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Abstract

The literature provides strong evidence that stock price values can be predicted from past
price data. Principal component analysis (PCA) identifies a small number of principle com-
ponents that explain most of the variation in a data set. This method is often used for
dimensionality reduction and analysis of the data. In this paper, we develop a general
method for stock price prediction using time-varying covariance information. To address the
time-varying nature of financial time series, we assign exponential weights to the price data
so that recent data points are weighted more heavily. Our proposed method involves a
dimension-reduction operation constructed based on principle components. Projecting the
noisy observation onto a principle subspace results in a well-conditioned problem. We illus-
trate our results based on historical daily price data for 150 companies from different mar-
ket-capitalization categories. We compare the performance of our method to two other
methods: Gauss-Bayes, which is numerically demanding, and moving average, a simple
method often used by technical traders and researchers. We investigate the results based
on mean squared error and directional change statistic of prediction, as measures of perfor-
mance, and volatility of prediction as a measure of risk.

Introduction

Predicting future stock price values is a very challenging task. There is a big body of literature
on different methods and different predictors to incorporate into those methods to predict the
future values as closely as possible. The literature provides strong evidence that past price/
return data can be used to predict future stock prices. Some studied have found significant
auto-correlation for returns over a short period of time. French and Roll find negative correla-
tion for individual securities for daily returns [1]. Some other studies show there is a positive
correlation for returns over the period of weeks or months [2]. Studies also demonstrate stock
return correlation over the period of multiple months or years. Fama and French report that
the auto-correlation is stronger for longer periods, three to five years, compared to daily or
weekly periods [3]. Cutler et al. report positive auto-correlation over the horizon of several
months and negative auto-correlation over the horizon of three to five years [4]. There are
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some other studies that also show correlation in stock returns over a multiple year interval [5,
6] which all confirm that price/return values are predictable from past price/return values.

Bogousslavsky shows that trading by investors with heterogeneous rebalancing horizons
can give rise to autocorrelation in the returns at different frequencies [7]. Chowdhury et al.
investigate the autocorrelation structure of seven Gulf Cooperation Council (GCC) stock mar-
kets. All the markets except for Dubai and Kuwait show significant first-order autocorrelation
of returns. They also find that autocorrelation between weekdays is usually larger than that
between the first and last trading days of the week [8]. Li et al. study the nonlinear autoregres-
sive dynamics of stock index returns in seven major advanced economies (G7) and China
using the quantile autoregression model. For the stock markets in the seven developed econo-
mies, the autoregressive parameters generally follow a decreasing pattern across the quantiles
with significant portions outside the ordinary least squares estimate intervals [9]. Another
study investigates the autocorrelation structure of stock and portfolio returns in the unique
market setting of Saudi Arabia [10]. Their results show that there is significantly positive auto-
correlation in individual stock and market returns. Another study applies the threshold quan-
tile autoregressive model to study stock return autocorrelations in the Chinese stock market
[11]. They report negative autocorrelations in the lower regime and positive autocorrelations
in the higher regime.

Other fundamental or macroeconomic factors can also be used in predicting future stock
price values. Macroeconomic factors such as interest rates, expected inflation, and dividend
can be used in stock return predictions models 3, 12]. Also fundamental variables such as
earnings yield, cash flow yield, size and book to market equity [13, 14] have been found to
have estimation power in predicting future price/return values.

Silvennoinen and Terésvirta report correlation between individual U.S. stocks and the
aggregate U.S. market [15]. Dennis et al. study the dynamic relation between daily stock
returns and daily volatility innovations, and they report negative correlations [16]. Another
study investigates the effect of common factors on the relationship among stocks and on the
distribution of the investment weights for stocks [17]. They report that market plays a domi-
nant role in both structuring the relationship among stocks and in constructing a well-diversi-
fied portfolio. Dimic et al. examine the impact of global financial market uncertainty and
domestic macroeconomic factors on stock-bond correlation in emerging markets [18]. In
another study, the focus is analyzing the impact of oil price shocks on the interactions of oil-
stock prices [19]. The results show that negative changes in oil prices have a significant impact
on the stock market.

