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Abstract

The literature provides strong evidence that stock price values can be predicted from past

price data. Principal component analysis (PCA) identifies a small number of principle com-

ponents that explain most of the variation in a data set. This method is often used for

dimensionality reduction and analysis of the data. In this paper, we develop a general

method for stock price prediction using time-varying covariance information. To address the

time-varying nature of financial time series, we assign exponential weights to the price data

so that recent data points are weighted more heavily. Our proposed method involves a

dimension-reduction operation constructed based on principle components. Projecting the

noisy observation onto a principle subspace results in a well-conditioned problem. We illus-

trate our results based on historical daily price data for 150 companies from different mar-

ket-capitalization categories. We compare the performance of our method to two other

methods: Gauss-Bayes, which is numerically demanding, and moving average, a simple

method often used by technical traders and researchers. We investigate the results based

on mean squared error and directional change statistic of prediction, as measures of perfor-

mance, and volatility of prediction as a measure of risk.

Introduction

Predicting future stock price values is a very challenging task. There is a big body of literature

on different methods and different predictors to incorporate into those methods to predict the

future values as closely as possible. The literature provides strong evidence that past price/

return data can be used to predict future stock prices. Some studied have found significant

auto-correlation for returns over a short period of time. French and Roll find negative correla-

tion for individual securities for daily returns [1]. Some other studies show there is a positive

correlation for returns over the period of weeks or months [2]. Studies also demonstrate stock

return correlation over the period of multiple months or years. Fama and French report that

the auto-correlation is stronger for longer periods, three to five years, compared to daily or

weekly periods [3]. Cutler et al. report positive auto-correlation over the horizon of several

months and negative auto-correlation over the horizon of three to five years [4]. There are
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some other studies that also show correlation in stock returns over a multiple year interval [5,

6] which all confirm that price/return values are predictable from past price/return values.

Bogousslavsky shows that trading by investors with heterogeneous rebalancing horizons

can give rise to autocorrelation in the returns at different frequencies [7]. Chowdhury et al.

investigate the autocorrelation structure of seven Gulf Cooperation Council (GCC) stock mar-

kets. All the markets except for Dubai and Kuwait show significant first-order autocorrelation

of returns. They also find that autocorrelation between weekdays is usually larger than that

between the first and last trading days of the week [8]. Li et al. study the nonlinear autoregres-

sive dynamics of stock index returns in seven major advanced economies (G7) and China

using the quantile autoregression model. For the stock markets in the seven developed econo-

mies, the autoregressive parameters generally follow a decreasing pattern across the quantiles

with significant portions outside the ordinary least squares estimate intervals [9]. Another

study investigates the autocorrelation structure of stock and portfolio returns in the unique

market setting of Saudi Arabia [10]. Their results show that there is significantly positive auto-

correlation in individual stock and market returns. Another study applies the threshold quan-

tile autoregressive model to study stock return autocorrelations in the Chinese stock market

[11]. They report negative autocorrelations in the lower regime and positive autocorrelations

in the higher regime.

Other fundamental or macroeconomic factors can also be used in predicting future stock

price values. Macroeconomic factors such as interest rates, expected inflation, and dividend

can be used in stock return predictions models [3, 12]. Also fundamental variables such as

earnings yield, cash flow yield, size and book to market equity [13, 14] have been found to

have estimation power in predicting future price/return values.

Silvennoinen and Teräsvirta report correlation between individual U.S. stocks and the

aggregate U.S. market [15]. Dennis et al. study the dynamic relation between daily stock

returns and daily volatility innovations, and they report negative correlations [16]. Another

study investigates the effect of common factors on the relationship among stocks and on the

distribution of the investment weights for stocks [17]. They report that market plays a domi-

nant role in both structuring the relationship among stocks and in constructing a well-diversi-

fied portfolio. Dimic et al. examine the impact of global financial market uncertainty and

domestic macroeconomic factors on stock–bond correlation in emerging markets [18]. In

another study, the focus is analyzing the impact of oil price shocks on the interactions of oil-

stock prices [19]. The results show that negative changes in oil prices have a significant impact

on the stock market.

In this paper, we describe a general method for predicting future stock price values based

on historical price data, using time-varying covariance information. When the number of

observations is large compared to the number of predictors, the maximum-likelihood covari-

ance estimate [20] or even the empirical covariance is a good estimate of the covariance of the

data, but that is not always the case. When the number of observations is smaller than the

matrix dimension, the problem is even worse because the matrix is not positive definite [21].

