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Abstract

Measuring species-specific competitive interactions is key to understanding plant communi-

ties. Repeat censused large forest dynamics plots offer an ideal setting to measure these

interactions by estimating the species-specific competitive effect on neighboring tree

growth. Estimating these interaction values can be difficult, however, because the number

of them grows with the square of the number of species. Furthermore, confidence in the esti-

mates can be overestimated if any spatial structure of model errors is not considered. Here

we measured these interactions in a forest dynamics plot in a transitional oak-hickory forest.

We analytically fit Bayesian linear regression models of annual tree radial growth as a func-

tion of that tree’s species, its size, and its neighboring trees. We then compared these mod-

els to test whether the identity of a tree’s neighbors matters and if so at what level: based on

trait grouping, based on phylogenetic family, or based on species. We used a spatial cross-

validation scheme to better estimate model errors while avoiding potentially over-fitting our

models. Since our model is analytically solvable we can rapidly evaluate it, which allows our

proposed cross-validation scheme to be computationally feasible. We found that the identity

of the focal and competitor trees mattered for competitive interactions, but surprisingly, iden-

tity mattered at the family rather than species-level.

Introduction

Competition is a key biotic interaction which structures communities. To better understand

the role it plays, we need ways to understand species-specific competitive interactions.

Attempts have been made to do this through direct measurement of species-specific competi-

tion coefficients, or to generalize competitive interactions based on trait or phylogeny differ-

ences between competitors.

Repeat censused forest inventory plots are good places to measure species-specific competi-

tion. In such forests trees are identified, mapped, and have their diameter measured at regular

time intervals [1, 2]. Diameter growth between censuses of individual trees is modeled as a
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function of neighborhood tree species identity, size, and distance to focal tree [3, 4]. This gives

a way to estimate the species-specific effect of competition on tree growth.

The first question is whether species identity of the competitor matters at all [5], or is com-

petition neutral (sensu [6]). Assuming that the identity of competitors does matter, it can then

be hard to measure all of the interaction coefficients, which increase proportionally with the

square of species number in the community. Furthermore, some species pairs might not coex-

ist nearby one another enough to get sufficient data to measure their effects on one another. A

number of approaches have been taken to deal with large number of parameters to estimate

and with missing species pairs.

In low-diversity forests, attempts have been made to measure species-specific competition

coefficients of the effect of competition on radial tree growth [7–10]. In a western US, ever-

green forest, Das [8] was able to estimate the 16 competition coefficients among the four domi-

nant tree species. Canham et al. [7] measured the competition coefficients between the 14

most common tree species in Northern New England. While they were able to estimate most

coefficients, they could not for species-pairs that rarely occurred together.

A hierarchical Bayesian approach can be taken to address this problem [11]. All species-

pairs are considered, no data are thrown out, and competition coefficients are “regressed

back” to an overall average. The amount of regression decreases with the number of interact-

ing pairs of individuals of that particular species pair. This approach was taken by Tatsumi

et al. [9] when looking at 38 tree species in a cool-temperate mixed conifer-broadleaf forest.

They found support for the hierarchical model over non-hierarchical version, but because of

relatively small sample size, competition coefficients of only a few species pairs had 95% credi-

ble intervals that did not overlap with the hyperparameter value.

A final approach is to estimate competition coefficients based on species attributes, rather

than measure each one. A common approach is to correlate competition coefficients with

either trait or phylogenetic distance between the species [12]. Uriarte et al. [12] found that trait

distance did a better job of explaining competitive interactions than phylogenetic distance.

Kunstler et al. [13] also found that traits can explain competitive interactions.

For any of these approaches, a method for comparing model performance is needed. Previ-

ous studies have used information criteria to compare models [7–9, 12]. Such information

criteria are asymptotic approximations for out-of-sample-prediction error [14]. Another com-

monly used measure of out-of-sample-prediction error is the more easily interpretable (root)

mean squared error (RMSE) [15].

