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Abstract

The influence of climate change on wildland fire has received considerable attention, but

few studies have examined the potential effects of climate variability on grassland area

burned within the extensive steppe land of Eurasia. We used a novel statistical approach

borrowed from the social science literature—dynamic simulations of autoregressive distrib-

uted lag (ARDL) models—to explore the relationship between temperature, relative humid-

ity, precipitation, wind speed, sunlight, and carbon emissions on grassland area burned in

Xilingol, a large grassland-dominated landscape of Inner Mongolia in northern China. We

used an ARDL model to describe the influence of these variables on observed area burned

between 2001 and 2018 and used dynamic simulations of the model to project the influence

of climate on area burned over the next twenty years. Our analysis demonstrates that area

burned was most sensitive to wind speed and temperature. A 1% increase in wind speed

was associated with a 20.8% and 22.8% increase in observed and predicted area burned

respectively, while a 1% increase in maximum temperature was associated with an 8.7%

and 9.7% increase in observed and predicted future area burned. Dynamic simulations of

ARDL models provide insights into the variability of area burned across Inner Mongolia

grasslands in the context of anthropogenic climate change.

Introduction

There is strong evidence that climate change and altered fuel characteristics associated with

human activity can dramatically influence area burned by wildfire at large spatial scales [1, 2].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0229894 April 3, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shabbir AH, Zhang J, Johnston JD,

Sarkodie SA, Lutz JA, Liu X (2020) Predicting the

influence of climate on grassland area burned in

Xilingol, China with dynamic simulations of

autoregressive distributed lag models. PLoS ONE

15(4): e0229894. https://doi.org/10.1371/journal.

pone.0229894

Editor: Delei Li, Institute of Oceanology Chinese

Academy of Sciences, CHINA

Received: October 6, 2019

Accepted: February 18, 2020

Published: April 3, 2020

Copyright: © 2020 Shabbir et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the

International (Regional) Cooperation and Exchange

Programs of National Natural Science Foundation

of China under grant no. 41961144019. The funder

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0001-5035-5983
https://doi.org/10.1371/journal.pone.0229894
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229894&domain=pdf&date_stamp=2020-04-03
https://doi.org/10.1371/journal.pone.0229894
https://doi.org/10.1371/journal.pone.0229894
http://creativecommons.org/licenses/by/4.0/


Understanding how climate influences fire in grasslands is challenging because of complex

interactions between climate parameters, ignitions, and past fire history [3–13]. Previous

research has demonstrated complex relationships between fire activity and climate variability

in the extensive grasslands of Xilingol in northern China [14, 15]. Fire in this region potentially

creates feedbacks between climate and fire occurrence both by climate forcing related to car-

bon emissions from fires and changes in flammability related to post-fire succession [16, 17].

The climate thresholds that potentially accelerate area burned in the Xilingol region remain

poorly resolved. Identifying these thresholds is important to managers seeking to optimize the

production of key ecosystem services from grasslands.

Many investigations of climate influence on fire extent rely on ordinary least squares (OLS)

regression techniques [1, 11, 12, 18, 19]. The OLS method is appropriate for analysis of station-

ary time-series—series in which the mean, variance, and autocorrelation structure are constant

over time. In the case of non-stationary time series data, application of OLS may result in spu-

rious relationships between variables [20, 21].

The goal of this study is to provide a comprehensive analysis of fire-climate relationships

that accounts for potential non-stationarity in the time series analyzed and that distinguishes

between “short-run” perturbations that move the time series analyzed apart over relatively

short timeframes and “long-run” relationships in which relationships exhibit equilibrium over

time. We accomplish this goal by implementing a method that is increasingly popular in social

science investigations of political and economic trends—dynamic simulations of Autoregres-

sive Distributed Lag (ARDL) models [22]. This method conveys results by constructing

counterfactual scenarios to describe, in our case, the effects on grassland area burned by per-

turbations in climate and carbon emissions [23]. We provide a detailed description of the

implementation of these methods. Although this analysis focused on the steppe lands of north-

ern China, this methodology will be applicable to other investigations of broad-scale climate-

fire relationships. Our results will provide a better understanding of the role of anthropogenic

climate change on fire and help identify adaptation strategies.