In this paper, we describe a general method for predicting future stock price values based
on historical price data, using time-varying covariance information. When the number of
observations is large compared to the number of predictors, the maximum-likelihood covari-
ance estimate [20] or even the empirical covariance is a good estimate of the covariance of the
data, but that is not always the case. When the number of observations is smaller than the
matrix dimension, the problem is even worse because the matrix is not positive definite [21].
This problem, which happens quite often in finance, gives rise to a new class of estimators
such as shrinkage estimators. For example Ledoit and Wolf, shrink the sample covariance
towards a scaled identity matrix using a shrinkage coefficient that minimizes the mean squared
error of the prediction [22]. Some other studies in this field include [23-25]. In our numerical
evaluations in this paper we have sufficient empirical data to reliably track the covariance
matrix over time.

Momentum-based forecasting relies on prices following a trend, either upwards or down-
wards. Based on the assumption that trends like this exist and can be exploited, momentum is
used as a heuristic rule for forecasting and is probably the most popular technical indicator
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used by traders; in particular, the method of Direction Movement Index (DMI), due to Wilder
[26]. This kind of heuristic is a special case of pattern-based forecasting, where, in the case of
momentum, the pattern is simply the upward or downward trend. Our method is a systematic
method to capture arbitrary patterns, not just upward or downward trends. Indeed, we com-
pute prevalent patterns in the form of eigenvectors (or “eigen-patterns”) of the local covariance
matrix. As such, we are able to exploit more general patterns that are prevalent (but not neces-
sary known beforehand) in price time series.

The mean squared error (MSE) measures the distance between predicted and real values
and is a very common metric to evaluate the performance of predictive methods [27]. Multi-
variate conditional mean minimizes the mean squared error [28] and is a good estimator for
future price values. However, numerical results using this method cannot always be trusted
because of associated ill-conditioning issues. In this paper we introduce a method with similar
estimation efficiency that does not suffer from this issue.

Principal component analysis (PCA), which is a method for dimensionality reduction of
the data, is used in different fields such as statistical variables analysis [29], pattern recognition,
feature extraction, data compression, and visualization of high dimensional data [30]. It also
has various application in exploring financial time series [31], dynamic trading strategies [32],
financial risk computations [32, 33], and statistical arbitrage [34]. In this work, we implement
PCA in estimating future stock price values.

Yu et al. introduce a machine-learning method to construct a stock-selection model, which
can perform nonlinear classification of stocks. They use PCA to extract the low-dimensional
and efficient information [35]. In another study, three mature dimensionality reduction tech-
niques, PCA, fuzzy robust principal component analysis, and kernel-based PCA, are applied to
the whole data set to simplify and rearrange the original data structure [36]. Wang et al. pres-
ent a stochastic function based on PCA developed for financial time-series prediction [37]. In
another study, PCA is applied to three subgroups of stocks of the Down Jones Industrial (D]JI)
index to optimize portfolios [38]. Narayan et al. apply PCA to test for predictability of excess
stock returns for 18 emerging markets using a range of macroeconomic and institutional fac-
tors [39].

Factor analysis is a technique to describe the variability of observed data through a few fac-
tors and is in some sense similar to PCA. There is a long debate in the literature on which
method is superior [40, 41]. Factor analysis begins with the assumption that the data comes
from a specific model where underlying factors satisfy certain assumptions [42]. If the initial
model formulation is not done properly, then the method will not perform well. PCA on the
other hand involves no assumption on the form of the covariance matrix. In this paper, we
focus on developing an algorithm that can ultimately be used in different fields without prior
knowledge of the system, and therefore PCA is the method of choice. In the case study pre-
sented in the following section, although only price data is used, it would have been also possi-
ble to include multiple predictors to estimate futures values of stock prices.

Our method bears some similarity with subspace filtering methods. Such methods assume a
low-rank model for the data [43]. The noisy data is decomposed onto a signal subspace and
noise based on a modified singular value decomposition (SVD) of data matrices [44]. The
orthogonal decomposition can be done by an SVD of the noisy observation matrix or equiva-
lently by an eigenvalue decomposition of the noisy signal covariance matrix [43].

We compare the performance of our proposed methods in terms of MSE and directional
change statistic. Stock-price direction prediction is an important issue in the financial world.
Even small improvements in predictive performance can be very profitable [45]. Directional
change statistic calculates whether our method can predict the correct direction of change in

PLOS ONE | https://doi.org/10.1371/journal.pone.0230124  March 20, 2020 3/20


https://doi.org/10.1371/journal.pone.0230124

PLOS ONE

Stock price prediction using principal components

price values [46]. It is an important evaluation measure of the performance because predicting
the direction of price movement is very important in some market strategies.