Here we present a method to answer two questions from repeat censused forest inventory

plots: (1) “Does the species identity of neighboring competitor trees matter?” and (2) “If so,

how can you measure species-specific competition coefficients?” For both questions, we

analytically derived posterior estimates of coefficients of a linear Bayesian neighborhood com-

petition model. The chief advantage of this analytic approach is that the aforementioned coeffi-

cients are much less computationally expensive to estimate than other approaches, such as the

Markov chain Monte Carlo based estimates necessitated by other more complicated models

[7, 9].

To answer question (1) from the introduction, we use a permutation test based approach.

We first fit the model and obtain an observed test statistic assessing the quality of the model fit,

in our case the observed RMSE. We then permute the competitor species identities and com-

pute a permuted test statistic a large number of times, thereby empirically generating a “null”

distribution of the test statistic. We then compare the observed test statistic to this null distri-

bution to obtain significance measures. The rapid analytic solution is required for this permu-

tation test to run in a reasonable amount of time. We find that identity of the competitor

species does matter.
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For question (2) from the introduction, we can further ask whether species identity, family

identity, or trait values best explains competitive interactions. Here we provide a method to

compare spatially cross-validated RMSE’s of competing models. The rapid analytic solution is

once again required to fit the model repeatedly in the cross-validation scheme. Surprisingly we

find that grouping species by family best explains competitive interactions.

Materials and methods

Study site and sampling

The Big Woods plot is a 23 ha forest dynamics plot in Pickney, MI (42.462902 N, 84.006093

W). The plot is within a transitional oak-hickory forest. The canopy is dominated by black oak

(Quercus velutina), northern red oak (Quercus rubra), white oak (Quercus alba), bitternut

hickory (Carya cordiformis), and shagbark hickory (Carya ovata). However there are relatively

few oaks in the mid and understory, instead these strata are dominated by red maple (Acer
rubrum) and black cherry (Prunus serotina). A full list of species found in the plot can be

found in S2 Appendix. The elevation in the plot ranges from 270 m to 305 m. Above 275 m the

mineral soils are largely Boyer–Oshtemo sandy loam, and below 275 m the soils are mainly his-

tosols dominated by Carlisle and Rifle muck. The rugged topography within the plot is the

result of glacial scouring with hills and knobs separated by kettle holes and basins. For more

information on the plot see Allen et al. [16].

The original plot was established in 2003 and was only 12 ha. All free-standing woody

stems in the plot larger than 3.2 cm diameter at breast height (DBH) were censused, had their

DBH measured, mapped, and identified. Between 2007 and 2010 this plot was expanded to 23

ha using the same censusing technique and the original 12 ha were re-censused. In 2014 the

entire 23 ha plot was re-censused to determine the diameter growth of each individual, tag

individuals recruited into the greater than 3.2 cm DBH size class, and identify which individu-

als died. For this analysis we considered the average annual diameter growth between the

2007–2010 and 2014 censuses for all stems alive in both censuses ignoring re-sprouts. We

defined stems alive in the 2007–2010 census as the competitor stems. DA collected these data

with the help of others listed in the Acknowledgements section. The Big Woods plot is located

within the Edwin S. George Reserve. Permission to sample in the Reserve was granted by the

University of Michigan Department of Ecology and Evolutionary Biology.

The plot is part of the Smithsonian Institution’s ForestGEO global network of forest

research plots (Smithsonian Institution, Washington DC, USA) [1]. Data from the censuses

are available at Allen et al. [17].

Species grouping methods

We tested which grouping of trees best explained competitive interactions. We grouped spe-

cies in three ways: (1) by species, (2) by family, and (3) according to traits assumed to correlate

with competitive interactions. To form this third grouping, we collected species trait values

from the TRY database of plant traits [18]. From this database we picked plant height, wood

density, and specific leaf area as our traits of interest because they have been identified as

important to tree competition [13]. We clustered these species based on their values for these

three traits using the cluster package in R [19, 20]. The distance matrix was formed by the

euclidean distance between species’ three trait values. We then formed a hierarchical clustering

of this distance matrix using the agnes command. We chose to cut the resulting hierarchical

tree into six groups.
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Neighborhood-effect growth model

