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Abstract

The influence of climate change on wildland fire has received considerable attention, but
few studies have examined the potential effects of climate variability on grassland area
burned within the extensive steppe land of Eurasia. We used a novel statistical approach
borrowed from the social science literature—dynamic simulations of autoregressive distrib-
uted lag (ARDL) models—to explore the relationship between temperature, relative humid-
ity, precipitation, wind speed, sunlight, and carbon emissions on grassland area burned in
Xilingol, a large grassland-dominated landscape of Inner Mongolia in northern China. We
used an ARDL model to describe the influence of these variables on observed area burned
between 2001 and 2018 and used dynamic simulations of the model to project the influence
of climate on area burned over the next twenty years. Our analysis demonstrates that area
burned was most sensitive to wind speed and temperature. A 1% increase in wind speed
was associated with a 20.8% and 22.8% increase in observed and predicted area burned
respectively, while a 1% increase in maximum temperature was associated with an 8.7%
and 9.7% increase in observed and predicted future area burned. Dynamic simulations of
ARDL models provide insights into the variability of area burned across Inner Mongolia
grasslands in the context of anthropogenic climate change.

Introduction

There is strong evidence that climate change and altered fuel characteristics associated with
human activity can dramatically influence area burned by wildfire at large spatial scales [1, 2].
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Understanding how climate influences fire in grasslands is challenging because of complex
interactions between climate parameters, ignitions, and past fire history [3-13]. Previous
research has demonstrated complex relationships between fire activity and climate variability
in the extensive grasslands of Xilingol in northern China [14, 15]. Fire in this region potentially
creates feedbacks between climate and fire occurrence both by climate forcing related to car-
bon emissions from fires and changes in flammability related to post-fire succession [16, 17].
The climate thresholds that potentially accelerate area burned in the Xilingol region remain
poorly resolved. Identifying these thresholds is important to managers seeking to optimize the
production of key ecosystem services from grasslands.

Many investigations of climate influence on fire extent rely on ordinary least squares (OLS)
regression techniques [1, 11, 12, 18, 19]. The OLS method is appropriate for analysis of station-
ary time-series—series in which the mean, variance, and autocorrelation structure are constant
over time. In the case of non-stationary time series data, application of OLS may result in spu-
rious relationships between variables [20, 21].

The goal of this study is to provide a comprehensive analysis of fire-climate relationships
that accounts for potential non-stationarity in the time series analyzed and that distinguishes
between “short-run” perturbations that move the time series analyzed apart over relatively
short timeframes and “long-run” relationships in which relationships exhibit equilibrium over
time. We accomplish this goal by implementing a method that is increasingly popular in social
science investigations of political and economic trends—dynamic simulations of Autoregres-
sive Distributed Lag (ARDL) models [22]. This method conveys results by constructing
counterfactual scenarios to describe, in our case, the effects on grassland area burned by per-
turbations in climate and carbon emissions [23]. We provide a detailed description of the
implementation of these methods. Although this analysis focused on the steppe lands of north-
ern China, this methodology will be applicable to other investigations of broad-scale climate-
fire relationships. Our results will provide a better understanding of the role of anthropogenic
climate change on fire and help identify adaptation strategies.

Methods
Study area and data

Xilingol is located within the Autonomous Region of Inner Mongolia in northern China (Fig
1). The climate of this region is semi-arid, and maximum temperatures have increased by
approximately 1.5°C over the last 70 years. The extensive grasslands of this region burn mostly
in the months of April, May, and September (Fig 2). Between 2001 and 2018 there were 832
grassland fires covering a total area of 42,190 ha (Fig 1). Carbon emissions from these fires and
other sources in Xilingol may potentially influence area burned in this region both by contrib-
uting to atmospheric climate forcing of temperature, and because the fires that caused these
emissions reset succession which potentially influences future flammability (Fig 3).