Methods

Study area and data

Xilingol is located within the Autonomous Region of Inner Mongolia in northern China (Fig

1). The climate of this region is semi-arid, and maximum temperatures have increased by

approximately 1.5˚C over the last 70 years. The extensive grasslands of this region burn mostly

in the months of April, May, and September (Fig 2). Between 2001 and 2018 there were 832

grassland fires covering a total area of 42,190 ha (Fig 1). Carbon emissions from these fires and

other sources in Xilingol may potentially influence area burned in this region both by contrib-

uting to atmospheric climate forcing of temperature, and because the fires that caused these

emissions reset succession which potentially influences future flammability (Fig 3).

We investigated the relationship between area burned and seven variables: monthly aver-

ages of minimum and maximum temperature (in degrees C), monthly average relative humid-

ity (percentage), monthly average precipitation (in millimeters), average monthly wind speed

(in meters per second), average monthly carbon emissions from fires in Xilingol (in grams

centimeter2), and average sunlight (in hours per month) (Fig 4). All climate data were obtained

from the China Meteorological Data Sharing Service Center (http://www.cdc.cma.gov.cn/) for

the period 2001 to 2018. Data for the number of hectares of grassland area burned and carbon

emissions from fire and other sources were acquired from the Monitoring Center of the Minis-

try of Agriculture. (http://www.moa.gov.cn/). We combined biomass consumed in fire and

carbon emissions in the models we describe below. We log-transformed the data to address
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heteroscedasticity [24], multi-collinearity [25] and assessed autocorrelation using the Durbin-

Watson statistic [26, 27]. Dynamic simulations of ARDL models were performed using the

Stata module [28].

Stationarity test

We followed the workflow of implementing ARDL models as outlined in Figure 1 of [29]. The

information in this section is adopted from methods reported previously in [30, 31]. The first

step in the analysis of potentially non-stationary time series data is an Augmented Dickey-

Fuller (ADF) test to investigate the order of integration of variables [32]. If a series has constant

mean and variance it is represented as I(0) and we call it a stationary series. A nonstationary

series has a changing mean and variance which can be made stationary by taking the first dif-

ference or second difference of the series denoted as I(1) and I(2). We used the following func-

tional form for the ADF test from Gujarati and Porter [33]:

ΔXt ¼ a0 þ a1t þ lXt� 1 þ
Xm

t¼1
�tΔXt� 1 þ ut ð1Þ

Fig 1. The study area Xilingol outlined in red with the area of grassland fires in each year from 2002–2018.

https://doi.org/10.1371/journal.pone.0229894.g001
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Where Xt represents the variable series, Δ represents the first difference, and the lagged differ-

ence terms are included to correct for serial correlations of the disturbance terms on the right

side of the equation. The Schwarz information criterion (SIC) was used for the selection of

lagged differences. When θ = 0, the Xt variable series has a unit root and an I(1) process gov-

erned by a stochastic trend. If the selected time series variable appears to be integrated of order

one, the investigation of 2nd order unit root is performed by using the following expression:

Δ2Xt ¼ b0 þ yΔXt� 1 þ
Xw

t¼1
gtΔ

2Xt� 1 þ εt ð2Þ

where Δ2 represents the second-difference operator. The variable Xt is integrated of order two

or I(2) if γ = 0. Suppose d shows the number of times that the variable Xt must be differenced

to become stationary, then the series Xt is integrated of order d or I(d). If the ADF test statistic

value was higher than the critical values at a 5 percent significance level, we considered it to be

a stationary series but if the test statistic value is lower than the critical values, then, we classi-

fied it as a nonstationary series. If non-stationary, the series was differenced to make it station-

ary. Providing variables are either integrated of order I(0) or integrated of order I(1) or both

but not I(2), it is possible to estimate an ARDL model in error-correction form and perform a

bounds test for cointegration of variables.

Bounds test

The dynamic simulated ARDL approach employs a bounds test to check the long-run relation-

ship between variables. During bounds testing, a long-run relationship between variables exists

Fig 2. The total area burned (left y-axis) and the number of fires (right y-axis) by month between 2001 and 2018 in Xilingol League, China. Grey

bars indicate area burned and red lines indicate the number of fires. There were no fires in January, November, or December between 2001 and 2018.

https://doi.org/10.1371/journal.pone.0229894.g002
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if the F-statistic is greater than the upper bound critical value at a 5 percent significance level.

If the F-statistic is less than the upper bound critical value, then the null hypothesis of no long-

run relationship between variables cannot be rejected. If the F-statistic value lies between the

upper and lower bound critical values, a decision about co-integration remains inconclusive.