Let i = 1, . . ., nj index all nj trees of “focal” species group j; let j = 1, . . ., J index all J focal species

groups; and let k = 1, . . ., K index all K “competitor” species groups. We modeled the growth

in diameter per year yij (in centimeters per year) of the ith tree of focal species group j as a lin-

ear model f of the following covariates~xij

yij ¼ f ð~xijÞ þ �ij ¼ b0;j þ bDBH;j � DBHij þ
XK

k¼1

ljk � BAijk þ �ij ð1Þ

where β0,j is the diameter-independent growth rate for group j; DBHij is the diameter at breast

height (in centimeters) of the focal tree at the earlier census; βDBH,j is the amount of the growth

rate changed depending on diameter for group j; BAijk is the sum of the basal area of all trees

of competitor species group k within a neighborhood of 7.5 meters of the focal tree; λjk is the

change in growth for individuals of group j from nearby competitors of group k; and �ij is a

random error term distributed Normal(0, σ2). We chose a distance of 7.5 meters as the com-

petitor neighborhood of a focal tree. Other studies have estimated this distance, we used 7.5

meters as an average of estimated values [3, 5, 7, 11].

For focal trees we considered only those alive in both the 2007–2010 and 2014 censuses.

Thus this model only considered the effect of competition on growth, not on mortality.

Growth between the two censuses was almost always positive, with the few negative values

probably reflecting measurement error.

We considered models where the focal species grouping j = 1, . . ., J and the competitor spe-

cies grouping k = 1, . . ., K reflected the three notions of species grouping introduced earlier:

trait group with 6 groups, phylogenetic family with 20 groups, and actual species with 36

groups. While our model specification is flexible enough where our notion of focal tree group-

ing does not necessarily have to match our notion of competitor tree grouping, for simplicity

in this paper we only considered models where both notions match and hence J = K.

Furthermore, our models incorporated a specific notion of competition reflecting a particu-

lar assumption on the nature of competition between trees: species grouping-specific effects of
competition. For a given focal species group j, all competitor species groups exert different

competitive effects. Such models not only assumed competition between trees exists, but

also that different focal versus competitor species group pairs have different competitive

relationships.

More specifically, using the above three notions of species grouping, we compared three

different models for growth yij, each with different numbers of (β0, βDBH, λ, σ2) parameters

estimated.

1. Trait group with J = K = 6, thus (β0, βDBH, σ2) consisted of 6 + 6 + 1 = 13 parameters. Fur-

thermore, there were 6 × 6 unique values of λjk, thus λ is a 6 × 6 matrix, totaling 13 + 6 ×
6 = 49 parameters.

2. Phylogenetic family with J = K = 20, thus (β0, βDBH, σ2) consisted of 20 + 20 + 1 = 41 param-

eters. Furthermore, there were 20 × 20 unique values of λjk, thus λ is a 20 × 20 matrix, total-

ing 41 + 20 × 20 = 441 parameters.

3. Actual species with J = K = 36, thus (β0, βDBH, σ2) consisted of 36 + 36 + 1 = 73 parameters.

Furthermore, there were 36 × 36 unique values of λjk, thus λ is a 36 × 36 matrix, totaling

73 + 36 × 36 = 1369 parameters.

For each of these three models, all (β0, βDBH, λ, σ2) parameters were estimated via Bayesian

linear regression. We favored a Bayesian approach since it allowed us to incorporate prior
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information about all the parameters in Eq (1) [21]. This in turn served us when particular spe-

cies grouping pairs were rare, leading to posterior distributions that are more weighted

towards the prior distribution than the likelihood [21]. While the linear regression model in

Eq (1) is much less complex than the model formulations considered by [7], both the posterior

distribution and posterior predictive distribution of all parameters have analytic and closed-

form solutions. Thus, we are saved from the computational expense of using methods to

approximate all posterior distributions such as Markov chain Monte Carlo [22, 23]. These sav-

ings in computational expense were important given the large number of times we fit the

model in Eq (1), as we outline in the upcoming sections on the permutation test and spatial

cross-validation scheme we used.

