotransplantation to mouse recipients, as evidenced by positive immu-

nofluorescent staining of COT-1 DNA sequences (a sequence exclusively present in human

DNA) in the transplanted tissues [40, 43, 54]. Although human SSCs cannot differentiate in

the mouse testis microenvironment due to the large phylogenetic difference between mice and

humans [17], these findings form the golden standard to evaluate the presence of spermatogo-

nial stem cells in a transplanted population of cells and confirm that the human ITGA6+ testic-

ular population contains SSCs.

As expected, d0-PTCs and LT-PTCs displayed continued expression of the ITGA6mRNA

transcript during culture (Fig 1B). Unsupervised hierarchical clustering revealed clear segrega-

tion of the d0-PTC, LT-PTC and seminoma samples into three separate groups, highlighting a

distinct DNA methylation profile in seminomas as compared to PTCs both before and after

culturing (Fig 1C and 1D).

When analyzing the DNA methylation distribution over all included CpG probes

(n = 451,524 CpGs), we found that seminomas display a distinct globally hypomethylated pro-

file compared to cultured and uncultured PTCs (Fig 2A). Global genomic hypomethylation is

a well described feature of tumor cells and seminomas in particular [28, 55–57], contrasting

with normal cells which have a bimodal distribution of either fully methylated CpGs (100%

methylation) or unmethylated CpGs (0% methylation). The extent of hypomethylation in

seminomas correlated negatively with the lymphocyte infiltration score, i.e. the tumor possess-

ing the lowest degree of lymphocyte infiltration (L10-358, 37% lymphocyte infiltration) had

the most severely hypomethylated profile. This corroborates the findings of Shen et al., who

recently studied 137 TGCTs and described the existence of multiple subtypes of seminoma

lesions that are distinguishable in terms of lymphocyte infiltration, genetic mutations (KIT
locus) and the extent of global DNA hypomethylation [58].

To further study the extent of DNA hypomethylation in seminomas compared to uncul-

tured and cultured PTCs, we next analyzed CpG methylation levels at nine defined genomic

classes; transcription start sites (TSS), 5’-UTR, gene bodies, 3’-UTR, long and short inter-

spersed elements (LINE and SINE, respectively), long terminal repeats (LTR), CpG islands

and enhancer regions (Fig 2B). In line with the observed global DNA hypomethylation, six of

these nine classes were hypomethylated in seminomas as compared to d0-PTCs and LT-PTCs,

namely gene bodies, 3’UTR, LINE, SINE, LTR and enhancer regions (Fig 2C). Interestingly,

DNA methylation levels were found to be normally distributed in all groups at the promoter

regions (TSS and 5’UTR) and CpG islands. Together, these data suggest that LT-PTCs do not

acquire an overall deregulated epigenetic status as is shown in seminoma with a concurrent

general loss of DNA methylation, as well as possible decreased genetic stability due to demeth-

ylation at retrotransposon sequences.
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Fig 1. Generation of genome-scale DNA methylation profiles in primary cultured and sorted ITGA6+ testicular cells (PTC) and seminomas tumors (SE). In total,

four PTC cultures and three primary seminoma samples were analyzed using the Illumina HumanMethylation 450k microarray platform. (A) Testicular tubule

fragments were dissociated using enzymatic digestions and the resulting single cell suspension was either directly sorted for ITGA6+ cells (d0, day 0) or first cultured for

50–54 days (LT, long-term) and then sorted. Both d0-PTC/LT-PTC sorted fractions and SE were subjected to DNA cytosine methylation analysis. (B) Expression of

ITGA6 andDISL3 (reference gene) mRNA transcripts in d0-PTCs and LT-PTCs. Total testicular tissue biopsy (TB) was used as a positive control, a cDNA synthesis

using demineralized H2O as input was used as a negative control. (C) Unsupervised hierarchical clustering revealed unique DNA methylation landscapes in LT-PTCs

and seminomas as compared to d0-PTCs with a clear segregation of PTCs and seminomas into distinct groups. (D) 3D principal component analysis (PCA) shows that

the observed variance in DNA methylation levels in LT-PTCs and SE samples as compared to d0-PTCs occurs at different genomic regions. d0-PTCs samples are

displayed in green, LT-PTCs in pink and SE in blue.

https://doi.org/10.1371/journal.pone.0230253.g001
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In order to determine which genomic sequences were differentially methylated between

groups, we selected CpG-dense regions represented on the array and tested each region for sta-

tistically significant differences in methylation (differentially methylated region, DMR). CpG-

dense regions were defined as genomic sequences where a minimum of 4 CpG probes are

located within 200bp of each other, resulting in 28,901 regions of interest to be statistically

tested. Adhering to significance cut-offs of an adjusted Benjamini-Hochberg corrected p-

value� 0.01 and a minimum median methylation difference of 25% between groups, we iden-

tified a total of 353, 486 and 550 DMRs between d0-PTCs/LT-PTCs, LT-PTCs/SE and

d0-PTCs/SE, respectively.