This problem, which happens quite often in finance, gives rise to a new class of estimators

such as shrinkage estimators. For example Ledoit and Wolf, shrink the sample covariance

towards a scaled identity matrix using a shrinkage coefficient that minimizes the mean squared

error of the prediction [22]. Some other studies in this field include [23–25]. In our numerical

evaluations in this paper we have sufficient empirical data to reliably track the covariance

matrix over time.

Momentum-based forecasting relies on prices following a trend, either upwards or down-

wards. Based on the assumption that trends like this exist and can be exploited, momentum is

used as a heuristic rule for forecasting and is probably the most popular technical indicator
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used by traders; in particular, the method of Direction Movement Index (DMI), due to Wilder

[26]. This kind of heuristic is a special case of pattern-based forecasting, where, in the case of

momentum, the pattern is simply the upward or downward trend. Our method is a systematic

method to capture arbitrary patterns, not just upward or downward trends. Indeed, we com-

pute prevalent patterns in the form of eigenvectors (or “eigen-patterns”) of the local covariance

matrix. As such, we are able to exploit more general patterns that are prevalent (but not neces-

sary known beforehand) in price time series.

The mean squared error (MSE) measures the distance between predicted and real values

and is a very common metric to evaluate the performance of predictive methods [27]. Multi-

variate conditional mean minimizes the mean squared error [28] and is a good estimator for

future price values. However, numerical results using this method cannot always be trusted

because of associated ill-conditioning issues. In this paper we introduce a method with similar

estimation efficiency that does not suffer from this issue.

Principal component analysis (PCA), which is a method for dimensionality reduction of

the data, is used in different fields such as statistical variables analysis [29], pattern recognition,

feature extraction, data compression, and visualization of high dimensional data [30]. It also

has various application in exploring financial time series [31], dynamic trading strategies [32],

financial risk computations [32, 33], and statistical arbitrage [34]. In this work, we implement

PCA in estimating future stock price values.

Yu et al. introduce a machine-learning method to construct a stock-selection model, which

can perform nonlinear classification of stocks. They use PCA to extract the low-dimensional

and efficient information [35]. In another study, three mature dimensionality reduction tech-

niques, PCA, fuzzy robust principal component analysis, and kernel-based PCA, are applied to

the whole data set to simplify and rearrange the original data structure [36]. Wang et al. pres-

ent a stochastic function based on PCA developed for financial time-series prediction [37]. In

another study, PCA is applied to three subgroups of stocks of the Down Jones Industrial (DJI)

index to optimize portfolios [38]. Narayan et al. apply PCA to test for predictability of excess

stock returns for 18 emerging markets using a range of macroeconomic and institutional fac-

tors [39].

Factor analysis is a technique to describe the variability of observed data through a few fac-

tors and is in some sense similar to PCA. There is a long debate in the literature on which

method is superior [40, 41]. Factor analysis begins with the assumption that the data comes

from a specific model where underlying factors satisfy certain assumptions [42]. If the initial

model formulation is not done properly, then the method will not perform well. PCA on the

other hand involves no assumption on the form of the covariance matrix. In this paper, we

focus on developing an algorithm that can ultimately be used in different fields without prior

knowledge of the system, and therefore PCA is the method of choice. In the case study pre-

sented in the following section, although only price data is used, it would have been also possi-

ble to include multiple predictors to estimate futures values of stock prices.

Our method bears some similarity with subspace filtering methods. Such methods assume a

low-rank model for the data [43]. The noisy data is decomposed onto a signal subspace and

noise based on a modified singular value decomposition (SVD) of data matrices [44]. The

orthogonal decomposition can be done by an SVD of the noisy observation matrix or equiva-

lently by an eigenvalue decomposition of the noisy signal covariance matrix [43].

We compare the performance of our proposed methods in terms of MSE and directional

change statistic. Stock-price direction prediction is an important issue in the financial world.

Even small improvements in predictive performance can be very profitable [45]. Directional

change statistic calculates whether our method can predict the correct direction of change in
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price values [46]. It is an important evaluation measure of the performance because predicting

the direction of price movement is very important in some market strategies.

Another important parameter that we are interested in is standard deviation, one of the key

fundamental risk measures in portfolio management [47]. The standard deviation is a statisti-

cal measure of volatility, often used by investors to measure the risk of a stock or portfolio.

As mentioned above, in this paper we focus on forecasting stock prices from daily historical

price data. In Section, we introduce our technical methodology, and in particular estimation

techniques using covariance information. In Section, we describe our method for processing

the data and estimating the time-varying covariance matrix from empirical data, including

data normalization. We also demonstrate the performance of our method.

Theoretical methodology

Estimation techniques

In this section we introduce a new computationally appealing method for estimating future

stock price values using covariance information. The empirical covariance can be used as an

estimate of the covariance matrix if enough empirical data is available, or we can use tech-

niques similar to the ones introduced in the previous section, though the time-varying nature

of the covariance must be addressed.