Another important parameter that we are interested in is standard deviation, one of the key
fundamental risk measures in portfolio management [47]. The standard deviation is a statisti-
cal measure of volatility, often used by investors to measure the risk of a stock or portfolio.

As mentioned above, in this paper we focus on forecasting stock prices from daily historical
price data. In Section, we introduce our technical methodology, and in particular estimation
techniques using covariance information. In Section, we describe our method for processing
the data and estimating the time-varying covariance matrix from empirical data, including
data normalization. We also demonstrate the performance of our method.

Theoretical methodology
Estimation techniques

In this section we introduce a new computationally appealing method for estimating future
stock price values using covariance information. The empirical covariance can be used as an
estimate of the covariance matrix if enough empirical data is available, or we can use tech-
niques similar to the ones introduced in the previous section, though the time-varying nature
of the covariance must be addressed.

Suppose that we are given the stock price values for M days. Our goal is to predict company
stock prices for M + 1 to N trading days, using the observed values of the past consecutive M
days. The reason for introducing N will be clear below.

Gauss-Bayes or conditional estimation of z given y. Suppose that x is a random vector of
length N. Let M < N and suppose that the first M data points of vector x represent the end-of-
day prices of a company stock over the past M consecutive trading days. The multivariate ran-
dom vector x and can be partitioned in the form

x=[y z] (1)

Let random vector y represent the first M data points and z the price of the next N — M days
in the future. We wish to estimate z from y.
The covariance matrix for the random vector x can be written as

X.= ) (2)

where X, is the covariance of y and X_ is the covariance of z. Assuming that y and z are jointly
normally distributed, knowing the prior distribution of x = [y, z], the Bayesian posterior distri-
bution of z given y is given by

z, =% Xy

zly 2y

3 » (3)
£, =Z.-Z. 3%

2y %y

The ﬁzly matrix, representing the conditional covariance of z given y, is also called the
Schur complement of X, in X,.,. Note that the posterior covariance does not depend on the
specific realization of y.

The Gauss-Bayes point estimator for the price prediction, the conditional mean z,, , mini-
mizes the mean squared error of the estimate in the Gaussian case [28]. Moreover, in the Guas-
sian case, for a specific observation y, the inverse of the conditional covariance is the Fisher
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Information matrix associated with estimating z from y, and therefore ﬁzly is the lower bound
on the error covariance matrix for any unbiased estimator of z [28].

The same set of equations arise in Kalman’s filtering. Kalman’s own view of this process is
as a completely deterministic operation [48], and does not rely on assuming normality.
Although the point estimator z,;, is optimal in term of mean squared error, in practice there
are numerical complications involved in this method: The matrix X, is typically not well con-
ditioned, so the numerical calculation of Z;y] cannot always be trusted. To overcome this prob-

lem, we propose a better conditioned estimator, which has a behavior close to Gauss-Bayes.
Principal components and estimation in lower dimension. Principal component analy-
sis (PCA) is a well-established mathematical procedure for dimensionality reduction of data
and has wide applications across various fields. In this work, we consider its application in
forecasting stock prices.
Consider the singular value decomposition (SVD) of X

., = VsV, (4)

where S is a diagonal matrix of the same dimension as x with non-negative diagonal elements
in decreasing order, and V'is a unitary matrix (VV’ = Iy). The diagonal elements of S are the
eigenvalues of 2.

In general, the first few eigenvalues account for the bulk of the sum of all the eigenvalues.
The “large” eigenvalues are called the principal eigenvalues. The corresponding eigenvectors
are called the principal components.

Let L < N be such that the first L eigenvalues in S account for the bulk part (say 85% or
more) of the sum of the eigenvalues. Let V; be the first L columns of unitary matrix V. Then
the random vector x is approximately equal to the linear combination of the first L columns of
V:

x =~ V., (5)

where « is a random vector of length L. Because L is a small number compared to N, Eq (5)
suggests that a less “noisy” subspace with a lower dimension than N can represent most of the
information. Projecting onto this principle subspace can resolve the ill-conditioned problem
of ,,. The idea is that instead of including all eigenvalues in representing X.,, which vary
greatly in magnitude, we use a subset which only includes the “large” ones, and therefore the
range of eigenvalues is significantly reduced. The same concept is implemented in speed signal
subspace filtering methods, which are based on the orthogonal decomposition of noisy speech
observation space onto a signal subspace and a noise subspace [43]. Let V1 be the first M
rows and first L columns of V. We have

y = V,,,o + Noise. (6)