GO-enrichment analysis using the online DAVID tool [59] revealed enrichment of biologi-

cal processes between d0-PTCs and LT-PTCs related to spermatogenesis and meiosis (Fig

3A). The top enriched GO-term “DNA methylation involved in gamete generation”

(GO:0043046) contains several key regulators of male spermatogenesis; PICK1,MAEL, ASZ1,

PIWIL2,MOV10L1, DDX4 and TDRD1 were differentially methylated in LT-PTCs as com-

pared to d0-PTCs. All DMRs in this GO-term displayed increased methylation in LT-PTCs

(increase of 48% ± 5.7% as compared to d0-PTCs) with the exception ofMOV10L, which dis-

played decreased methylation (54%). In the LT-PTC versus seminoma comparison we found 4

enriched GO-terms that share a high degree of similarity with the terms found in the d0-PTC

versus LT-PTC comparison, suggesting that long-term culture results in DNA methylation dif-

ferences in LT-PTCs as compared to both d0-PTCs and seminomas, seemingly unrelated to

malignant progression. There were no GO-terms between d0-PTCs and seminoma samples

that reached statistical significance, possibly due to statistical power being too low or p-value

cut-off levels.

Seminomas are known to show selective hypermethylation at several tumor suppressors,

such asMGMT, SCGB3A1, RASSF1A,HIC1, and PRSS21 [60]. In addition, seminomas can dis-

play genetic mutations in the KIT gene and they express the pluripotency marker POU5F1,

which is not detectable in normal testis [61]. Analysis of DNA methylation levels at the TSS in

specific tumor-related genes revealed a decreased promoter methylation level for POU5F1 in

seminomas (approximately 35% reduction in DNA methylation) as compared to both

d0-PTCs and LT-PTCs, while we did not detect significant differential methylation in

SCGB3A1, PRSS21 orHIC1 (Fig 3B). The DPPA3 and XIST genes were hypermethylated in

LT-PTCs as compared to d0-PTCs and seminomas,MGMT displayed a variable DNA methyl-

ation pattern between and within groups and the KIT promoter was stably hypomethylated in

all groups including seminomas.

In addition to loss of both global and specific DNA hypermethylation patterning, semino-

mas are known to acquire structural chromosomal aberrations such as extra p-arms of chro-

mosome 12 (preferentially as isochromosome i(12p)) during progression to invasive growth

[62]. Other non-recurrent chromosomal aberrations in seminomas include gains of chromo-

somes 7, 8, 12p, 21 and X, and loss of chromosomes 1p, 11, 13 and 18 with varying occurrence

in individual tumors [63]. To determine whether chromosomal stability in PTC cultures is

maintained, we compared CNVs in uncultured and cultured PTCs with that of the seminomas

Fig 2. SE samples display a generally hypomethylated DNA methylation profile as compared to d0-PTCs and LT-PTCs. (A) DNA methylation is deposited

in a bipolar fashion in d0-PTCs and LT-PTCS, with most probes displaying a DNA methylation of either 0–10% or 90–100%, while a clear global

hypomethylation is observed in SE. (B) Probe DNA methylation data was divided into nine genomic classes according to the genomic annotation of probes to the

hg38 human genome reference build. A distinction was made between intragenic sequences (+1500bp of transcription start site (TSS), +200bp of TSS, 5’

untranslated region (UTR), first exon, rest of genebody and 3’UTR) and non-coding sequences (long interspersed elements (LINE), short interspersed elements

(SINE), long terminal repeats (LTR), CpG islands (CGI) and enhancer regions). (C) Distribution of DNA methylation over the nine genomic classes in d0-PTCs,

LT-PTCS and SE.

https://doi.org/10.1371/journal.pone.0230253.g002

PLOS ONE DNA methylation patterning in cultured testicular cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0230253 March 16, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0230253.g002
https://doi.org/10.1371/journal.pone.0230253