Suppose that we are given the stock price values for M days. Our goal is to predict company

stock prices for M + 1 to N trading days, using the observed values of the past consecutive M
days. The reason for introducing N will be clear below.

Gauss-Bayes or conditional estimation of z given y. Suppose that x is a random vector of

length N. Let M� N and suppose that the first M data points of vector x represent the end-of-

day prices of a company stock over the past M consecutive trading days. The multivariate ran-

dom vector x and can be partitioned in the form

x ¼ y z �: ð1Þ½

Let random vector y represent the first M data points and z the price of the next N −M days

in the future. We wish to estimate z from y.
The covariance matrix for the random vector x can be written as

Sxx ¼

Syy Syz

Szy Szz

2

4

3

5; ð2Þ

where Syy is the covariance of y and Szz is the covariance of z. Assuming that y and z are jointly

normally distributed, knowing the prior distribution of x = [y, z], the Bayesian posterior distri-

bution of z given y is given by

ẑ zjy ¼ SzyS
� 1

yy y

Ŝzjy ¼ Szz � SzyS
� 1

yy Syz:
ð3Þ

The Ŝzjy matrix, representing the conditional covariance of z given y, is also called the

Schur complement of Syy in Sxx. Note that the posterior covariance does not depend on the

specific realization of y.
The Gauss-Bayes point estimator for the price prediction, the conditional mean ẑ zjy, mini-

mizes the mean squared error of the estimate in the Gaussian case [28]. Moreover, in the Guas-

sian case, for a specific observation y, the inverse of the conditional covariance is the Fisher
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Information matrix associated with estimating z from y, and therefore Ŝzjy is the lower bound

on the error covariance matrix for any unbiased estimator of z [28].

The same set of equations arise in Kalman’s filtering. Kalman’s own view of this process is

as a completely deterministic operation [48], and does not rely on assuming normality.

Although the point estimator ẑ zjy is optimal in term of mean squared error, in practice there

are numerical complications involved in this method: The matrix Syy is typically not well con-

ditioned, so the numerical calculation of S� 1

yy cannot always be trusted. To overcome this prob-

lem, we propose a better conditioned estimator, which has a behavior close to Gauss-Bayes.

Principal components and estimation in lower dimension. Principal component analy-

sis (PCA) is a well-established mathematical procedure for dimensionality reduction of data

and has wide applications across various fields. In this work, we consider its application in

forecasting stock prices.

Consider the singular value decomposition (SVD) of Sxx:

Sxx ¼ VSV 0; ð4Þ

where S is a diagonal matrix of the same dimension as x with non-negative diagonal elements

in decreasing order, and V is a unitary matrix (VV0 = IN). The diagonal elements of S are the

eigenvalues of Sxx.

In general, the first few eigenvalues account for the bulk of the sum of all the eigenvalues.

The “large” eigenvalues are called the principal eigenvalues. The corresponding eigenvectors

are called the principal components.

Let L< N be such that the first L eigenvalues in S account for the bulk part (say 85% or

more) of the sum of the eigenvalues. Let VL be the first L columns of unitary matrix V. Then

the random vector x is approximately equal to the linear combination of the first L columns of

V:

x � VLa; ð5Þ

where α is a random vector of length L. Because L is a small number compared to N, Eq (5)

suggests that a less “noisy” subspace with a lower dimension than N can represent most of the

information. Projecting onto this principle subspace can resolve the ill-conditioned problem

of Syy. The idea is that instead of including all eigenvalues in representing Sxx, which vary

greatly in magnitude, we use a subset which only includes the “large” ones, and therefore the

range of eigenvalues is significantly reduced. The same concept is implemented in speed signal

subspace filtering methods, which are based on the orthogonal decomposition of noisy speech

observation space onto a signal subspace and a noise subspace [43]. Let VM,L be the first M
rows and first L columns of V. We have

y ¼ VM;LaþNoise: ð6Þ

Mathematically resolving noisy observation vector y onto the principle subspace can be written

as a filtering operation in the form of

w ¼ Gy; ð7Þ

where G is given by

G ¼ ðV 0M;LVM;LÞ
� 1V 0M;L: ð8Þ

The vector w is actually the coordinates of the orthogonal projection of y onto the subspace

equal to the range of VM,L. We can also think of w as an estimate of α based on least squares.
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Substituting y by w in (3) leads to a better conditioned set of equations:

ẑ zjw ¼ SzwS
� 1

www

Ŝzjw ¼ Szz � SzwS
� 1

wwSwz;
ð9Þ

because the condition number of Sww is much lower than that of Syy, as we will demonstrate

later. In (9) we have

Szw ¼ E½zw0 � ¼ SzyG
0

; ð10Þ

and

Sww ¼ E½ww0 � ¼ GSyyG
0

: ð11Þ

If the posterior distribution of z estimated based on (9) has a similar behavior to the distri-

bution estimated by (3), it can be considered a good substitute for the Gauss-Bayes method.