We investigated the relationship between area burned and seven variables: monthly aver-
ages of minimum and maximum temperature (in degrees C), monthly average relative humid-
ity (percentage), monthly average precipitation (in millimeters), average monthly wind speed
(in meters per second), average monthly carbon emissions from fires in Xilingol (in grams
centimeter?), and average sunlight (in hours per month) (Fig 4). All climate data were obtained
from the China Meteorological Data Sharing Service Center (http://www.cdc.cma.gov.cn/) for
the period 2001 to 2018. Data for the number of hectares of grassland area burned and carbon
emissions from fire and other sources were acquired from the Monitoring Center of the Minis-
try of Agriculture. (http://www.moa.gov.cn/). We combined biomass consumed in fire and
carbon emissions in the models we describe below. We log-transformed the data to address
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Fig 1. The study area Xilingol outlined in red with the area of grassland fires in each year from 2002-2018.
https://doi.org/10.1371/journal.pone.0229894.9001

heteroscedasticity [24], multi-collinearity [25] and assessed autocorrelation using the Durbin-
Watson statistic [26, 27]. Dynamic simulations of ARDL models were performed using the
Stata module [28].

Stationarity test

We followed the workflow of implementing ARDL models as outlined in Figure 1 of [29]. The
information in this section is adopted from methods reported previously in [30, 31]. The first
step in the analysis of potentially non-stationary time series data is an Augmented Dickey-
Fuller (ADF) test to investigate the order of integration of variables [32]. If a series has constant
mean and variance it is represented as I(0) and we call it a stationary series. A nonstationary
series has a changing mean and variance which can be made stationary by taking the first dif-
ference or second difference of the series denoted as I(1) and I(2). We used the following func-
tional form for the ADF test from Gujarati and Porter [33]:

AX, = o+ ot 42X, + Z::1 ¢ AX, ) +u, (1)
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Fig 2. The total area burned (left y-axis) and the number of fires (right y-axis) by month between 2001 and 2018 in Xilingol League, China. Grey
bars indicate area burned and red lines indicate the number of fires. There were no fires in January, November, or December between 2001 and 2018.

https://doi.org/10.1371/journal.pone.0229894.g002

Where X, represents the variable series, A represents the first difference, and the lagged differ-
ence terms are included to correct for serial correlations of the disturbance terms on the right
side of the equation. The Schwarz information criterion (SIC) was used for the selection of
lagged differences. When 0 = 0, the X, variable series has a unit root and an I(1) process gov-
erned by a stochastic trend. If the selected time series variable appears to be integrated of order
one, the investigation of 2™® order unit root is performed by using the following expression:

A’X, = B, + 04X, + Z:’Zl 1AX, T+ (2)
where A” represents the second-difference operator. The variable X, is integrated of order two
or I(2) if y = 0. Suppose d shows the number of times that the variable Xt must be differenced
to become stationary, then the series X, is integrated of order d or I(d). If the ADF test statistic
value was higher than the critical values at a 5 percent significance level, we considered it to be
a stationary series but if the test statistic value is lower than the critical values, then, we classi-
fied it as a nonstationary series. If non-stationary, the series was differenced to make it station-
ary. Providing variables are either integrated of order I(0) or integrated of order I(1) or both
but not 1(2), it is possible to estimate an ARDL model in error-correction form and perform a
bounds test for cointegration of variables.

Bounds test

The dynamic simulated ARDL approach employs a bounds test to check the long-run relation-
ship between variables. During bounds testing, a long-run relationship between variables exists
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Fig 3. Carbon emissions (left y-axis) from all sources and biomass burning (right y-axis) by month between 2001 and 2018 in
Xilingol League, China. Grey bars indicate biomass burning and red lines indicate carbon emissions. There were no fires in
January, November, or December between 2001 and 2018.

https://doi.org/10.1371/journal.pone.0229894.9003

if the F-statistic is greater than the upper bound critical value at a 5 percent significance level.
If the F-statistic is less than the upper bound critical value, then the null hypothesis of no long-
run relationship between variables cannot be rejected. If the F-statistic value lies between the
upper and lower bound critical values, a decision about co-integration remains inconclusive.
The null hypothesis of no long-run relationship is represented as Hy: 81 = 82 =83 =084 =85 =
86 = 87 = 88 = 0 tested during the model estimation. The ARDL bounds testing estimation
model follows:

Alnarea burned = o+ J, In area burned, , + 0, In Rel. humidity, +

04 In Sunlight, , + 6, In Tmax,_, + 0, In Tmin,_, + 04 In Cem,_, + 6, In Wind,_,+

Og In Rainfall,_; + Z,n: PrAln areaburned, _; + ZL PsAIn humidity, _ + (3)
Z:’: PiAIn Sunlight, _; + Z,n: PsAIn Tmax, _, + Z:?: BeA In Tmin, _ +

Z:l: B:AlInCem, _; + Zf: BAln Wind, _; + Z:l: BsAIn Rainfall, _; + e,

Where A is the change operator, In is its natural logarithm, and t-i is the optimal number of
lags selection based on Schwartz Bayesian information criterion and Akaike information crite-
rion. Delta (6) and beta (f) are the parameters to be estimated. If a long-run relationship is
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Fig 4. A relationship between area burned and climate variables between 2001 and 2018 in Xilingol League, China. The area
burned is shown with grey bars on the bottom panels and climate variables are shown with red points on the upper panels (see

text).

https://doi.org/10.1371/journal.pone.0229894.9004
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found, short- and long-run elasticities can be estimated using dynamic simulations of an
ARDL model.

After confirming the long-run relationship among the variables, we incorporated the
cumulative sum (CUSUM) and cumulative sum of squares (CUSUMSQ) tests developed by
Brown et al. [34] to check the goodness of fit for the ARDL model [35]. These tests are per-
formed on the residuals of the error correction model and reported in graphical form. Stable
models fall within the 5% critical bound of CUSUM and CUSUMAQ plots.

Dynamic simulated ARDL models. We selected the dynamic simulation ARDL model
with cointegrated variables embedded in a vector autoregressive time series model (VAR) [28,
36]. This method is designed to estimate the effect of a group of explanatory variables on a sin-
gle response (area burned) with variable measurements taken discretely over time (also known
as a single equation model framework). In contrast to ordinary least squares (OLS) regression,
both current and lagged values of explanatory variables are considered in an ARDL framework
and the estimated effect on the response can be instantaneous or observed gradually on future
time steps. The error correction algorithm of the dynamic ARDL technique was used to
develop eight models via 5000 simulations of the vector of parameters from a multivariate nor-
mal distribution [37]. We selected the best regression model using dynamic simulations ARDL
model with some methodological modifications introduced with the general formulation
expressed as follows:

Aly)=aty + 0,(y),_y +0,(x,), g + -+ 0(x), s + Z; (0)AW) (4)
+ Zj:lo ﬁl—jA (xl)t—j +oee Zjio ﬁk—jA (xk)t—j + &,

Where A y represents a change in the exogenous variable, ¢y is the intercept of all exogenous
variables at time ¢ — 1, which affects the level of maximum lagged p and gk to first-differences
A with error term € on the response of t. The null hypothesis of a level relationship is assessed
using Kripfganz and Schneider [38] critical values and approximate p-values based on
response surface regressions. To reject the null hypothesis of no level relationship Hy = 0, +

01 + - - - + 0, = 0, the F-statistic from the jointly zero estimation of all parameters on the climate
threshold variables in level and the lagged grassland area burned coefficient must be above the
upper bound [I(1)] critical values. The empirical specification in Eq (4) can be re-written into
eight conceptual models as:

MODEL 1:

A In(area burned), = a, + 0, In(area burned), |+

B,AIn(Cem/biobur), + 0, In(Cem/biobur),_, + f,A In(Rel.humidity) +

0, In(Rel.humidity),_, + B,Aln(Tmin), + 0, In(Tmin),_, + f,Aln(Tmax)+ (5)
0,1In(Tmax),_, + B;AIn(Precip), + 0, In(Precip),_ |, + p,AIn(Sunlight) +