The null hypothesis of no long-run relationship is represented as H0: δ1 = δ2 = δ3 = δ4 = δ5 =

δ6 = δ7 = δ8 = 0 tested during the model estimation. The ARDL bounds testing estimation

model follows:

D ln area burned ¼ aþ d1 ln area burnedt� i þ d2 ln Rel:humidityt� iþ

d3 ln Sunlightt� i þ d4 ln Tmaxt� i þ d5 ln Tmint� i þ d6 ln Cemt� i þ d7 lnWindt� iþ

d8 ln Rainfallt� i þ
Xn

i ¼ 1
b2Δ ln area burnedt ¼ i þ

Xn

i ¼ 1
b3Δ ln humidityt ¼ iþ

Xn

i ¼ 1
b4Δ ln Sunlightt ¼ i þ

Xn

i ¼ 1
b5Δ ln Tmaxt ¼ i þ

Xn

i ¼ 1
b6Δ ln Tmint ¼ iþ

Xn

i ¼ 1
b7Δ ln Cemt ¼ i þ

Xn

i ¼ 1
b8Δ ln Windt ¼ i þ

Xn

i ¼ 1
b9Δ ln Rainfallt ¼ i þ et

ð3Þ

Where Δ is the change operator, ln is its natural logarithm, and t-i is the optimal number of

lags selection based on Schwartz Bayesian information criterion and Akaike information crite-

rion. Delta (δ) and beta (β) are the parameters to be estimated. If a long-run relationship is

Fig 3. Carbon emissions (left y-axis) from all sources and biomass burning (right y-axis) by month between 2001 and 2018 in

Xilingol League, China. Grey bars indicate biomass burning and red lines indicate carbon emissions. There were no fires in

January, November, or December between 2001 and 2018.

https://doi.org/10.1371/journal.pone.0229894.g003
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Fig 4. A relationship between area burned and climate variables between 2001 and 2018 in Xilingol League, China. The area

burned is shown with grey bars on the bottom panels and climate variables are shown with red points on the upper panels (see

text).

https://doi.org/10.1371/journal.pone.0229894.g004
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found, short- and long-run elasticities can be estimated using dynamic simulations of an

ARDL model.

After confirming the long-run relationship among the variables, we incorporated the

cumulative sum (CUSUM) and cumulative sum of squares (CUSUMSQ) tests developed by

Brown et al. [34] to check the goodness of fit for the ARDL model [35]. These tests are per-

formed on the residuals of the error correction model and reported in graphical form. Stable

models fall within the 5% critical bound of CUSUM and CUSUMQ plots.

Dynamic simulated ARDL models. We selected the dynamic simulation ARDL model

with cointegrated variables embedded in a vector autoregressive time series model (VAR) [28,

36]. This method is designed to estimate the effect of a group of explanatory variables on a sin-

gle response (area burned) with variable measurements taken discretely over time (also known

as a single equation model framework). In contrast to ordinary least squares (OLS) regression,

both current and lagged values of explanatory variables are considered in an ARDL framework

and the estimated effect on the response can be instantaneous or observed gradually on future

time steps. The error correction algorithm of the dynamic ARDL technique was used to

develop eight models via 5000 simulations of the vector of parameters from a multivariate nor-

mal distribution [37]. We selected the best regression model using dynamic simulations ARDL

model with some methodological modifications introduced with the general formulation

expressed as follows:

DðyÞt¼ a0 þ y0ðyÞt� 1
þ y1ðx1Þt� 1 þ � � � þ ykðxkÞt� 1 þ

Xp

i¼1
ðaiÞDðyÞt� 1

þ
Xq1

j¼0
b1� jD ðx1Þt� j þ � � � þ

Xqk

j¼0
bk� jD ðxkÞt� j þ εt;

ð4Þ

Where Δ y represents a change in the exogenous variable, α0 is the intercept of all exogenous

variables at time t − 1, which affects the level of maximum lagged p and qk to first-differences

Δ with error term ε on the response of t. The null hypothesis of a level relationship is assessed

using Kripfganz and Schneider [38] critical values and approximate p-values based on

response surface regressions. To reject the null hypothesis of no level relationship H0 = θ0 +

θ1 + � � � + θk = 0, the F-statistic from the jointly zero estimation of all parameters on the climate

threshold variables in level and the lagged grassland area burned coefficient must be above the

upper bound [I(1)] critical values. The empirical specification in Eq (4) can be re-written into

eight conceptual models as:

MODEL 1:

D lnðarea burnedÞt ¼ a0 þ y0 lnðarea burnedÞt� 1
þ

b1D lnðCem=bioburÞt þ y1 lnðCem=bioburÞt� 1
þ b2D lnðRel:humidityÞtþ

y2 lnðRel:humidityÞt� 1
þ b3D lnðTminÞt þ y3 lnðTminÞt� 1

þ b4D lnðTmaxÞtþ

y4 lnðTmaxÞt� 1
þ b5D lnðPrecipÞt þ y5 lnðPrecipÞt� 1

þ b6D lnðSunlightÞtþ

y6 lnðSunlightÞt� 1
þ b7D lnðWindÞt þ y7 lnðWindÞt� 1

þ ut;

ð5Þ

PLOS ONE Grassland area burned to climate response

PLOS ONE | https://doi.org/10.1371/journal.pone.0229894 April 3, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0229894


MODEL 2:

D lnðCem=bioburÞt ¼ a0 þ y0 lnðCem=bioburÞt� 1
þ b1D lnðarea burnedÞtþ

y1 lnðarea burnedÞt� 1
þ b2D lnðRel:humidityÞt þ y2 lnðRel:humidityÞt� 1

þ

b3D lnðTminÞt þ y3 lnðTminÞt� 1
þ b4D lnðTmaxÞt þ y4 lnðTmaxÞt� 1

þ b5D lnðPrecipÞtþ

y5 lnðPrecipÞt� 1
þ b6D lnðSunlightÞt þ y6 lnðSunlightÞt� 1

þ b7D lnðWindÞtþ

y7 lnðWindÞt� 1
þ ut;

ð6Þ

MODEL 3:

D lnðRel:humidityÞt ¼ a0 þ y0 lnðRel:humidityÞt� 1
þ

b1D lnðCemÞt þ y1 lnðCem=bioburÞt� 1
þ b2D lnðarea burnedÞt þ y2 lnðarea burnedÞt� 1

þ

b3D lnðTminÞt þ y3 lnðTminÞt� 1
þ b4D lnðTmaxÞt þ y4 lnðTmaxÞt� 1

þ b5D lnðPrecipÞtþ

y5 lnðPrecipÞt� 1
þ b6D lnðSunlightÞt þ y6 lnðSunlightÞt� 1

þ b7D lnðWindÞtþ

y7 lnðWindÞt� 1
þ ut;

ð7Þ

MODEL 4:

D lnðTminÞt ¼ a0 þ y0 lnðTminÞt� 1
þ b1D lnðCemÞtþ

y1 lnðCem=bioburÞt� 1
þ b2D lnðRel:humidityÞt þ y2 lnðRel:humidityÞt� 1

þ

b3D lnðarea burnedÞt þ y3 lnðarea burnedÞt� 1
þ b4D lnðTmaxÞt þ y4 lnðTmaxÞt� 1

þ

b5D lnðPrecipÞt þ y5 lnðPrecipÞt� 1
þ b6D lnðSunlightÞt þ y6 lnðSunlightÞt� 1

þ

b7D lnðWindÞt þ y7 lnðWindÞt� 1
þ ut;

ð8Þ

MODEL 5:

D lnðTmaxÞt ¼

a0 þ y0 lnðTmaxÞt� 1
þ b1DlnðCemÞt þ y1lnðCem=bioburÞt� 1

þ b2DlnðRel:humidityÞtþ

y2lnðRel:humidityÞt� 1
þ b3DlnðTminÞt þ y3lnðTminÞt� 1

þ b4Dlnðarea burnedÞtþ

y4lnðarea burnedÞt� 1
þ b5DlnðPrecipÞt þ y5lnðPrecipÞt� 1

þ b6DlnðSunlightÞtþ

y6lnðSunlightÞt� 1
þ b7DlnðWindÞt þ y7lnðWindÞt� 1

þ ut;

ð9Þ

MODEL 6:

D lnðPrecipÞt ¼

a0 þ y0 lnðPrecipÞt� 1
þ b1DlnðCemÞt þ y1lnðCem=bioburÞt� 1

þ b2DlnðRel:humidityÞtþ

y2lnðRel:humidityÞt� 1
þ b3DlnðTminÞt þ y3lnðTminÞt� 1

þ b4DlnðTmaxÞt þ y4lnðTmaxÞt� 1
þ

b5Dlnðarea burnedÞt þ y5lnðarea burnedÞt� 1
þ b6DlnðSunlightÞt þ y6lnðSunlightÞt� 1