Our numerical results demonstrate that this is indeed the case, which we will show in Section.

Moving average. Technical traders and investors often use technical trading rules, and

one of the most popular methods used by technical traders and researchers are the moving

average (MA) rules [49, 50]. Satchell investigates the reason general MA trading rules are

widely used by technical analysts [51]. He shows that autocorrelation amplification is one of

the reasons such trading rules are popular. Using simulated results, we show that the MA rule

may be popular because it can identify the price momentum and is a simple way of assessing

and exploiting the price autocorrelation without necessarily knowing its precise structure.

Moving average, which is the average of prices over a period of time, is probably the simplest

estimator for z:

ẑMA ¼
1

KMA

XN

i¼N� KMAþ1

xi ð12Þ

where the quantity KMA is the number of data points included to calculate the average, and ẑMA
is the average of the most recent KMA price values.

There are different possible values of KMA for calculating the average, from short to medium

to long term periods. Here we use periods of 10 and 50 days, which are typical short and mid-

term values used in the literature. We will use the moving average estimator for comparison

purposes, as we will see in Section below.

Fig 1 shows an example of our stock predictions. Assume that we are given the price values

for the past 20 days (M = 20), and we want to use those values to predict the future prices over

the next 10 business days, from day M + 1 to day N (N = 30). In our reduced-dimension tech-

nique, we can get a relatively smooth plot of the predicted value for a relatively small L, to a

plot almost the same as Gauss-Bayes, for larger values of L, as we can can see in Fig 1.

Performance metrics

Mean squared error. To compare the performance of the methods described above, we

evaluate the expected value of the squared error between the actual and estimated values. The

mean squared error of an estimate ẑ is given by:

MSE ¼ E kz � ẑk2
� �

¼ E kzk2
� �

þ E kẑk2
� �

� 2E kz0ẑk � :½

The MSE can be expressed in terms of the covariance matrices in (2), by substituting the

appropriate form of ẑ . Alternatively, the mean squared error of an estimator ẑ can be written
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in terms of the variance of the estimator plus its squared bias. The conditional MSE given x is

written as

MSEẑ jz ¼ E kz � ẑk2
j z

� �
¼ traceðSẑ jzÞ þ kE ẑ j z � � zk2

:
�

The first term is called the variance, and the second term is the squared bias. The expected

value of MSE over all observations is the actual MSE, which can be calculated by taking expec-

tations on both sides:

MSE ¼ E E kz � ẑk2
j z �

� �
¼ traceðEkSẑ jzkÞ þ E kE ẑ j z � � zk2

�: ð13Þ
��h

It turns out that Gauss-Bayes estimator is unbiased, which means that the second term is 0,

while the proposed reduced-dimension methods is a biased estimator.

Directional change statistic.

bij ¼

(
1; if ðzij � z0Þðẑ ij � z0Þ > 0

0; otherwise
: ð14Þ

Then Dj, the direction statistic for day j, averaged over K samples, is equal to

Dj ¼
1

K

XK

i¼1

bij; ð15Þ

which is a number between 0 and 1 (the higher the better).

Fig 1. Predicting price for M + 1 to N days, actual price: Solid line, GB: −o−, RD: −�− (two lines, one for a small

value of L, and one for a relatively large number).

https://doi.org/10.1371/journal.pone.0230124.g001
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Empirical methodology and results

In this section we describe how we estimate the covariance matrix based on a normalized data

set, and we evaluate the performance of our method using empirical data.

General setting

Suppose that we have K samples of vector data, each of length N, where N< K. Call these row

vectors x1, x2, . . ., xK, where each xi 2 R
N
ði ¼ 1; . . . ;KÞ is a row vector of length N:

xi ¼ xi1 xi2 � � � xiN �: ð16Þ½

We assume that the vectors x1, x2, . . ., xK are drawn from the same underlying distribution.