Mathematically resolving noisy observation vector y onto the principle subspace can be written
as a filtering operation in the form of

w = Gy, (7)
where G is given by
G= (VII\/I_LVMAL)il v, (8)

M,L"

The vector w is actually the coordinates of the orthogonal projection of y onto the subspace
equal to the range of Vi, ;. We can also think of w as an estimate of o based on least squares.
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Substituting y by w in (3) leads to a better conditioned set of equations:

2z\w = zzwz;vvlvw ( )
. 9
2z\w - Z:zz - Zzwz;ivzwﬁ

because the condition number of X,,,, is much lower than that of Z,,, as we will demonstrate
later. In (9) we have

T, =Ezzw]=2G, (10)

zw zy
and

z,., =Eww]=GZ G. (11)

If the posterior distribution of z estimated based on (9) has a similar behavior to the distri-
bution estimated by (3), it can be considered a good substitute for the Gauss-Bayes method.
Our numerical results demonstrate that this is indeed the case, which we will show in Section.

Moving average. Technical traders and investors often use technical trading rules, and
one of the most popular methods used by technical traders and researchers are the moving
average (MA) rules [49, 50]. Satchell investigates the reason general MA trading rules are
widely used by technical analysts [51]. He shows that autocorrelation amplification is one of
the reasons such trading rules are popular. Using simulated results, we show that the MA rule
may be popular because it can identify the price momentum and is a simple way of assessing
and exploiting the price autocorrelation without necessarily knowing its precise structure.
Moving average, which is the average of prices over a period of time, is probably the simplest
estimator for z:

1 N
Zya =5 Z Xi (12)

MA i=N—Kpy+1

where the quantity K4 is the number of data points included to calculate the average, and z,,,
is the average of the most recent K4 price values.

There are different possible values of K4 for calculating the average, from short to medium
to long term periods. Here we use periods of 10 and 50 days, which are typical short and mid-
term values used in the literature. We will use the moving average estimator for comparison
purposes, as we will see in Section below.

Fig 1 shows an example of our stock predictions. Assume that we are given the price values
for the past 20 days (M = 20), and we want to use those values to predict the future prices over
the next 10 business days, from day M + 1 to day N (N = 30). In our reduced-dimension tech-
nique, we can get a relatively smooth plot of the predicted value for a relatively small L, to a
plot almost the same as Gauss-Bayes, for larger values of L, as we can can see in Fig 1.

Performance metrics

Mean squared error. To compare the performance of the methods described above, we
evaluate the expected value of the squared error between the actual and estimated values. The
mean squared error of an estimate Z is given by:

MSE = E[ |z — 2|[*] = E[||z|[*] + E[|l2]}*] - 2EL |2I|]

The MSE can be expressed in terms of the covariance matrices in (2), by substituting the
appropriate form of z. Alternatively, the mean squared error of an estimator Z can be written
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Fig 1. Predicting price for M + 1 to N days, actual price: Solid line, GB: —0—, RD: —*— (two lines, one for a small
value of L, and one for a relatively large number).

https://doi.org/10.1371/journal.pone.0230124.9001

in terms of the variance of the estimator plus its squared bias. The conditional MSE given x is
written as

MSE,,, = E[||z — £ | z] = trace(Z,..) + |E[2 | 2] - 2II"

The first term is called the variance, and the second term is the squared bias. The expected
value of MSE over all observations is the actual MSE, which can be calculated by taking expec-
tations on both sides:

21] = trace(E||Z..I) + E[E[2 | 2] — 2. (13)

MSE = E| E[ ||z - [

It turns out that Gauss-Bayes estimator is unbiased, which means that the second term is 0,
while the proposed reduced-dimension methods is a biased estimator.
Directional change statistic.

1, if (zij — zo)(éij —z,) >0
b, = ) (14)

0, otherwise

Then D;, the direction statistic for day j, averaged over K samples, is equal to

Dj :Ezbiﬂ (15)

which is a number between 0 and 1 (the higher the better).
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Empirical methodology and results

In this section we describe how we estimate the covariance matrix based on a normalized data
set, and we evaluate the performance of our method using empirical data.

General setting

Suppose that we have K samples of vector data, each of length N, where N < K. Call these row

vectors xi, X, . . ., X, Where each x; € ]RN(i =1,...,K) is a row vector of length N
X=X Xy o Xyl (16)
We assume that the vectors xy, x,, . . ., xx are drawn from the same underlying distribution.