þ

b7DlnðWindÞt þ y7lnðWindÞt� 1
þ ut;

ð10Þ
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MODEL 7:

D lnðSunlightÞt ¼ a0 þ y0 lnðSunlightÞt� 1
þ b1DlnðCemÞt þ y1lnðCem=bioburÞt� 1

þ b2

b2DlnðRel:humidityÞt þ y2lnðRel:humidityÞt� 1
þ b3DlnðTminÞt þ y3lnðTminÞt� 1

þ

b4DlnðTmaxÞt þ y4lnðTmaxÞt� 1
þ b5DlnðPrecipÞt þ y5lnðPrecipÞt� 1

þ b6Dlnðarea burnedÞtþ

y6lnðarea burnedÞt� 1
þ b7DlnðWindÞt þ y7lnðWindÞt� 1

þ ut;

ð11Þ

MODEL 8:

D lnðWindÞt ¼

a0 þ y0 lnðWindÞt� 1
þ b1DlnðCemÞt þ y1lnðCem=bioburÞt� 1

þ b2DlnðRel:humidityÞtþ

y2lnðRel:humidityÞt� 1
þ b3DlnðTminÞt þ y3lnðTminÞt� 1

þ b4DlnðTmaxÞt þ y4lnðTmaxÞt� 1
þ

b5DlnðPrecipÞt þ y5lnðPrecipÞt� 1
þ b6Dlnðarea burnedÞt þ y6lnðarea burnedÞt� 1

þ

b7DlnðSunlightÞt þ y7lnðSunlightÞt� 1
þ ut;

ð12Þ

Where α0 is the intercept, θ’s and β’s are the parameters to be estimated and u denotes the

white noise at time t. All variables are taken in logarithmic scale to stabilize the variance and so

that results can be presented as “elasticities” in which coefficients represent the estimated per-

cent change in the burned area dependent variable for a percent change in a climate indepen-

dent variable.

Results

ADF and PP unit root tests indicated that maximum temperature and carbon emissions were

stationary at the 10% significance level presented (Table 1). All other variables were integrated

at order one I(1). The lag selection criteria presented in Table 2 was used to select the optimal

lag order for the ARDL model estimation technique. The lag selection criteria (final prediction

error, Schwarz Bayesian Criterion, and Hannan-Quinn Information Criterion) confirmed lag

one as the optimal lag for subsequent analysis. Table 3 shows the results of the ARDL bounds

cointegration test. The F-statistic of the estimated models was above the upper bounds critical

values, thus rejecting the null hypothesis of no level relationship. The absence of I(2) variable

validated the application of ARDL bound testing technique.

Long-run coefficients of observed and predicted area burned

An ARDL model with lag (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian Criterion.

The dependent variable (grassland area burned) and the regressors with 832 observations from

2001 to 2018 were estimated using dynamic simulations of an ARDL model. Wind speed, max-

imum temperature, and carbon emissions showed a significant relationship to observed and

predicted area burned. All other variables tested were non-significant. A one percent increase

in wind speed was associated with a 20.8% and 22.8% increase in observed and predicted area

burned respectively while holding other climatic variables constant. A one percent increase in

maximum temperature was associated with 8.7% and 9.8% increase in observed and predicted

area burned while holding other climatic variables constant. A one percent increase in carbon

emission was associated with only a 2.6% and 2.8% increase in observed and predicted area

burned with other variables held constant. The estimated long-run coefficients for the effect of

climate variables on the grassland area burned are shown in Table 4 while a plot of the
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Table 1. Unit root results.

ADF test statistics PP test statistics Level of Significance

Observed area burned

Variables

Levels 1st Differences Levels 1st Differences 1% Level of Significance 5% Level of Significance

ln Cem -6.35� -7.941 �� -6.81 � -14.001 �� 1(1) 1(0)

ln Rel.humidity -7.138 -6.922 �� -4.658 -24.824 �� 1(1) 1(0)

ln Tmin 3.880 -8.972 �� -4.864 -11.821 �� 1(1) 1(1)

ln Tmax -3.44� -13.52 �� -6.053 � -24.936 �� 1(1) 1(1)

ln Precip. -7.668 -12.74 �� -9.874 -32.864 �� 1(1) 1(1)

ln Sunlight -9.612 -8.097 �� -7.826 -38.326 �� 1(1) 1(1)

ln Wind Speed -5.331 -7.166 �� -8.667 -27.942 �� 1(1) 1(0)