We can stack these vectors together as rows of a K × N matrix:

X ¼

x11 x12 � � � x1N

x21 x22 � � � x2N

� � � � � � � � � � � �

xK1 xK2 � � � xKN

2

6
6
6
4

3

7
7
7
5
:

LetM� N and suppose that we are given a vector y 2 RM
representing the firstM data points

of a vector we believe is drawn from the same distribution as x1, x2, . . ., xK. Again, theseM data

points represent the end-of-day prices of a company stock over the pastM consecutive trading

days. Let z be the price of the nextN −M days in the future. We wish to estimate z from y.
Since the vector xi is a multivariate random vector that can be partitioned in the form

xi ¼ yi zi �; ð17Þ½

where yi has length M and zi has length N −M, accordingly the data matrix X can be divided

into two sub-matrices Y and Z as follow:

X ¼ Y Z �:½

We can think of Y as a data matrix consisting of samples of historical data, and Z as a data

matrix consisting of the corresponding future values of prices.

Normalizing and centering the data

In the case of stock-price data, the vectors x1, x2, . . ., xK might come from prices spanning

several months or more. If so, the basic assumption that they are drawn from the same distri-

bution may not hold because the value of a US dollar has changed over time, as a result of infla-

tion. To overcome this issue, a scaling approach should be used to meaningfully normalize the

prices (we will deal with the time-varying nature of the covariance later). One such approach is

presented here. Suppose that ti = [ti1, ti2, . . ., tiN] is a vector of “raw” (unprocessed) stock prices

over N consecutive trading days. Suppose that Q� N is also given. Then we apply the follow-

ing normalization to obtain xi:

xi ¼
ti

tiðQÞ
: ð18Þ

This normalization has the interpretation that the xi vector contains stock prices as a fraction

of the value on the Qth day, and is meaningful if we believe that the pattern of such fractions

over the days 1, . . ., N are drawn from the same distribution. Note that xi(Q) = 1.

We believe normalizing the data with this method captures the pattern in the price data bet-

ter than simply using return data. Although similar to return, the resulting time series still
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suffers from being non-stationary over time. We propose to resolve this issue by using a

weighting averaging method as explained in the next section.

For the purpose of applying our method based on PCA, we assume that the vectors x1, x2,

. . ., xK are drawn from the same underlying distribution and that the mean, �x, is equal to zero.

However because xi represents price values, in general the mean is not zero. The mean �x can

be estimated by averaging the vector xi 2 R
N
ði ¼ 1; . . . ;KÞ,

�x ¼
1

K

XK

i¼1

xi; ð19Þ

and then this average vector is deducted from each xi to center the data.

Even though this normalization makes the data stationary in the mean, since stock prices

are very volatile, there is no guarantee that the covariance of the data would be stationary as

well. In order to address this issue, we assign exponential weights (γ0, γ1, � � �, γk) to observa-

tions, where 0< γ< 1, to emphasize the most recent periods of data. Using an exponential

weighting approach to deal with volatility of financial data has been suggested in multiple stud-

ies such as [52]. For each observation xi, the last K samples prior to that observation are trans-

formed into a Hankel matrix and normalized. Then (decreasing) exponential weights are

assigned to the K samples and numerical results are calculated. This process, creating the

matrix of data, normalizing, and assigning weights, is repeated for each observation.

To select the value of K we use

K ¼ minfk : gk < 10� 3g: ð20Þ

Experiments

The daily historical price data for 150 different companies from different market-capitalization

categories were downloaded from finance.yahoo.com. Market capitalization is a measure of

the company’s wealth and refers to the total value of all a company’s shares of stock. We ran-

domly select 50 stocks from each of the three market capitalization (cap for short) categories:

Big market-cap (125 B$ to 922 B$), Mid market-cap (2 B$ to 10 B$) and Small market-cap

(300 M$ to 1.2 B$). The stocks from the Big market-cap category are normally the most stable

ones relative to the Small-cap stocks, which have the most volatility. Historical data for four

market indexes, S&P500 (GSPC), Dow Jones Industrial Average (DJI), NASDAQ Composite

(IXIC), and Russell 2000 (RUT), were also included in this study. The data was transformed

into matrices with different sizes as explained in next section. In each case, the daily price

value for next 10 days are predicted and the estimation methods are compare based on their

out-of-sample performance.

Constructing data matrix

The daily stock price data is transformed into a matrix with K rows, samples of vector data,

each of length N. We get that by stacking K rows (K samples), each one time shifted from the

previous one, all in one big matrix, called the Hankel matrix.

More precisely, the Hankel matrix for this problem is constructed in the following format:

t1
t2
..
.

tK

2

6
6
6
6
4

3

7
7
7
7
5
¼

Pð1Þ Pð2Þ � � � PðNÞ
Pð2Þ Pð3Þ � � � PðN þ 1Þ

� � � � � � � � � � � �

PðKÞ PðK þ 1Þ � � � PðK þ N � 1Þ

2

6
6
6
4

3

7
7
7
5
;
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where P(i) represents the price for day i. This is our matrix of data, before normalization and

centering.