0; In(Sunlight), | + p,AIn(Wind), + 0, In(Wind),_, + u,,

PLOS ONE | https://doi.org/10.1371/journal.pone.0229894  April 3, 2020 7/18


https://doi.org/10.1371/journal.pone.0229894

PLOS ONE Grassland area burned to climate response

MODEL 2:

A In(Cem/biobur), = o, + 0, In(Cem/biobur),_ , + ,Aln(area burned) +

0, In(area burned), | + B,AIn(Rel.humidity), + 0, In(Rel.humidity), ,+

B,AIn(Tmin), + 0, In(Tmin), | + B,Aln(Tmax), + 0, In(Tmax), | + p;A In(Precip),+ (6)
0; In(Precip), , + PoAIn(Sunlight), + 0 In(Sunlight), |, + p.A In(Wind),+

0, In(Wind),_, + u,,

MODEL 3:

A In(Rel. humidity), = o, + 0, In(Rel.humidity), ,+

B,Aln(Cem), + 0, In(Cem/biobur),_, + p,Aln(area burned), + 0, In(area burned), ,+
B,AIn(Tmin), + 0, 1In(Tmin),_, + f,AIn(Tmax), + 0, In(Tmax),_, + p,Aln(Precip) + (7)
0, In(Precip), , + PsA In(Sunlight), + 0 In(Sunlight), | + p,AIn(Wind) +

0, In(Wind),_, +u,,

MODEL 4:
A In(Tmin), = o, + 0, In(Tmin)_, + p,Aln(Cem) +
0, In(Cem/biobur),_, + f,AIn(Rel.humidity), + 0, In(Rel.humidity),_,+
B,AIn(area burned), + 0, 1n(area burned),_ |, + p,Aln(Tmax), + 0, In(Tmax),_ + (8)
B:A In(Precip), + 0, In(Precip), | + ;A In(Sunlight), + 0, In(Sunlight), ,+
B.AIn(Wind), + 0, In(Wind),_, + u,,

MODEL 5:
A In(Tmax), =
oy + 0, In(Tmax),_, + p,Aln(Cem), + 0,In(Cem/biobur), , + p,Aln(Rel. humidity) +
O,In(Rel.humidity), | + f,Aln(Tmin), + 0,In(Tmin),_, + B,Aln(area burned) + 9)
0 In(area burned), | + P;Aln(Precip), + 0.In(Precip), | + f;Aln(Sunlight) +
O,ln(Sunlight),_, + B, Aln(Wind), + 0.In(Wind),_, + u,,

MODEL 6:
A In(Precip), =
o, + 0, In(Precip),_, + p,Aln(Cem), + 0,In(Cem/biobur),_, + B,Aln(Rel.humidity) +
0,In(Rel.humidity), |, + p,Aln(Tmin), + 0,In(Tmin),_, + p,Aln(Tmax), + 0 In(Tmax), ,+ (10)
p;Aln(area burned), + 0,1n(area burned), |, + P;Aln(Sunlight), + 0,In(Sunlight), ,+
B,;Aln(Wind), + 0.In(Wind),_ | + u,,
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MODEL 7:
A In(Sunlight), = o, + 0, In(Sunlight), | + p,Aln(Cem), + 0,In(Cem/biobur)_, + p,
B,Aln(Rel. humidity), + 0,ln(Rel.humidity), | + f,Aln(Tmin), + 0,ln(Tmin),_,+
B,Aln(Tmax), + 0,In(Tmax),_, + p;Aln(Precip), + 0,ln(Precip), |, + fsAln(area burned) + (
Oln(area burned), |, + B,Aln(Wind), + 0.In(Wind),_, + u,,

11)

MODEL 8:
A In(Wind), =
oy + 0, In(Wind),_, + f,Aln(Cem), + 0,In(Cem/biobur),_, + f,Aln(Rel. humidity) +
0,In(Rel.humidity), |, + p,Aln(Tmin), + 0,In(Tmin),_, + ,Aln(Tmax), + 0,In(Tmax),_,+ (12)
P Aln(Precip), + 0,ln(Precip), |, + psAln(area burned), + Oiln(area burned), ,+
f.Aln(Sunlight), + 0,In(Sunlight), | + u,,

Where a is the intercept, 8’s and s are the parameters to be estimated and u denotes the
white noise at time ¢. All variables are taken in logarithmic scale to stabilize the variance and so
that results can be presented as “elasticities” in which coefficients represent the estimated per-
cent change in the burned area dependent variable for a percent change in a climate indepen-
dent variable.