Predicted area burned

ln Cem -9.35� -6.248 �� -7.01 � -13.981 �� 1(1) 1(1)

ln Rel.humidity -7.234 -7.121 �� -9.154 -21.029 �� 1(1) 1(1)

ln Tmin 6.582 -8.176 �� -4.861 -16.127 �� 1(1) 1(0)

ln Tmax -6.04� -17.71 �� -7.050 � -21.034 �� 1(1) 1(1)

ln Precip. -5.160 -12.81 �� -7.074 -30.094 �� 1(1) 1(0)

ln Sunlight -6.010 -7.090 �� -9.121 -36.020 �� 1(1) 1(0)

ln Wind Speed -9.139 -8.660 �� -9.460 -20.049 �� 1(1) 1(1)

Note:

� represents 10% significance level while

�� represents 5% significance level

https://doi.org/10.1371/journal.pone.0229894.t001

Table 2. The lag selection criteria.

Lag LogL LR FPE AIC SBC HQ

0 131.06 NA 8.11e+11 -8.71 -9.11 -6.91

1 119.02 276.21 1.21e+11� -14.34 -15.04� -22.21�

2 129.10 63.75 6.02e+11 -13.01 -16.91 -23.67

3 114.14 91.02� 9.01e+11 -16.42� -18.61 -24.64

Notes:

� indicates lag order selected by the criterion,

LogL: log-likelihood, LR: sequential modified log-ratio test statistic (each test at 5% level), FPE: Final prediction error, AIC: Akaike information criterion, SBC: Schwarz

Bayesian Criterion, and HQ: Hannan-Quinn information criterion.

https://doi.org/10.1371/journal.pone.0229894.t002

Table 3. ARDL bounds cointegration test.

Models statistic 1(0) 1(1) p-value

1(0)

1(1)

Lnareaburned = f (lnCem lnRel.humidity lnTmin lnTmax lnPrecip lnSunlight lnWind) F 10.12 2.34 3.63 0.001 0.001

lnCem = f (lnareaburned lnRel.humidity lnTmin lnTmax lnPrecip lnSunlight lnWind) F 9.71 2.62 3.84 0.001 0.001

lnRel.humidity = f (lnCem lnarea burned lnTmin lnTmax lnPrecip lnSunlight lnWind) F 8.55 2.28 3.41 0.002 0.001

lnTmin = f (lnCem lnRel.humidity lnarea burned lnTmax lnPrecip lnSunlight lnWind) F 11.22 2.91 4.10 0.001 0.006

lnTmax = f (lnCem lnRel.humidity lnTmin lnarea burned lnPrecip lnSunlight lnWind) F 6.11 2.86 3.90 0.001 0.001

lnPrecip = f (lnCem lnRel.humidity lnTmin lnTmax lnarea burned lnSunlight lnWind) F 10.63 2.74 3.25 0.008 0.007

lnSunlight = f (lnCem lnRel.humidity lnTmin lnTmax lnPrecip lnarea burned lnWind) F 5.21 2.31 4.18 0.001 0.001

lnWind = f (lnCem lnRel.humidity lnTmin lnTmax lnPrecip lnarea burned lnSunlight) F 8.44 2.11 3.71 0.001 0.001

https://doi.org/10.1371/journal.pone.0229894.t003
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modelled values showing the influence of selected climate variables on area burned in Xilingol

is shown in Fig 5.

Fig 6 shows the results of the dynamic stimulated ARDL model in which the grassland area

response is predicted at various time steps after forcing a one standard deviation increment of

each climate variable. These simulations showed that a one standard deviation increase in

maximum temperature and wind speed would significantly increase area burned over a

twenty-year period beginning in approximately ten years. Carbon emissions were associated

with an increased area burned at the 75% confidence interval after ten years, but not at a 90%

or 95% confidence interval.

Short-run coefficients of observed and predicted area burned

The short-run equilibrium relationship of observed and future area burned was examined

using the error correction representation of the dynamic stimulated ARDL model with 832

observations over the period 2001 to 2018. The estimated elasticity of wind speed in the short

run was found to be low relative to the long-run elasticity. A 1% increase in wind speed was

associated with a 6.1% and 7.8% increase in observed and predicted area burned respectively

while holding other climatic variables constant. The estimated short-run elasticity of carbon

emission was associated with a 1.8% and 1.9% increase in observed and predicted area burned

while other climatic variables were held constant. The empirical results of the short-run equi-

librium relationship are presented in Table 5 while the monthly correlation between grassland

area burned and climatic variables are depicted in Table 6. The area burned exhibited stronger

correlations with maximum temperature than carbon emissions. The correlation of wind

speed and sunlight to area burned varied between months.