We first normalize each row (observation) by Qth entry, as described earlier, and then sub-

tract the average vector �x from each row. The prediction is done using the processed data.

After doing the prediction, we add back the average vector �xN� M (last N −M components of �x)

from days M + 1 through N and also multiply the result by the value of Qth that was used for

normalizing to get back to actual stock prices. We tested different values for Q in terms of

MSE and estimation variance. For the purpose of this study, we chose Q = M because it shows

the best results in this setting. Recall that xi(M) = 1. This column is removed from the data

matrix because it does not provide any information. From now on matrix X represents nor-

malized and centered price data.

To account for the nonstationarity of the covariance, we use an exponential averaging

method as mentioned before. For this purpose, γ = 0.98 was selected and the weights smaller

than 10−3 were considered zero. Then the sample covariance matrix is calculated as

Sxx ¼
1 � g

1 � gkþ1

� �

X0diagðg0; g1; � � � ; gkÞX; ð21Þ

where diag(γ0, γ1, � � �, γk) is a diagonal matrix with (γ0, γ1, � � �, γk) as the diagonal elements.

We obtained end-of-day stock prices for General Electric and converted this time series

into Hankel matrices with different lengths as described above. 2000 samples were used to

evaluate the out-of-sample performance of the methods. The values corresponding with the

performance metrics presented in this section converge after a few hundred samples. We con-

struct data matrices with 9 different sizes, M from 50 to 530 with a 60 day interval, to investi-

gate the effect of length of observation vector on performance.

Fig 2 shows the histogram of normalized data as a representation of the distribution of nor-

malized data; the curve resembles a bell shape.

MSE performance

Three different estimation methods are implemented for each of the data matrices constructed

above. The goal is to predict future price values for the next 10 days (days M + 1 to N). when it

comes to reduced-dimension method, for each M we try different values of L, the number of

principle components. The general goal, as mentioned above, is an estimation technique that

has a similar behavior as an ideal Gauss-Bayes estimator but does not have the associated cal-

culation difficulties resulting from ill-conditioning.

We use General Electric price data to calculate the values illustrated in this section. We cal-

culate the squared error (SE) for 2000 samples to evaluate the performance of the methods.

We implement our reduced-dimension technique for different Ms, and for different numbers

of principal eigenvalues, L.

Fig 3 shows the empirical Cumulative distribution function (CDF) of the SE for 2 different

values of M, together with two-standard-deviation confidence interval. Note that to make our

comparisons fair and meaningful, we normalized the results from the moving average predic-

tors so that their values are equally normalized with the values from our RD method. When it

comes to out-of-sample performance, the numerical complications compromise the estima-

tion accuracy of Gauss-Bayes, causing the SE values for this method to become even worse

than the SE plot for the moving average estimators. As we can see, in both plots, our reduced-

dimension method is superior to the other two methods. For M = 110 some lines are relatively

close together. As M gets larger, the plot for the reduced-dimension method improves and the

plot for Gauss-Bayes gets worse.
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Another point worth mentioning is that although adding more data improves the perfor-

mance of our proposed method, that is not the case for the moving average estimator. As the

arrow on the plot on the bottom indicates, by adding more data, moving from zMA10
to zMA50

,

the performance of the moving average estimator deteriorates. This behavior is expected since

the moving average relies on the momentum, in contrast to the reduced-dimension method,

which extracts the essence of the information by projecting onto a smaller subspace.

Fig 4 shows the values of MSE over all days of estimation versus the value of L, for 9 differ-

ent M, lengths of observation vector, from 50 to 530. As we can see, the MSE value is insensi-

tive to the value of L for sufficiently large L. For small values of L, the MSE values fall quickly,

but then eventually increase. So if we have a particular constraint on the condition number, we

do not lose much in terms of MSE by choosing a reduced-dimension subspace, which leads to

a better conditioned problem. After a certain point, adding more data is actually adding noise

and the MSE values get worse.

The metric we are looking for is the sum of MSE values over all days of estimation.

For each length of M, the values for MSE are captured based on different constraints of the

condition number of Sww. The MSE values in the reduced-dimension method are significantly

smaller relative to the other two methods.