Results

ADF and PP unit root tests indicated that maximum temperature and carbon emissions were
stationary at the 10% significance level presented (Table 1). All other variables were integrated
at order one I(1). The lag selection criteria presented in Table 2 was used to select the optimal
lag order for the ARDL model estimation technique. The lag selection criteria (final prediction
error, Schwarz Bayesian Criterion, and Hannan-Quinn Information Criterion) confirmed lag
one as the optimal lag for subsequent analysis. Table 3 shows the results of the ARDL bounds
cointegration test. The F-statistic of the estimated models was above the upper bounds critical
values, thus rejecting the null hypothesis of no level relationship. The absence of I(2) variable
validated the application of ARDL bound testing technique.

Long-run coefficients of observed and predicted area burned

An ARDL model with lag (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian Criterion.
The dependent variable (grassland area burned) and the regressors with 832 observations from
2001 to 2018 were estimated using dynamic simulations of an ARDL model. Wind speed, max-
imum temperature, and carbon emissions showed a significant relationship to observed and
predicted area burned. All other variables tested were non-significant. A one percent increase
in wind speed was associated with a 20.8% and 22.8% increase in observed and predicted area
burned respectively while holding other climatic variables constant. A one percent increase in
maximum temperature was associated with 8.7% and 9.8% increase in observed and predicted
area burned while holding other climatic variables constant. A one percent increase in carbon
emission was associated with only a 2.6% and 2.8% increase in observed and predicted area
burned with other variables held constant. The estimated long-run coefficients for the effect of
climate variables on the grassland area burned are shown in Table 4 while a plot of the
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Table 1. Unit root results.

ADF test statistics PP test statistics Level of Significance
Observed area burned Levels 1st Differences Levels 1st Differences 1% Level of Significance 5% Level of Significance
Variables
In Cem -6.35" -7.941 ** -6.81 " -14.001 ** 1(1) 1(0)
In Rel.humidity -7.138 -6.922 % -4.658 -24.824 " 1(1) 1(0)
In Toin 3.880 8972 ** -4.864 11.821** 1(1) 1(1)
In Tomax -3.44* 113.52 -6.053* 24.936 1(1) 1(1)
In Precip. -7.668 12,74 9.874 -32.864 1(1) 1(1)
In Sunlight -9.612 -8.097 ** -7.826 -38.326 ** 1(1) 1(1)
In Wind Speed -5.331 -7.166 ** -8.667 -27.942 ** 1(1) 1(0)
Predicted area burned
In Cem -9.35* -6.248 ** -7.01* -13.981 ** 1(1) 1(1)
In Rel.humidity -7.234 7121 %* -9.154 21029 ** 1(1) 1(1)
In Tppin 6.582 -8.176 ** -4.861 -16.127 ** 1(1) 1(0)
In Tppax -6.04" -17.71** -7.050 * -21.034 ** 1(1) 1(1)
In Precip. -5.160 -12.81 -7.074 -30.094 ** 1(1) 1(0)
In Sunlight -6.010 -7.090 ** -9.121 -36.020 ** 1(1) 1(0)
In Wind Speed -9.139 -8.660 ** -9.460 -20.049 ** 1(1) 1(1)
Note:
* represents 10% significance level while
** represents 5% significance level
https://doi.org/10.1371/journal.pone.0229894.t001
Table 2. The lag selection criteria.
Lag LogL LR FPE AIC SBC HQ
0 131.06 NA 8.11e+11 -8.71 -9.11 -6.91
1 119.02 276.21 1.21e+11* -14.34 -15.04* -22.21%
2 129.10 63.75 6.02e+11 -13.01 -16.91 -23.67
3 114.14 91.02* 9.0le+11 -16.42* -18.61 -24.64
Notes:

* indicates lag order selected by the criterion,

LogL: log-likelihood, LR: sequential modified log-ratio test statistic (each test at 5% level), FPE: Final prediction error, AIC: Akaike information criterion, SBC: Schwarz

Bayesian Criterion, and HQ: Hannan-Quinn information criterion.

https://doi.org/10.1371/journal.pone.0229894.t002

Table 3. ARDL bounds cointegration test.