PLOS ONE DNA methylation patterning in cultured testicular cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0230253 March 16, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0230253


samples using a previously published approach to estimate CNVs from DNA methylation

array data [51]. LT-PTCs displayed some small CNVs (chromosomes 2, 5, 7, 11 and 14) that

did not reach the significance threshold, corresponding to heterogeneity within individual

PTC cultures. Indeed, CNVs occurring in d0-PTCs and LT-PTCs groups were located to dif-

ferent chromosomal regions in each individual culture, suggesting the absence of persistent

CNV ‘hotspots’ (S1 File). The seminomas samples showed large-scale losses and gains on sev-

eral chromosomes including the staple i(12p) duplication, as well as gains of chromosome 15,

16 and X and losses on chromosomes 4, 5, 11 and 13 (Fig 4A).

Finally, we investigated the pluripotency marker POU5F1 in more detail due to its impor-

tance in TGCT diagnostics. The POU5F1 locus is covered by 18 CpG sites on the array plat-

form that collectively displayed a hypomethylated state in seminomas as compared to

d0-PTCs and LT-PTCs, including the genomic region directly upstream of the transcription

start site (Fig 4B). To confirm the activated gene expression of POU5F1 in seminomas we per-

formed gene expression analysis of the POU5F1 isoform 1 transcript (NM_002701) by qPCR

and found high expression levels in seminomas while it was nearly undetectable in PTCs both

before and after culturing (Fig 4C).

Discussion

We here present evidence that in vitro propagated and ITGA6+ enriched primary human tes-

ticular cells display a normal global DNA methylation profile. Compared to seminoma, the

uncultured and cultured ITGA6+ PTCs do not harbor large-scale CNVs nor show signs of

oncogene or retrotransposon activation in terms of regional DNA demethylation. This sug-

gests that, in contrast to the hypomethylated profile and copy number variants commonly

observed in GCNIS-derived lesions, including seminomas [64–67], primary testicular ITGA6

+ cells remain genetically stable during prolonged cell culture. In contrast, we did observe sig-

nificant differences in DNA methylation between cultured and uncultured ITGA6+ cells,

which did not resemble the epigenetic hallmarks of malignant progression but is potentially

relevant for their prospective use in clinical transplantation procedures.

The absence of large-scale chromosomal duplications or losses is in line with an earlier pub-

lication where long-term cultured ITGA6+ testicular cells (over 50 days in culture) were

screened using single-cell CGH arrays and were reported to be genetically stable (68), which

we were able to confirm here. In that same study, epigenetic alterations in cultured ITGA6

+ PTCs were reported in a panel of five imprinted loci (H19,H19-DMR,MEG3, KCNQ1OT1
and PEG3) as compared to uncultured ITGA6+ PTCs and spermatozoa. The paternally

imprintedH19,H19-DMR andMEG3 loci were reported to show demethylation of 28%-11%,

68%-43% and 26%-18%, respectively, while the maternally imprinted KCNQ1OT1 (13%-50%)

and PEG3 (30%-38%) loci were hypermethylated during culture.

The data presented here also support previous efforts (totaling 30–40 recipient mice) where

uncultured and cultured human testicular cells were transferred to mouse testes using xeno-

transplantation and during which tumor formation was never observed or reported after care-

ful histological analyses of the transplanted tissues [17, 43, 54, 68]. Consistent with these data,

no increases in tumor incidence or lowered life expectancy after long-term follow up (18

months of age) were reported in recipient mice after transplantation of allogenic in vitro

Fig 3. Detection of differentially methylated regions in d0-PTCs, LT-PTCs and seminomas. (A) Top 10 most enriched GO-terms

(bottom to top) of DMRs between d0-PTC/LT-PTC, d0-PTC/seminoma and LT-PTC/seminoma. N.S. = not significant. (B) Gene-specific

DNA methylation levels at tumor suppressor genes (SCGB3A1,MGMT, PRSS21,HIC1), testis-specific genes (KIT, DPPA3), XIST and the

pluripotency marker POU5F1.

https://doi.org/10.1371/journal.pone.0230253.g003
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propagated SSCs [69]. It should be noted that the human testicular cell culture system used in

this study differs from the mouse culture system in several aspects, including but not limited

to the use of feeder cells. More specifically, while mouse spermatogonial cell cultures are estab-

lished by culturing enriched SSC fractions on a monolayer of STO or MEF feeder cells treated

with mitomycin [13, 70, 71], the human system utilizes untreated testicular somatic cells origi-

nating from the donor testis tissue itself as outgrowing feeder cells. The manner in which germ

cells are established and maintained in vitro is vital to the stability and identity of the cultured

germ cell fraction, and as such the results from mouse SSCT experiments do not necessarily

reflect the human situation. More research is needed in the characterization of cultured

human SSCs before and after (xeno)-transplantation.