We present a brief summary of the closed form solutions to Bayesian linear regression here,

leaving fuller detail in S1 Appendix. For simplicity of notation, let β represent the parameters

β0, βDBH, λ. The likelihood function p(y|β, σ2) of our observed growths resulting from Eq (1) is

Multivariate Normal (X β, σ2 In) where In is the n × n identity matrix. Bayesian linear regres-

sion exploits the fact that the Multivariate Normal-inverse-Gamma distribution is a conjugate

prior of the Multivariate Normal distribution. So given our Multivariate Normal likelihood

p(y|β, σ2), by assuming that the joint prior distribution π(β, σ2) of β, σ2 is NIG(μ0, V0, a0, b0)

with the following hyperparameters: 1) a mean vector μ0 for β, 2) a shape matrix V0 for β, 3)

shape a0 > 0 for σ2, and scale b0 > 0 for σ2, the joint posterior distribution π(β, σ2|y) is also

NIG(μ�, V�, a�, b�) with:

μ� ¼ ðV � 1

0
þ XTXÞ� 1

ðV � 1

0
μ0 þ X

TyÞ ð2Þ

V� ¼ ðV � 1

0
þ XTXÞ� 1

ð3Þ

a� ¼ a0 þ
n
2

ð4Þ

b� ¼ b0 þ
1

2
μT

0
V � 1

0
μ0 þ yTy � μ�TV�� 1μ�

� �
ð5Þ

It can be shown that the marginal prior distribution π(σ) is Inverse-Gamma(a0, b0) while

π(β) is Multivariate-t with location vector μ0, shape matrix S0 ¼
b0

a0
V0, and degrees of freedom

ν0 = 2a0. Given the aforementioned prior conjugacy, the marginal posterior distributions

π(σ|y) is also Inverse-Gamma while π(β|y) is also Multivariate-t, both with updated μ�, V�, a�,
b� hyperparameter values in place of μ0, V0, a0, b0.

Furthermore, it can also be shown that the posterior predictive distribution pð~yjyÞ for a

model matrix ~X corresponding to a new set of observed covariates is Multivariate-t with

location vector ~Xμ�, shape matrix b�
a� ðI þ ~XV� ~XTÞ, and degrees of freedom ν� = 2a�. The

means of the posterior predictive distributions will be used to obtain fitted/predicted

values ŷij.

Permutation test

Recall from the previous section our model assumes species grouping-specific effects of competi-
tion, whereby for a given focal species group j, all competitor species groups exert different

competitive effects. We evaluated the validity of this hypothesis with the following hypothesis
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test:

H0 : ljk ¼ lj for all k ¼ 1; . . . ;K ð6Þ

vs: HA : at least one ljk is different ð7Þ

where the null hypothesis H0 reflects a hypothesis of no species grouping-specific effects of com-
petition while the alternative hypothesis HA reflects a hypothesis of species grouping-specific
effects of competition of our three models.

We could therefore answer question (1) from the introduction of whether the species iden-

tity of neighboring competitor trees matters using a permutation test (also called an “exact

test”). We generated the null distribution of a test statistic of interest by randomly permuting

the competitor species group labels k for all trees of focal species group j for a large number of

iterations. Such permutations of the competitor species group labels (while holding all other

variables constant) were permissible under the assumed null hypothesis above. After comput-

ing the test statistic for each iteration, we then compared this null distribution to the observed

value of the test statistic to obtain measures of statistical significance. Given the large number

of permutations and the corresponding large number of model fits this required, having the

computationally inexpensive parameter estimates discussed above was all the more important.

Our test statistic was a commonly-used and relatively simple measure of a model’s predic-

tive accuracy: the root mean-squared error (RMSE) between all observed values y and all

fitted/predicted values ŷ. Specifically, we compared all observed growths yij with their corre-

sponding fitted/predicted growths ŷij obtained from the posterior predictive distributions:

RMSEðy; ŷÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

XJ

j¼1

Xnj

i¼1

ðyij � ŷijÞ
2

v
u
u
t ð8Þ

Spatial cross-validation

Among the most common methods for estimating out-of-sample predictive error is cross-vali-

dation, whereby independent “training” and “test” sets are created by resampling from the

original sample of data. The model f̂ is first fit to the training set and then the model’s predic-

tive performance is evaluated on the test data [15]. However given the spatial structure of for-

est census data, there most likely exists spatial-auto-correlation between the individual trees

and thus using individual trees as the resampling unit would violate the independence assump-

tion inherent to cross-validation. One must instead resample spatial “blocks” of trees when

creating training and test data, thereby preserving within block spatial-auto-correlations.