Fig 5 shows the relative percentage of improvement (RPI) in the reduced-dimension

method compared to the other two methods, calculated as

RPIGB=MA ¼
� 100ðMSERD � MSEGB=MAÞ

MSEGB=MA
: ð22Þ

Note that since the denominator in the equation is MSEGB/MA, the improvement percentage

does not exceed 100% but the actual MSE values are further apart in absolute terms than illus-

trated here. For example for M = 350, the MSE value for reduced-dimension is between 0.0052

Fig 2. Histogram graph for normalized data.

https://doi.org/10.1371/journal.pone.0230124.g002
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to 0.018, while the MSE in Gauss-Bayes is around 6.33 × 106. The three (overlapping and there-

fore appears as only a single plot) lines on top (-�-) of Fig 5 compare the reduced-dimension to

Gauss-Bayes (RPIGB). The three lines on top (‥o‥) correspond to the comparison of the

reduced-dimension and moving average (RPIMA50
) and the three lines on the bottom (‥o‥) cor-

respond to (RPIMA10
). In each case the three lines are subject to different upper limits on the

condition number (102, 103, and 104). It is worth mentioning that the condition number of Syy

starts from 103 for M = 50 and goes up to 1019 for M = 530. The upper limit on the condition

number of Sww changes from 102, associated with the lines on the bottom in each case, to 104,

the lines on top, for all values of M.

In general, by increasing M, more information is available in each observation, resulting in

better performance of the prediction in terms of smallest MSE values. This can be observed

easily in the RPI plots in Fig 5 in comparison to the moving average cases since the MSE values

in the those cases are almost constant for different values of M. The percent of improvement of

MSE values corresponding to the reduced-dimension method increases as M increases. This is

as expected since more information is available in each observation, resulting in better

Fig 3. Empirical CDF of SE corresponding to M = 110 and 290. MA20 and MA50: −o−, GB: −�−, RD: Solid lines.

Dashed lines illustrate a two standard deviation confidence interval. Plots toward the top and left represent better

performance.

https://doi.org/10.1371/journal.pone.0230124.g003
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performance. However after a certain point the RPI flattens out suggesting adding more data

at this point is increasing the noise and does not improve the performance.

As we can see, in some cases there is a slight decrease in the improvement rate of the

reduced-dimension method compared to the moving average method. A possible explanation

for this observation is that when we fix some constraint on condition number, we are actually

limiting the value of L, and by increasing M, after a certain point, we mostly increase the noise,

and the MSE value gets worse, which is consistent with Fig 4. Table 1 shows the average RPI

values for all stocks in different market-cap categories and average RPI values for market

indexes. The reduced-dimension method consistently shows better performance than the

other two methods.

Matlab’s two-sample t-test function was used to determine the MSE values from our pro-

posed method for 50 stocks in each market-cap category is significantly smaller than the aver-

age of the MSE values generated for the same sample using other methods at 5% significance

level (α = 0.05). When p< α and h = 1, the null hypothesis that the two samples have the same

mean is rejected, concluding that the difference between the averages of the two sets of samples

is statistically significant at α significance level. As shown in Table 2, the results indicate that

the average of the MSE values for predictions from our method is significantly smaller than

the average of MSE values from other competing methods at 0.05 significance level.

Recall that L represents the number of eigenvalues required from the diagonal matrix S to

represent the bulk part of the information carried in x. Fig 6 investigates the dimension of the

Fig 4. MSE versus L in the normalized domain for different Ms.

https://doi.org/10.1371/journal.pone.0230124.g004

PLOS ONE Stock price prediction using principal components

PLOS ONE | https://doi.org/10.1371/journal.pone.0230124 March 20, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0230124.g004
https://doi.org/10.1371/journal.pone.0230124


target subspace by plotting the value of L corresponding to best MSE for different Ms, subject

to different limits on condition number (the same case as in Fig 5).

As the upper limit on condition number increases, the value of MSE improves as M
increases, and we need a bigger subspace, bigger L, to extract the information. However, as the

bottom three plots in Fig 6 show, the value for best L flattens out after a certain point.

Directional change statistic performance

The other evaluation metric that we are interested in is the directional statistic which measures

the matching of the actual and predicted values in terms of directional change. Fig 7 shows the

average directional statistic over 10 days of estimation using the same K = 2000 samples. As

the plot indicates, the reduced-dimension method is superior in terms of directional change

statistic. It is interesting to note that the directional statistic improves as M increases, and then

eventually flattens out, consistent with previous plots.

Fig 5. RPI values, subject to different upper limit on condition number of Sww, in each case 102 associated with

the line on the bottom, to 104 associated with the line on top, RPIMA: ‥o‥, RPIGB: −�−. Higher plots represent worse

relative performance (relative to RD).

https://doi.org/10.1371/journal.pone.0230124.g005

Table 1. Average RPI values for stocks in different market-cap categories and average RPI values for market

indexes (M = 350).