Models statistic 1(0) 1(1) p-value 1(1)
1(0)

Lnareaburned = f (InCem InRel.humidity InTmin InTmax InPrecip InSunlight InWind) F 10.12 2.34 3.63 0.001 0.001
InCem = f (Inareaburned InRel.humidity InTmin InTmax InPrecip InSunlight InWind) F 9.71 2.62 3.84 0.001 0.001
InRel.humidity = f (InCem Inarea burned InTmin InTmax InPrecip InSunlight InWind) F 8.55 2.28 3.41 0.002 0.001
InTmin = f (InCem InRel.humidity Inarea burned InTmax InPrecip InSunlight InWind) F 11.22 291 4.10 0.001 0.006
InTmax = f (InCem InRel. humidity InTmin Inarea burned InPrecip InSunlight InWind) F 6.11 2.86 3.90 0.001 0.001
InPrecip = f (InCem InRel. humidity InTmin InTmax Inarea burned InSunlight InWind) F 10.63 2.74 3.25 0.008 0.007
InSunlight = f (InCem InRel.humidity InTmin InTmax InPrecip Inarea burned InWind) F 5.21 231 4.18 0.001 0.001
InWind = f (InCem InRel.humidity InTmin InTmax InPrecip Inarea burned InSunlight) F 8.44 2.11 3.71 0.001 0.001
https://doi.org/10.1371/journal.pone.0229894.t003
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Table 4. Estimated long-run coefficients for the effect of climate variables on grassland area burned from 2001 to 2018 using dynamic simulations of ARDL

models.

Regressor

L, Wind speed

L Tinax

L Tinin

L, Rel.humidity

L, Precip

L, Sunlight

L, Cem

RZ

Adj. R?

Number of simulations.
Sum squared Res.
Durbin-Watson-stat
Diagnostics

% LM — ARCH?
ZLM-B-G?
Functional Form Ramsey RESET test
Normality

Note:
* denotes 1% significance level while

** denotes 5% significance level

https://doi.org/10.1371/journal.pone.0229894.t1004

Observed Predicted

Coefficient Prob. Coefficient Prob.
20.81* 0.001 22.76* 0.001
8.651 " 0.001 9.746" 0.001
1.026 0.401 1.064 0.517
1.102 0.601 1.141 0.612
1.421 0.032 1.914 0.063
4.481 0.001 4.606 0.001
2.616 ** 0.001 2.814** 0.001
0.631 R? 0.671
0.644 Adj. R? 0.682
5000 Number of simulations. 5000
0.061 Sum squared Res. 0.056
2.231 Durbin-Watson-stat 2.106
0.41 4 LM — ARCH? 0.44
0.53 y LM - B - G? 0.51
0.41 Functional Form Ramsey RESET test 0.49
0.64 Normality 0.68

modelled values showing the influence of selected climate variables on area burned in Xilingol
is shown in Fig 5.

Fig 6 shows the results of the dynamic stimulated ARDL model in which the grassland area
response is predicted at various time steps after forcing a one standard deviation increment of
each climate variable. These simulations showed that a one standard deviation increase in
maximum temperature and wind speed would significantly increase area burned over a
twenty-year period beginning in approximately ten years. Carbon emissions were associated
with an increased area burned at the 75% confidence interval after ten years, but not at a 90%
or 95% confidence interval.