Roberts et al. [24] demonstrated that ignoring such spatial structure can lead to model error

estimates that are overly optimistic and thus betray the true performance of any model’s pre-

dictive ability on new out-of-sample data.

To study the magnitude of this optimism, we report two sets or RMSE’s: one where both

the model was fit and the RMSE evaluated on the same entire dataset and another where cross-

validation was performed. On top of the large number of permutations, given the large num-

ber of iterations of model fits cross-validation required, the importance of computationally

inexpensive parameter estimates discussed earlier was again critical.

In Fig 1 we display the spatial distribution of the 27,192 trees in the Big Woods study region

and illustrate one iteration of the spatial cross-validation algorithm. We superimposed a

100 × 100 meter grid onto the study region and then assigned each of the 27,192 trees to one of

23 arbitrarily numbered spatial blocks. In this particular iteration of the algorithm, we first fit
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our model f̂ to all trees in the 14 unnumbered “training” blocks. We then applied the fitted

model f̂ to all trees in the “test” block labeled 10 to obtain predicted growths ŷ, which we then

compared to observed growths y to obtain the estimated RMSE for this block. The remaining

8 labeled blocks 1, 2, 3, 9, 11, 13, 14, and 15 acted as “buffer” blocks isolating the test block

from the training blocks, thereby ensuring that they are spatially independent. We iterated

through this process with all 23 blocks acting as the test block once and then averaged the

resulting 23 estimated values of the RMSE to obtain a single estimated RMSE of the fitted

model f̂ ’s predictive error.

While other implementations of cross-validation exist, in particular implementations that

incorporate more principled approaches to determining grid sizes [25], we favored the above

blocked approach for its ease of implementation and understanding.

We wrote and fit the model in R and used the tidyverse and ggrdiges packages [20,

26, 27].

Results

Permutation test and cross-validation results

We used a permutation test to evaluate whether the identity of the competitor matters for com-

petitive interactions, and used spatial cross-validation to evaluate which of the three identity

groupings (trait, family, or species) yielded the best model. For all three groupings the identity

of the competitor did matter; the RMSE with actual competitor identity was less than the

RSME when the competitor identity was permuted (Fig 2 compare the dotted horizontal lines

to the histograms). To address question (2) from the introduction, which species-grouping

does the best job of describing competition, we compare subpanels in Fig 2. The trait-grouping

model performed much worse than the two phylogenetic groups models. Without spatial

cross-validation the species-level grouping greatly out performs the other two models, but

Fig 1. Big Woods study region with one iteration of spatial cross-validation algorithm displayed. For this particular iteration of the cross-validation

algorithm, we train our models on all 14 unnumbered blocks of trees. We then apply the fitted model to make predictions on block 10. Blocks 1, 2, 3, 9,

11, 13, 14, and 15 act as “buffer” blocks isolating the test block from the training blocks.

https://doi.org/10.1371/journal.pone.0229930.g001
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with cross-validation the species and family models perform just as well, suggestive of over-fit-

ting of the species-level model. We will use the family-level model for the remainder of the

paper, as it performs just as well as the species-level model but with many fewer parameters.

Posterior distributions of parameters of best model

We found that the family-level model performed nearly as well as the species-level one (com-

pare the dashed yellow lines in panels 2 and 3 of Fig 2). It did so with many fewer parameters,

so here we will report the posterior distributions of relevant (β0, βDBH, λ) parameters for the

family-level model. In Fig 3, we plot the posterior distribution of all β0,j baselines for all fami-

lies, j. These values range from 0.05 to 0.4 cm y-1. We generally have better estimates of param-

eters for families with larger sample sizes. In Fig 4, we plot the posterior distribution of all

βDBH,j; this is the effect of tree DBH on growth rate. For most families these values are between

0 and 0.05. These positive values indicate that larger trees grow faster. For the few families with

estimates of negative βDBH,j, smaller trees grow faster.