MSE RPIGB RPIMA10
RPIMA50

Small-Cap 100% 51% 88%

Mid-Cap 100% 54% 88%

Big-Cap 100% 56% 89%

Market indexes 100% 55% 88%

https://doi.org/10.1371/journal.pone.0230124.t001
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Table 3 shows the average value for directional statistic for stocks in different market cap

categories and indexes for M = 350 for Sww condition number limited to 104. The reduced-

dimension method is superior to the other two methods in terms of directional change estima-

tion. It is important to note that the values represented in Table 3 are associated with a specific

M for all companies. In practice, it is recommended to tailor the value of M for each company

to get the best results.

Matlab’s two-sample t-test function was used to determine if the average of the directional

statistics from our method for 50 stocks is significantly larger than the average of directional

statistics from other methods. Table 4 lists the p-value and h-statistic for each test. The results

also indicate that the average of directional statistics from our method is significantly larger

than the average of the directional statistics from other competing methods at 5% significance

level.

Volatility

Another important parameter that we estimate is the volatility of the prediction, measured in

terms of its standard deviation. The square root of the diagonal elements of the estimated

Table 2. Statistical analysis for MSE values for stocks in different market cap categories (M = 350).

T-test against MSEGB MSEMA10
MSEMA50

Small-Cap p-value 0.0024 0.0075 0.00068

h 1 1 1

Mid-Cap p-value 0.0283 0.0066 0.000038

h 1 1 1

Big-Cap p-value 0.0021 0.00048 0.00001

h 1 1 1

https://doi.org/10.1371/journal.pone.0230124.t002

Fig 6. Best L corresponding to best MSE values subject to different limits on condition number, 102 associated

with the line on the bottom, 103 associated with the line in the middle, and 104 associated with the line on top.

https://doi.org/10.1371/journal.pone.0230124.g006
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covariance, Ŝzz, are the estimated standard deviations for individual days of estimation. The

estimate of the covariance in each method is

ŜGB ¼ Ŝzjy ¼ Szz � SzyS
� 1

yy Syz;

ŜRD ¼ Ŝzjw ¼ Szz � SzwS
� 1

wwSwz;
ð23Þ

However, note that because of the poor conditioning of Syy, using the formula above for

SGB has numerical issues. Hence, we omit their values here. In general the standard deviation

values increase moving from day 1 to day 10 of prediction, since less uncertainty is involved in

the estimation of stock prices of days closer to the current day. In Fig 8, the standard deviation

for individual days of estimation, days 1 to 10, are plotted versus M, the length of observation

vector, for the reduced-dimension method. In the reduced-dimension method, the standard

deviation values decrease as M increases because more information is provided in each obser-

vation. For sufficiently large Ms, the standard deviation values for different days are very close.

Fig 7. Best directional statistics subject to different upper limit on condition number of Syy, 102 associated with

the line on the bottom, to 104 associated with the line on top, GB: −�−, RD: Solid lines, MA: ‥o‥ (MA10 on the

bottom and MA50 on top). Higher plots represent better performance.

https://doi.org/10.1371/journal.pone.0230124.g007

Table 3. Average directional statistics for stocks in different market cap categories (M = 350).

Directional Statistic MA10 MA50 GB RD

Small-Cap 0.56 0.61 0.51 0.78

Mid-Cap 0.58 0.62 0.51 0.79

Big-Cap 0.60 0.66 0.51 0.80

Market Indexes 0.63 0.70 0.50 0.79

https://doi.org/10.1371/journal.pone.0230124.t003
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Conclusion

In this paper we introduced a new method for predicting future stock price values based on

covariance information. We develop this method based on a filtering operation using principle

components to overcome the numerical complications of conditional mean. We also intro-

duced a procedure for normalizing the data. The matrix of data was constructed in different

sizes to investigate the effect of length of observation vector on prediction performance. Our

method has showed consistently better out-of-sample performance than Gauss-Bayes (multi-

variate conditional mean), a numerically challenged estimator, and moving average, an easy to

use estimator, for 5 different companies in terms of mean squared error and directional change

statistic.

The proposed method can be modified to include multiple predictors. The significance of

the proposed approach will be even more apparent when using multiple predictors because

where observation vectors are longer it becomes almost impossible to rely on conditional

mean due to the severe ill-conditioning of the covariance matrix.

Table 4. Statistical analysis for directional statistics values for stocks in different market-cap categories (M = 350).

T-test against DGB DMA10
DMA50

Small-Cap p-value <10−10 <10−10 <10−10

h 1 1 1

Mid-Cap p-value <10−10 <10−10 <10−10

h 1 1 1

Big-Cap p-value <10−10 <10−10 <10−10

h 1 1 1

https://doi.org/10.1371/journal.pone.0230124.t004

Fig 8. Standard deviation of individual days of estimation, RD: Solid line.

https://doi.org/10.1371/journal.pone.0230124.g008
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