Short-run coefficients of observed and predicted area burned

The short-run equilibrium relationship of observed and future area burned was examined
using the error correction representation of the dynamic stimulated ARDL model with 832
observations over the period 2001 to 2018. The estimated elasticity of wind speed in the short
run was found to be low relative to the long-run elasticity. A 1% increase in wind speed was
associated with a 6.1% and 7.8% increase in observed and predicted area burned respectively
while holding other climatic variables constant. The estimated short-run elasticity of carbon
emission was associated with a 1.8% and 1.9% increase in observed and predicted area burned
while other climatic variables were held constant. The empirical results of the short-run equi-
librium relationship are presented in Table 5 while the monthly correlation between grassland
area burned and climatic variables are depicted in Table 6. The area burned exhibited stronger
correlations with maximum temperature than carbon emissions. The correlation of wind
speed and sunlight to area burned varied between months.
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Fig 5. A plot of the modelled values showing the influence of variation in climatic variables on the area burned in
Xilingol.

https://doi.org/10.1371/journal.pone.0229894.9005

Model validation

Diagnostic tests are critical to examine the independence of the residuals of the estimated
models. Several diagnostic tests such as the LM test for autoregressive conditional heteroske-
dasticity, Breusch-Godfrey test for autocorrelation, Ramsey RESET test for functional form
and Jarque-Bera test for normality were employed to verify the estimated long- and short- run
elasticities of the dynamic stimulated ARDL Model. Table 5 shows that the estimated models
are free from heteroskedasticity, autocorrelation, functional misspecification and are normally
distributed. Fig 7 presents the plots of the cumulative sum of recursive residuals for the
dynamic stimulated ARDL model and indicates that values are within the 95% confidence
bands—confirming the stability of the estimated models.
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Fig 6. Plots of the dynamic stimulated ARDL model. (a) change in predicted maximum temperature on area burned (b) change
in predicted sunlight on area burned (c) change in predicted humidity on area burned (d) change in predicted wind speed on area
burned (e) change in predicted carbon emissions on area burned (f) change in predicted precipitation on area burned. Dots
represent average predicted value while dark blue to light blue lines denote 75, 90 and 95% confidence intervals. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.).

https://doi.org/10.1371/journal.pone.0229894.9006

Discussion

This study demonstrates that in the long-run, grassland area burned in Xilingol is more sensi-
tive to changes in wind speed and temperature than other climate variables [10, 15, 39]. Past
fire history and the carbon emissions that resulted from these fires had a marginal influence
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Table 5. Error correction representation for dynamic simulations of ARDL models.

Observed Predicted
Regressor Coefficient Prob. Coefficient Prob.
DLn Wind speed 6.143 ** 0.001 7.806"* 0.001
DL Toax 0.046 0.871 0.524** 0.001
DLn Tpin 0.241 0.461 0.044 0.541
DLn Rel.humidity 0.232 0.421 0.031 0.611
DLn Precip 0.620 0.232 0.066 0.441
DLn Sunlight 2.447 0.001 2.888 0.451
DLn Cem 1.832 ** 0.001 1.866** 0.001
ECM (-1) -0.611 ** 0.001 -0.626"* 0.001
R? 0.621 R? 0.632
Adj. R? 0.630 Adj. R? 0.649
Number of simulations. 5000 Number of simulations. 5000
Sum squared Res. 0.006 Sum squared Res. 0.061
Durbin-Watson-stat 2.161 Durbin-Watson-stat 2.180

Notes: ARDL (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian Criterion. The dependent variable was Ln (grassland area burned) with 832 observations over
the period 2001 to 2018.

** denotes 5% level of significance

https://doi.org/10.1371/journal.pone.0229894.t005

on the projected future fire. Area burned is likely to increase given warmer winter and spring
temperatures related to directional climate change [6].