Table 4. Estimated long-run coefficients for the effect of climate variables on grassland area burned from 2001 to 2018 using dynamic simulations of ARDL

models.

Observed Predicted

Regressor Coefficient Prob. Coefficient Prob.

Ln Wind speed 20.81 � 0.001 22.76� 0.001

Ln Tmax 8.651 � 0.001 9.746� 0.001

Ln Tmin 1.026 0.401 1.064 0.517

Ln Rel.humidity 1.102 0.601 1.141 0.612

Ln Precip 1.421 0.032 1.914 0.063

Ln Sunlight 4.481 0.001 4.606 0.001

Ln Cem 2.616 �� 0.001 2.814�� 0.001

R2 0.631 R2 0.671

Adj. R2 0.644 Adj. R2 0.682

Number of simulations. 5000 Number of simulations. 5000

Sum squared Res. 0.061 Sum squared Res. 0.056

Durbin-Watson-stat 2.231 Durbin-Watson-stat 2.106

Diagnostics

χ LM − ARCH2 0.41 χ LM − ARCH2 0.44

χ LM − B − G2 0.53 χ LM − B − G2 0.51

Functional Form Ramsey RESET test 0.41 Functional Form Ramsey RESET test 0.49

Normality 0.64 Normality 0.68

Note:

� denotes 1% significance level while

�� denotes 5% significance level

https://doi.org/10.1371/journal.pone.0229894.t004
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Model validation

Diagnostic tests are critical to examine the independence of the residuals of the estimated

models. Several diagnostic tests such as the LM test for autoregressive conditional heteroske-

dasticity, Breusch-Godfrey test for autocorrelation, Ramsey RESET test for functional form

and Jarque-Bera test for normality were employed to verify the estimated long- and short- run

elasticities of the dynamic stimulated ARDL Model. Table 5 shows that the estimated models

are free from heteroskedasticity, autocorrelation, functional misspecification and are normally

distributed. Fig 7 presents the plots of the cumulative sum of recursive residuals for the

dynamic stimulated ARDL model and indicates that values are within the 95% confidence

bands—confirming the stability of the estimated models.

Fig 5. A plot of the modelled values showing the influence of variation in climatic variables on the area burned in

Xilingol.

https://doi.org/10.1371/journal.pone.0229894.g005
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Discussion

This study demonstrates that in the long-run, grassland area burned in Xilingol is more sensi-

tive to changes in wind speed and temperature than other climate variables [10, 15, 39]. Past

fire history and the carbon emissions that resulted from these fires had a marginal influence

Fig 6. Plots of the dynamic stimulated ARDL model. (a) change in predicted maximum temperature on area burned (b) change

in predicted sunlight on area burned (c) change in predicted humidity on area burned (d) change in predicted wind speed on area

burned (e) change in predicted carbon emissions on area burned (f) change in predicted precipitation on area burned. Dots

represent average predicted value while dark blue to light blue lines denote 75, 90 and 95% confidence intervals. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.).

https://doi.org/10.1371/journal.pone.0229894.g006
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on the projected future fire. Area burned is likely to increase given warmer winter and spring

temperatures related to directional climate change [6].

Variability in precipitation, in contrast, had no significant effect on area burned, which is

surprising because fuel moisture often plays a critical role in fire spread. There are three poten-

tial explanations for the lack of a clear relationship between precipitation and area burned.

First, our study area has relatively low precipitation during every year of the fire season and

fuel moisture is usually at critical levels during fire season so that ignition and wind events are

the key determinates of burned area. It is also possible that the field capacity of soils in Xilingol

grasslands is large enough that fuel moisture does not decrease because plants have sufficiently

deep roots to keep fuel moisture at normal levels even during drought. The third possibility is

that our statistical approach is unable to accurately estimate the precipitation response because

there is insufficient variation in precipitation over the 18-year time series examined.

Other studies (e.g. [14]) failed to find strong correlations between area burned and wind

speed, possibly because of a shorter climate record examined (2000–2014 instead of 2001–

Table 5. Error correction representation for dynamic simulations of ARDL models.

Observed Predicted

Regressor Coefficient Prob. Coefficient Prob.