In Fig 5, we plot the posterior distribution of all λ relating to inter-family competition. For

clarity this figure shows the λ values for the eight families with at least 200 individuals in the

plot (for the full 20-by-20 λ matrix see S1 Fig). Fig 5 shows differences in family-level effect and

response to competition. Some families, such as Fagaceae and Juglandaceae, have a strong neg-

ative effect on the growth of all other families. In other words, for focal trees of nearly all fami-

lies having many Fagaceae and Juglandaceae (oaks and hickories) neighbors is associated with

slower growth. Other families, such as Rosaceace, have a positive effect on the growth of most

other families. In other words, for focal trees of nearly all families having many Rosaceace

neighbors is associated with faster growth. Generally there is a strong negative intra-family

effect even for families which have little negative or even a positive effect on other families, for

Fig 2. Comparison of the RMSE for all three species-groupings models. We calculated the RMSE with and without spatial cross-validation. The

dotted lines indicate the RMSE value when the competitor species’ identities were not permuted. The histograms indicate the distribution of the RMSE

values resulting from 99 permutations of competitor species’ identities.

https://doi.org/10.1371/journal.pone.0229930.g002
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Fig 3. Posterior distribution of β0,j for the family-level model. These distributions display the estimated baseline

(diameter-independent) growth (cm y-1) for each family.

https://doi.org/10.1371/journal.pone.0229930.g003
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Fig 4. Posterior distribution of βDBH,j for the family-level model. These distributions display the estimated change

in annual growth (cm y-1) per cm of DBH for each family. Positive values indicate that larger individuals grow faster,

while negative values indicate that larger individuals growth slower.

https://doi.org/10.1371/journal.pone.0229930.g004
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example Ulmaceae and Sapindaceae. In other words, most individuals tend to grow slower

when they have more neighbors of the same family.

Much like the posterior distributions of β0 and βDBH shown in Figs 3 and 4, we generally

have more precise posterior distributions for the values of λ for focal and competitor family

pairs with a larger sample size; for reference S3 Fig shows the counts of such pairs for the eight

families in Fig 5.

Spatial patterns in residuals

We calculated the residuals for all individuals based on the family-level model and plotted

them spatially across the plot (Fig 6). There is a clear spatial pattern to these residuals, with

spatial patches of trees growing faster than predicted by the model, for example around (0,

150). This is a relatively wet portion of the plot, so soil moisture may be an important factor

not considered in the model. In other areas the trees are growing slower than predicted by the

model, for example around (450, 50). This suggests that some spatially correlated factor

beyond tree species, diameter, or competitors is important to determining tree growth.

Fig 5. Posterior distribution of λ family-specific competition coefficients. Read across rows for that family’s competitive effect on other families and

down columns for that family’s response to competition from other families. Positive values of λ indicate that trees of the focal group tend to grow faster

if they have more neighbors of that competitor group, while negative values of λ indicate that trees of the focal group then to grow slower. For example,

almost all groups tend to have slower growth in the presence of more Fagaceae neighbors, but tend to have faster growth in the presence of more

Ulmaceae neighbors. Here we display just the 8 families for which there are at least 200 individuals in the plot. For a high resolution version of this

image for the full 20-by-20 lambda matrix see S1 Fig. A full list of all species and families in the plot can be found in S2 Appendix. See S2 Fig for a

phylogeny of these families and S3 Fig for counts of focal and competitor family pairs.

https://doi.org/10.1371/journal.pone.0229930.g005
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Discussion

Here we tested whether species identity matters for competitive interactions among forest

trees. We found a strong signal that identity matters for both the effect focal trees feel from

competition and the effect competitors exerts on a focal tree. Models which included competi-

tor identity outperformed those with randomized identity. This importance of competitor

identity has been observed before [3, 8, 13]. Surprisingly, we found that the model which pre-

dicted the effect of competition best was at the family-level rather than species or trait group-

ing-level. Previous work has found that species traits perform well at predicting competitive

ability [12, 13]. We suspect that this family-level grouping for competition is not a general phe-

nomenon, but a consequence of the particular community in this forest. The forest is undergo-

ing rapid successional change as the oak-hickory overstory is being replaced by more mesic,

shade-tolerant species [16, 28]. Oaks and hickories here fill a specific functional role, and we

suspect the family-level grouping fit best as a result since it groups many species into these two

families.