Microarray analyses are inherently limited by the resolution of the design of the array and

might not be suitable for the detection of low-grade cell mosaics, such as trace amounts of tumor

cells in a large population of normal cells. In the CNV analysis, we adhered to the detection limits

as suggested by Sturm et al. [51] which does not detect chromosomal copy number aberrations

present in under 10% of cells. Similarly, because of the dynamic nature of DNA methylation pat-

terning we screened our samples for differentially methylated sites that displayed a significant

increase or decrease in DNA methylation between samples (25% or more) in order to maximally

reduce technical noise and identify sites that are plausibly biologically relevant. In contrast to

seminomas, the POU5F1 transcript was virtually undetectable by qPCR in PTCs after culture,

which would argue against the presence of even a small number of tumorigenic cells, although

these data are not enough to rule out the presence of trace amounts of malignant cells completely.

Moreover, while the 450k DNA methylation array platform is designed to include the majority of

RefSeq genes, imprinting control regions (ICR) are not well covered in the design of the 450k

array (less than 300 CpG sites covering ICRs (25)), and due to the low number of CpGs and rela-

tively small sample size in our study we did not investigate these regions here. Based on these con-

siderations, we stress that we are not able to fully exclude the presence of trace numbers of

malignant cells in the cultured primary ITGA6+ testicular cell population.

There has been discussion in literature regarding the stability of germ cell DNA methylation

patterns and the role of somatic contamination in the analyzed cell fractions. A recent study in

marmoset monkey revealed stable DNA methylation patterns of theH19,MEST,DDX4 and

MAGEA4 genes in germ cells cultured up to 21 days [72]. Since we detected differential meth-

ylation of GO-terms related to germ cell development and in particular DNA methylation reg-

ulation of germ cell formation, there could be differences in the functionality or cellular

composition of the cultured cell fractions between human and marmoset/rodent germ cell cul-

tures. There is some evidence of the role of epigenetic factors in the regulation of sperm devel-

opment and quality [73] and the potential for transgenerational inheritance of epigenetic germ

line mutations. As such, we strongly feel that more studies are required that focus on transcrip-

tomic and epigenetic measurements in human germ cell cultures, for example through the use

of novel emerging single-cell sequencing approaches [74–76], to gain insight in the events that

occur during in vitro culture of human testicular cells.

Fig 4. Copy number variation analysis reveals chromosomal aberrations in seminomas. Probe fluorescence data was used to calculate

average intensity in 8,949 chromosomal bins covering all autosomal chromosomes (1–22) and the X chromosome as aggregates of each

sample group (see Methods). Average increases in probe fluorescence are designated as ’Gains’ and average decreases as ’Losses’ with the y-

axis describing the extent of 2 fold amplification or reduction (for example, a gain of +1 signifies a two-fold increase in copy number within

that particular bin). (B) The POU5F1 locus on chromosome 6p21.33 (also known asOCT3/4) is an oncogene that is activated in most germ

cell cancers. SE samples displayed hypomethylation across the 18 CpG probes localized to this locus. Both d0-PTCs and LT-PTCs show a

hypermethylated state of these CpG sites. (C) POU5F1mRNA expression normalized to the expression of two reference genes (EPN2 and

HeatR6) in d0-PTCs, LT-PTCs and seminoma samples as measured by quantitative fluorescence PCR. P-values were calculated using a two-

sided student’s t-test. Universal RNA (uRNA) was used as a positive control.

https://doi.org/10.1371/journal.pone.0230253.g004
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Conclusions

In conclusion, we show that human primary cultured and sorted ITGA6+ testicular cells do

not possess large-scale CNVs or epigenetic hallmarks found in malignant cells. Nevertheless,

we strongly advise additional studies that focus on assessing the consequences of culture-

induced epigenetic alterations on the functionality of in vitro propagated germ cells prior to

clinical transplantation, focused on identifying detailed characteristics of human SSCs in vitro
and after (xeno)-transplantation, as well as developing more sensitive methods to detect and

remove trace malignant cells from human testicular cell cultures prior to transplantation.
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