We can stack these vectors together as rows of a K x N matrix:

Xy Xyt Xy
Koy Xop rr X,
21 2 N
X =
Xk1 Xk2 0 Xgn

Let M < N and suppose that we are given a vector y € R representing the first M data points
of a vector we believe is drawn from the same distribution as x;, Xy, . . ., Xx. Again, these M data
points represent the end-of-day prices of a company stock over the past M consecutive trading
days. Let z be the price of the next N — M days in the future. We wish to estimate z from y.

Since the vector x; is a multivariate random vector that can be partitioned in the form

X = [yi Zi]7 (17)

where y; has length M and z; has length N — M, accordingly the data matrix X can be divided
into two sub-matrices Y and Z as follow:

X=[v z].

We can think of Y as a data matrix consisting of samples of historical data, and Z as a data
matrix consisting of the corresponding future values of prices.

Normalizing and centering the data

In the case of stock-price data, the vectors x1, x,, . . ., xx might come from prices spanning
several months or more. If so, the basic assumption that they are drawn from the same distri-
bution may not hold because the value of a US dollar has changed over time, as a result of infla-
tion. To overcome this issue, a scaling approach should be used to meaningfully normalize the
prices (we will deal with the time-varying nature of the covariance later). One such approach is
presented here. Suppose that t; = [t;1, tis, . . ., t;n] is @ vector of “raw” (unprocessed) stock prices
over N consecutive trading days. Suppose that Q < N is also given. Then we apply the follow-
ing normalization to obtain x;:

X =—. (18)

This normalization has the interpretation that the x; vector contains stock prices as a fraction
of the value on the Qth day, and is meaningful if we believe that the pattern of such fractions
over the days 1, . . ., N are drawn from the same distribution. Note that x(Q) = 1.

We believe normalizing the data with this method captures the pattern in the price data bet-
ter than simply using return data. Although similar to return, the resulting time series still
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suffers from being non-stationary over time. We propose to resolve this issue by using a
weighting averaging method as explained in the next section.

For the purpose of applying our method based on PCA, we assume that the vectors x1, x5,
..., Xgare drawn from the same underlying distribution and that the mean, ¥, is equal to zero.
However because x; represents price values, in general the mean is not zero. The mean x can
be estimated by averaging the vector x, € R¥(i = 1,...,K),

1 K
x = E;xh (19)

and then this average vector is deducted from each x; to center the data.

Even though this normalization makes the data stationary in the mean, since stock prices
are very volatile, there is no guarantee that the covariance of the data would be stationary as
well. In order to address this issue, we assign exponential weights (3%, 7', - - -, 7¥) to observa-
tions, where 0 < ¥ < 1, to emphasize the most recent periods of data. Using an exponential
weighting approach to deal with volatility of financial data has been suggested in multiple stud-
ies such as [52]. For each observation x;, the last K samples prior to that observation are trans-
formed into a Hankel matrix and normalized. Then (decreasing) exponential weights are
assigned to the K samples and numerical results are calculated. This process, creating the
matrix of data, normalizing, and assigning weights, is repeated for each observation.

To select the value of K we use

K = min{k:y* < 107*}. (20)

Experiments

The daily historical price data for 150 different companies from different market-capitalization
categories were downloaded from finance.yahoo.com. Market capitalization is a measure of
the company’s wealth and refers to the total value of all a company’s shares of stock. We ran-
domly select 50 stocks from each of the three market capitalization (cap for short) categories:
Big market-cap (125 B$ to 922 B$), Mid market-cap (2 B$ to 10 B$) and Small market-cap
(300 M$ to 1.2 BS). The stocks from the Big market-cap category are normally the most stable
ones relative to the Small-cap stocks, which have the most volatility. Historical data for four
market indexes, S&P500 (GSPC), Dow Jones Industrial Average (DJI), NASDAQ Composite
(IXIC), and Russell 2000 (RUT'), were also included in this study. The data was transformed
into matrices with different sizes as explained in next section. In each case, the daily price
value for next 10 days are predicted and the estimation methods are compare based on their
out-of-sample performance.

Constructing data matrix

The daily stock price data is transformed into a matrix with K rows, samples of vector data,
each of length N. We get that by stacking K rows (K samples), each one time shifted from the
previous one, all in one big matrix, called the Hankel matrix.