DLn Wind speed 6.143 �� 0.001 7.806�� 0.001

DLn Tmax 0.046 0.871 0.524�� 0.001

DLn Tmin 0.241 0.461 0.044 0.541

DLn Rel.humidity 0.232 0.421 0.031 0.611

DLn Precip 0.620 0.232 0.066 0.441

DLn Sunlight 2.447 0.001 2.888 0.451

DLn Cem 1.832 �� 0.001 1.866�� 0.001

ECM (-1) -0.611 �� 0.001 -0.626�� 0.001

R2 0.621 R2 0.632

Adj. R2 0.630 Adj. R2 0.649

Number of simulations. 5000 Number of simulations. 5000

Sum squared Res. 0.006 Sum squared Res. 0.061

Durbin-Watson-stat 2.161 Durbin-Watson-stat 2.180

Notes: ARDL (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian Criterion. The dependent variable was Ln (grassland area burned) with 832 observations over

the period 2001 to 2018.

�� denotes 5% level of significance

https://doi.org/10.1371/journal.pone.0229894.t005

Table 6. Monthly correlation between grassland area burned and climatic variables from 2001 to 2018.

Months Tmax Tmin Precip Rel.humidity Wind Cem Sunlight

FMA 0.418 0.011 0.038 0.034 0.068 0.434 0.019

(0.01) (0.211) (0.189) (0.313) (0.401) (0.01) (0.311)

MJJ 0.436 0.118 0.149 0.382 0.881 0.461 0.049

(0.01) (0.168) (0.031) (0.041) (0.01) (0.01) (0.129)

ASO 0.488 0.014 0.021 0.031 0.841 0.421 0.632

(0.01) (0.506) (0.563) (0.865) (0.01) (0.01) (0.01)

Abbreviations: February, March, April (FMA), May, June, July (MJJ), August, September, October (ASO), monthly average maximum temperature (Tmax), monthly

average minimum temperature (Tmin), monthly precipitation (Precip), monthly average relative humidity (Humidity), monthly average wind speed (Wind), Carbon

emission (Cem), monthly average sunlight (Sunlight). The top statistic in each cell is Pearson’s r and the bottom parenthesis statistic denotes the probability.

https://doi.org/10.1371/journal.pone.0229894.t006
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Fig 7. Plots of the cumulative sum of recursive residuals for the dynamic stimulated ARDL model. (a) maximum temperature

(b) sunlight (c) humidity (d) wind speed (e) carbon emissions (f) precipitation. The recursive CUSUM plots within the 95%

confidence bands confirm the stability of the estimated models.

https://doi.org/10.1371/journal.pone.0229894.g007
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2018) or different statistical methodology. Existing literature–[6, 14, 40] often ignore lag selec-

tion in statistical models, which may result in spurious regressions.

Although we demonstrate an important influence of climate on area burned across Xilingol,

anthropogenic ignitions, urbanization, agriculture, and management practices may account

for substantial variability in fire occurrence and pattern [41, 42]. Extreme wind events occur in

northern China on a regular basis, but do not regularly result in large fire events. A large num-

ber of fires are reliant on the concurrency of these weather events related to human activities

[43]. Over 95% of ignitions are due to humans [4, 16], and as populations increase, we expect a

greater chance of ignitions during severe fire weather conditions.

Our research suggests that the combination of increasing anthropogenic pressure on grass-

lands in concert with continued warming temperatures will likely increase burning in the

northern China steppe, which may have significant effects to the livestock industry and conser-

vation efforts [7, 12]. Rehabilitation and following fire in arid and semi-arid landscapes require

significant time and expense. Our research demonstrates that there may be climatic thresholds

past which point rising summer temperature and high wind speed events could lead to abrupt

increases in area burned. The response of wind speed related to grassland area burned is the

most critical threshold, suggesting that change in intensity of wind speed is particularly

impactful.

Conclusion

Anthropogenic climate change along with an increase in the human population is likely to sig-

nificantly increase the impact of fire on the globally important grassland ecosystems of Xilin-

gol. This study successfully utilized a dynamic simulated Autoregressive Distributed Lag

(ARDL) model to determine the climate variables that have the greatest effect on the area of

grassland burnt. Our results indicated that many factors predicted to have an influence of the

area burned—such as precipitation—were not as influential as expected. The most important

factors influencing area burned are maximum temperature and wind speed. Although our

results indicate that an increase in area burned is inevitable, the fire environment is not inde-

pendent of human activities and changes in fire pattern will also depend on human action,

government policy, and social goals.
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