Variability in precipitation, in contrast, had no significant effect on area burned, which is
surprising because fuel moisture often plays a critical role in fire spread. There are three poten-
tial explanations for the lack of a clear relationship between precipitation and area burned.
First, our study area has relatively low precipitation during every year of the fire season and
fuel moisture is usually at critical levels during fire season so that ignition and wind events are
the key determinates of burned area. It is also possible that the field capacity of soils in Xilingol
grasslands is large enough that fuel moisture does not decrease because plants have sufficiently
deep roots to keep fuel moisture at normal levels even during drought. The third possibility is
that our statistical approach is unable to accurately estimate the precipitation response because
there is insufficient variation in precipitation over the 18-year time series examined.

Other studies (e.g. [14]) failed to find strong correlations between area burned and wind

speed, possibly because of a shorter climate record examined (2000-2014 instead of 2001-

Table 6. Monthly correlation between grassland area burned and climatic variables from 2001 to 2018.

Months Tmax Tmin Precip Rel.humidity Wind Cem Sunlight
FMA 0.418 0.011 0.038 0.034 0.068 0.434 0.019
(0.01) (0.211) (0.189) (0.313) (0.401) (0.01) (0.311)
M]J] 0.436 0.118 0.149 0.382 0.881 0.461 0.049
(0.01) (0.168) (0.031) (0.041) (0.01) (0.01) (0.129)
ASO 0.488 0.014 0.021 0.031 0.841 0.421 0.632
(0.01) (0.506) (0.563) (0.865) (0.01) (0.01) (0.01)

Abbreviations: February, March, April (FMA), May, June, July (M]]), August, September, October (ASO), monthly average maximum temperature (T,,,,), monthly

average minimum temperature (Ty,;,), monthly precipitation (Precip), monthly average relative humidity (Humidity), monthly average wind speed (Wind), Carbon

emission (Cem), monthly average sunlight (Sunlight). The top statistic in each cell is Pearson’s r and the bottom parenthesis statistic denotes the probability.

https://doi.org/10.1371/journal.pone.0229894.t006
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Fig 7. Plots of the cumulative sum of recursive residuals for the dynamic stimulated ARDL model. (a) maximum temperature
(b) sunlight (c) humidity (d) wind speed (e) carbon emissions (f) precipitation. The recursive CUSUM plots within the 95%
confidence bands confirm the stability of the estimated models.

https://doi.org/10.1371/journal.pone.0229894.9007
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2018) or different statistical methodology. Existing literature—[6, 14, 40] often ignore lag selec-
tion in statistical models, which may result in spurious regressions.

Although we demonstrate an important influence of climate on area burned across Xilingol,
anthropogenic ignitions, urbanization, agriculture, and management practices may account
for substantial variability in fire occurrence and pattern [41, 42]. Extreme wind events occur in
northern China on a regular basis, but do not regularly result in large fire events. A large num-
ber of fires are reliant on the concurrency of these weather events related to human activities
[43]. Over 95% of ignitions are due to humans [4, 16], and as populations increase, we expect a
greater chance of ignitions during severe fire weather conditions.

Our research suggests that the combination of increasing anthropogenic pressure on grass-
lands in concert with continued warming temperatures will likely increase burning in the
northern China steppe, which may have significant effects to the livestock industry and conser-
vation efforts [7, 12]. Rehabilitation and following fire in arid and semi-arid landscapes require
significant time and expense. Our research demonstrates that there may be climatic thresholds
past which point rising summer temperature and high wind speed events could lead to abrupt
increases in area burned. The response of wind speed related to grassland area burned is the
most critical threshold, suggesting that change in intensity of wind speed is particularly
impactful.

Conclusion

Anthropogenic climate change along with an increase in the human population is likely to sig-
nificantly increase the impact of fire on the globally important grassland ecosystems of Xilin-
gol. This study successfully utilized a dynamic simulated Autoregressive Distributed Lag
(ARDL) model to determine the climate variables that have the greatest effect on the area of
grassland burnt. Our results indicated that many factors predicted to have an influence of the
area burned—such as precipitation—were not as influential as expected. The most important
factors influencing area burned are maximum temperature and wind speed. Although our
results indicate that an increase in area burned is inevitable, the fire environment is not inde-
pendent of human activities and changes in fire pattern will also depend on human action,
government policy, and social goals.
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