More precisely, the Hankel matrix for this problem is constructed in the following format:

t P(1)  P(2) .- P(N)
Ll _ | P2 PB) - PN+
‘. P(K) P(K+1) --- P(K+N-1)
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where P(i) represents the price for day i. This is our matrix of data, before normalization and
centering.

We first normalize each row (observation) by Qth entry, as described earlier, and then sub-
tract the average vector X from each row. The prediction is done using the processed data.
After doing the prediction, we add back the average vector x,,_,, (last N — M components of x)
from days M + 1 through N and also multiply the result by the value of Qth that was used for
normalizing to get back to actual stock prices. We tested different values for Q in terms of
MSE and estimation variance. For the purpose of this study, we chose Q = M because it shows
the best results in this setting. Recall that x;,(M) = 1. This column is removed from the data
matrix because it does not provide any information. From now on matrix X represents nor-
malized and centered price data.

To account for the nonstationarity of the covariance, we use an exponential averaging
method as mentioned before. For this purpose, ¥ = 0.98 was selected and the weights smaller
than 107 were considered zero. Then the sample covariance matrix is calculated as

11—y ;L
.= (1—7/"“>X diag(y’, 7', -+, 7)X, (21)

where diag(yo, yl, A, f) is a diagonal matrix with (}/0, 7/1, ey ;/‘) as the diagonal elements.

We obtained end-of-day stock prices for General Electric and converted this time series
into Hankel matrices with different lengths as described above. 2000 samples were used to
evaluate the out-of-sample performance of the methods. The values corresponding with the
performance metrics presented in this section converge after a few hundred samples. We con-
struct data matrices with 9 different sizes, M from 50 to 530 with a 60 day interval, to investi-
gate the effect of length of observation vector on performance.

Fig 2 shows the histogram of normalized data as a representation of the distribution of nor-
malized data; the curve resembles a bell shape.

MSE performance

Three different estimation methods are implemented for each of the data matrices constructed
above. The goal is to predict future price values for the next 10 days (days M + 1 to N). when it
comes to reduced-dimension method, for each M we try different values of L, the number of
principle components. The general goal, as mentioned above, is an estimation technique that
has a similar behavior as an ideal Gauss-Bayes estimator but does not have the associated cal-
culation difficulties resulting from ill-conditioning.

We use General Electric price data to calculate the values illustrated in this section. We cal-
culate the squared error (SE) for 2000 samples to evaluate the performance of the methods.
We implement our reduced-dimension technique for different Ms, and for different numbers
of principal eigenvalues, L.

Fig 3 shows the empirical Cumulative distribution function (CDF) of the SE for 2 different
values of M, together with two-standard-deviation confidence interval. Note that to make our
comparisons fair and meaningful, we normalized the results from the moving average predic-
tors so that their values are equally normalized with the values from our RD method. When it
comes to out-of-sample performance, the numerical complications compromise the estima-
tion accuracy of Gauss-Bayes, causing the SE values for this method to become even worse
than the SE plot for the moving average estimators. As we can see, in both plots, our reduced-
dimension method is superior to the other two methods. For M = 110 some lines are relatively
close together. As M gets larger, the plot for the reduced-dimension method improves and the
plot for Gauss-Bayes gets worse.
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Another point worth mentioning is that although adding more data improves the perfor-
mance of our proposed method, that is not the case for the moving average estimator. As the
arrow on the plot on the bottom indicates, by adding more data, moving from z,,, to z,,_,
the performance of the moving average estimator deteriorates. This behavior is expected since
the moving average relies on the momentum, in contrast to the reduced-dimension method,
which extracts the essence of the information by projecting onto a smaller subspace.

Fig 4 shows the values of MSE over all days of estimation versus the value of L, for 9 differ-
ent M, lengths of observation vector, from 50 to 530. As we can see, the MSE value is insensi-
tive to the value of L for sufficiently large L. For small values of L, the MSE values fall quickly,
but then eventually increase. So if we have a particular constraint on the condition number, we
do not lose much in terms of MSE by choosing a reduced-dimension subspace, which leads to
a better conditioned problem. After a certain point, adding more data is actually adding noise
and the MSE values get worse.

The metric we are looking for is the sum of MSE values over all days of estimation.

For each length of M, the values for MSE are captured based on different constraints of the
condition number of Z,,,,. The MSE values in the reduced-dimension method are significantly
smaller relative to the other two methods.