Here we used a Bayesian framework to measure the full λ matrix of family-level competitive

interactions. This matrix showed clear family-level differences in both the effect and response
to competition. Interestingly, some families had a positive effect on the growth of neighbors,

such as Ulmaceae. This is probably not a direct positive effect, but a reflection of the spatial

pattern of Ulmaceae individuals. These individuals could inhabit more productive soils, thus

nearby individuals grow faster. This illustrates a limitation of neighborhood-based methods

for measuring competition [4]. The best way to address this and truly measure competitive

interactions would be with a manipulative experiment. This would be largely infeasible for

competing forest trees. However, one way to potentially address this issue still in an observa-

tional, neighborhood competitor framework would be to control for soil or other covariates

potentially important to growth in the model. That way those spatially varying covariates

could be included and thus the signal from competition could potentially be more clear.

Fig 6. Spatial pattern of residuals for the family-level model. This shows the actual growth y of each tree minus its predicted growth ŷ^. Blue

individuals grew faster than expected by the model and red individuals grew slower. The residuals show clear spatial patterning.

https://doi.org/10.1371/journal.pone.0229930.g006

PLOS ONE Permutation test and spatial cross-validation approach to assess models of competition

PLOS ONE | https://doi.org/10.1371/journal.pone.0229930 March 11, 2020 12 / 16

https://doi.org/10.1371/journal.pone.0229930.g006
https://doi.org/10.1371/journal.pone.0229930


One clear pattern seen is that oaks and hickories are particularly strong competitors. Their

neighbors had consistently lower growth rates. This is interesting in light of the successional

change going on in the forest. Allen et al. [28] show that canopy oaks are rapidly being replaced

by red maples and black cherries. Even though we found here that oaks had very strong nega-

tive effect on neighbors’ growth, that is not enough for them to maintain canopy dominance

[28].

We fit Bayesian linear regression models of the growth of a focal tree as a function of its spe-

cies, its size, and the basal area of its competitors. While more complicated models of growth

exist than the one proposed in Eq (1), this particular model has the benefit of having closed-

form analytic solutions and thus we can avoid computationally expensive methods for poste-

rior estimation such as Markov chain Monte Carlo. This is of particular importance given the

large number of times we fit models when performing our permutation test as well as our spa-

tial cross-validation algorithm.

We highlight the importance of cross-validation. It initially appeared in our non cross-vali-

dated error estimates in Fig 2 that the species-level model out performed the family-level

model. However, when using cross-validation to generate our estimates of model error, both

models roughly performed the same. This was due to the over-fitting induced by the large

number of parameters of the more complex species-level model. Furthermore, had we not

incorporated the inherent spatial structure of our data to our cross-validation algorithm, our

model error estimates would have been overly-optimistic. This is a point that been demon-

strated in other ecological settings [24, 29, 30].

Here we provide a flexible method to estimate species-specific competitive effects between

forest trees. This method could be used for other ForestGEO plots with two or more censuses

or with USFS FIA data. Comparisons across forest plots would be particularly powerful to

assess whether species-specific interactions are general or site-specific. In the future we hope

to produce an R package that includes functions to perform the method presented here.

Supporting information

S1 Fig. Posterior distribution of λ values, family-specific competition coefficients. Read

across rows for that family’s competitive effect on other families and down columns for how a

family responses to the competition of other families.

(PDF)

S2 Fig. Phylogenetic relationship of families. The phylogenetic relationship of families pulled

from the Open Tree of Life [31] using the R package rotl [32]. A) The phylogeny for the

most common families, this corresponds to the families shown in Fig 5. B) The phylogeny for

all families in the plot, this corresponds to families shown in S1 Fig.

(PDF)

S3 Fig. Counts of focal and competitor family pairs. The total width of each horizontal bar

represents the total number of neighbors (or competitors) of focal trees of a particular family

in the study region. Within each bar, the width of each color represents the total number of

competitor trees of a particular family within a neighborhood of 7.5 meters of trees of the focal

family. For clarity this figure shows counts for the eight families with at least 200 individuals in

the plot. This figure provides sample sizes for Fig 5.

(PDF)

S1 Appendix. Closed-form solutions for Bayesian linear regression.

(PDF)
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(PDF)
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