Fig 5 shows the relative percentage of improvement (RPI) in the reduced-dimension
method compared to the other two methods, calculated as

RPI _ —100(MSE,, — MSEGB/MA) (22)
aBMA MSEGB/MA .

Note that since the denominator in the equation is MSEgg/\a, the improvement percentage
does not exceed 100% but the actual MSE values are further apart in absolute terms than illus-
trated here. For example for M = 350, the MSE value for reduced-dimension is between 0.0052
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Fig 3. Empirical CDF of SE corresponding to M = 110 and 290. MA,, and MA5,: —0—, GB: —*—, RD: Solid lines.
Dashed lines illustrate a two standard deviation confidence interval. Plots toward the top and left represent better
performance.

https://doi.org/10.1371/journal.pone.0230124.9003

to 0.018, while the MSE in Gauss-Bayes is around 6.33 x 10°. The three (overlapping and there-
fore appears as only a single plot) lines on top (-*-) of Fig 5 compare the reduced-dimension to
Gauss-Bayes (RPI;p). The three lines on top (..0..) correspond to the comparison of the
reduced-dimension and moving average (RPI,, ASO) and the three lines on the bottom (..0..) cor-
respond to (RPI, ).In each case the three lines are subject to different upper limits on the
condition number (102, 10, and 10%). It is worth mentioning that the condition number of Z,,
starts from 10° for M = 50 and goes up to 10'* for M = 530. The upper limit on the condition
number of X,,,, changes from 10%, associated with the lines on the bottom in each case, to 10%,
the lines on top, for all values of M.

In general, by increasing M, more information is available in each observation, resulting in
better performance of the prediction in terms of smallest MSE values. This can be observed
easily in the RPI plots in Fig 5 in comparison to the moving average cases since the MSE values
in the those cases are almost constant for different values of M. The percent of improvement of
MSE values corresponding to the reduced-dimension method increases as M increases. This is
as expected since more information is available in each observation, resulting in better
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performance. However after a certain point the RPI flattens out suggesting adding more data
at this point is increasing the noise and does not improve the performance.

As we can see, in some cases there is a slight decrease in the improvement rate of the
reduced-dimension method compared to the moving average method. A possible explanation
for this observation is that when we fix some constraint on condition number, we are actually
limiting the value of L, and by increasing M, after a certain point, we mostly increase the noise,
and the MSE value gets worse, which is consistent with Fig 4. Table 1 shows the average RPI
values for all stocks in different market-cap categories and average RPI values for market
indexes. The reduced-dimension method consistently shows better performance than the
other two methods.

Matlab’s two-sample t-test function was used to determine the MSE values from our pro-
posed method for 50 stocks in each market-cap category is significantly smaller than the aver-
age of the MSE values generated for the same sample using other methods at 5% significance
level (o = 0.05). When p < @ and h = 1, the null hypothesis that the two samples have the same
mean is rejected, concluding that the difference between the averages of the two sets of samples
is statistically significant at o significance level. As shown in Table 2, the results indicate that
the average of the MSE values for predictions from our method is significantly smaller than
the average of MSE values from other competing methods at 0.05 significance level.

Recall that L represents the number of eigenvalues required from the diagonal matrix S to
represent the bulk part of the information carried in x. Fig 6 investigates the dimension of the
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relative performance (relative to RD).
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target subspace by plotting the value of L corresponding to best MSE for different Ms, subject
to different limits on condition number (the same case as in Fig 5).

As the upper limit on condition number increases, the value of MSE improves as M
increases, and we need a bigger subspace, bigger L, to extract the information. However, as the
bottom three plots in Fig 6 show, the value for best L flattens out after a certain point.

Directional change statistic performance

The other evaluation metric that we are interested in is the directional statistic which measures
the matching of the actual and predicted values in terms of directional change. Fig 7 shows the
average directional statistic over 10 days of estimation using the same K = 2000 samples. As
the plot indicates, the reduced-dimension method is superior in terms of directional change
statistic. It is interesting to note that the directional statistic improves as M increases, and then
eventually flattens out, consistent with previous plots.

Table 1. Average RPI values for stocks in different market-cap categories and average RPI values for market
indexes (M = 350).

MSE RPIp RPIL,, RPIL,,
Small-Cap 100% 51% 88%
Mid-Cap 100% 54% 88%
Big-Cap 100% 56% 89%
Market indexes 100% 55% 88%

https://doi.org/10.1371/journal.pone.0230124.t001
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Table 2. Statistical analysis for MSE values for stocks in different market cap categories (M = 350).

T-test
Small-Cap

Mid-Cap

Big-Cap

https://doi.org/10.1371/journal.pone.0230124.t1002

against MSEgp MSE,, MSE,,,

p-value 0.0024 0.0075 0.00068
h 1 1 1

p-value 0.0283 0.0066 0.000038
h 1 1 1

p-value 0.0021 0.00048 0.00001
h 1 1 1

Table 3 shows the average value for directional statistic for stocks in different market cap
categories and indexes for M = 350 for %,,,, condition number limited to 10*. The reduced-
dimension method is superior to the other two methods in terms of directional change estima-
tion. It is important to note that the values represented in Table 3 are associated with a specific
M for all companies. In practice, it is recommended to tailor the value of M for each company
to get the best results.

Matlab’s two-sample t-test function was used to determine if the average of the directional
statistics from our method for 50 stocks is significantly larger than the average of directional
statistics from other methods. Table 4 lists the p-value and h-statistic for each test. The results
also indicate that the average of directional statistics from our method is significantly larger
than the average of the directional statistics from other competing methods at 5% significance
level.

Volatility

Another important parameter that we estimate is the volatility of the prediction, measured in
terms of its standard deviation. The square root of the diagonal elements of the estimated

70 T T T T T T T

60
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40

30

20
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O 1 1 1 1 1 1 1
50 110 170 230 290 350 410 470 530

Fig 6. Best L corresponding to best MSE values subject to different limits on condition number, 107 associated
with the line on the bottom, 10> associated with the line in the middle, and 10* associated with the line on top.

https://doi.org/10.1371/journal.pone.0230124.9006
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the line on the bottom, to 10* associated with the line on top, GB: —*—, RD: Solid lines, MA: ..0.. (MA, on the
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covariance, X, are the estimated standard deviations for individual days of estimation. The
estimate of the covariance in each method is

$ & -1
S =2,=X.-% TI% -

w T ww T wz)

S =2, =2.-Z 5!

However, note that because of the poor conditioning of Z,,, using the formula above for

2 g has numerical issues. Hence, we omit their values here. In general the standard deviation
values increase moving from day 1 to day 10 of prediction, since less uncertainty is involved in
the estimation of stock prices of days closer to the current day. In Fig 8, the standard deviation
for individual days of estimation, days 1 to 10, are plotted versus M, the length of observation
vector, for the reduced-dimension method. In the reduced-dimension method, the standard
deviation values decrease as M increases because more information is provided in each obser-
vation. For sufficiently large Ms, the standard deviation values for different days are very close.

Table 3. Average directional statistics for stocks in different market cap categories (M = 350).

Directional Statistic MA,, MAs, GB RD
Small-Cap 0.56 0.61 0.51 0.78
Mid-Cap 0.58 0.62 0.51 0.79
Big-Cap 0.60 0.66 0.51 0.80
Market Indexes 0.63 0.70 0.50 0.79

https://doi.org/10.1371/journal.pone.0230124.t1003
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Table 4. Statistical analysis for directional statistics values for stocks in different market-cap categories (M = 350).

T-test against Dgp D,,, Dy,
Small-Cap p-value <1071° <107'° <1071°
h 1 1 1
Mid-Cap p-value <107 <107 <1071
h 1 1 1
Big-Cap p-value <107 <107 <107
h 1 1 1
https://doi.org/10.1371/journal.pone.0230124.t1004
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Fig 8. Standard deviation of individual days of estimation, RD: Solid line.

https://doi.org/10.1371/journal.pone.0230124.9008

Conclusion

In this paper we introduced a new method for predicting future stock price values based on
covariance information. We develop this method based on a filtering operation using principle
components to overcome the numerical complications of conditional mean. We also intro-
duced a procedure for normalizing the data. The matrix of data was constructed in different
sizes to investigate the effect of length of observation vector on prediction performance. Our
method has showed consistently better out-of-sample performance than Gauss-Bayes (multi-
variate conditional mean), a numerically challenged estimator, and moving average, an easy to
use estimator, for 5 different companies in terms of mean squared error and directional change
statistic.

The proposed method can be modified to include multiple predictors. The significance of
the proposed approach will be even more apparent when using multiple predictors because
where observation vectors are longer it becomes almost impossible to rely on conditional
mean due to the severe ill-conditioning of the covariance matrix.
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