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Abstract

Unexploded ordnance (UXO) pose a significant threat to post-conflict communities, and cur-

rent efforts to locate bombs rely on time-intensive and dangerous in-person enumeration.

Very high resolution (VHR) sub-meter satellite images may offer a low-cost and high-effi-

ciency approach to automatically detect craters and estimate UXO density. Machine-learn-

ing methods from the meteor crater literature are ill-suited to find bomb craters, which are

smaller than meteor craters and have high appearance variation, particularly in spectral

reflectance and shape, due to the complex terrain environment. A two-stage learning-based

framework is created to address these challenges. First, a simple and loose statistical clas-

sifier based on histogram of oriented gradient (HOG) and spectral information is used for a

first pass of crater recognition. In a second stage, a patch-dependent novel spatial feature is

developed through dynamic mean-shift segmentation and SIFT descriptors. We apply the

model to a multispectral WorldView-2 image of a Cambodian village, which was heavily

bombed during the Vietnam War. The proposed method increased true bomb crater detec-

tion by over 160 percent. Comparative analysis demonstrates that our method significantly

outperforms typical object-recognition algorithms and can be used for wide-area bomb cra-

ter detection. Our model, combined with declassified records and demining reports, sug-

gests that 44 to 50 percent of the bombs in the vicinity of this particular Cambodian village

may remain unexploded.

Introduction

Unexploded ordnance (UXO) are defined as military explosives, such as grenades, bombs,

mortar shells and cluster munitions, that are deployed during armed conflict but fail to deto-

nate, and UXO pose significant challenges to post-war economic recovery, human health and

welfare, and government responsiveness. Each year, UXO claim the lives of 15,000 to 20,000

people, and the majority of victims are children or civilians [1]. The presence of UXO in agri-

cultural fields extends the cost of war to long-term crop production, as field inaccessibility
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reduces agricultural production by millions of US dollars in the Middle East [2]. Practitioners

have observed that the latent risk of bomb explosion makes it dangerous for government pro-

viders to respond to local demands for services [3].

It has been suggested that Cambodia has some of the highest contamination rates in the

world. The United States dropped an estimated 500,000 tons of explosives on Cambodia dur-

ing the Vietnam War. All 24 provinces still have areas contaminated with unexploded ord-

nance and mines, and in 2001, almost half of all Cambodian villages reported some form of

UXO-contamination [4]. Current land clearance methods use laborious and often inefficient

means to find contaminated, high-density areas. Removal practices require deminers to manu-

ally search fields, relying on metal and radar detectors to find possible bombs and using shov-

els to carefully dig out the suspected explosives [5]. A 2016 United Nations report found that

nearly half of the area cleared in the past year “contained no or a very limited number of

mines” [6]. As a result, an estimated four to six million stray explosives have not yet been

located. An average of more than two civilians are killed or injured by UXO each day, and 28

percent of the casualties are children [4].

Remote-sensing analysis provides an alternative means to locate UXO. Declassified US Air

Force records of Vietnam War bombing runs have been used to estimate the effectiveness of

airstrikes on insurgent attacks, civilian political attitudes, and capital recovery [7–9]. However

the records’ coordinates of the payload drops have not been applied to the literature on UXO

identification [10, 11], which develops field equipment to magnetically sense UXO but does

not provide an ex ante measure of high-density areas. To address this challenge, this article

develops a remote-sensing method to count the number of bomb craters (a proxy for deto-

nated bombs) in each payload’s target zone. Once the number of detonated bombs is sub-

tracted from the total bombs in each payload (information provided by the declassified data),

the number of bombs still unaccounted for and potentially hidden in the drop zone can be

estimated.

Previous attempts to detect bomb craters borrow from well-established methods in the

meteor crater literature, which scan satellite images for large, circular craters on planetary sur-

faces in outer space [12–15]. Key differences between bomb craters and meteor craters may

result in these methods undercounting the bomb craters on satellite images. First, bomb cra-

ters experience various levels of erosion and vegetal overgrowth over time, unlike meteor cra-

ters, which are situated on extraterrestrial surfaces that lack atmosphere and vegetation. In

other words, bomb craters have high appearance variation, or intra-class variation. Second,

bomb craters are relatively small in size from a remote sensing perspective, typically only 3 to

12 meters in diameter [16, 17] and much harder to find than meteor impact craters, which can

be up to 3,000 meters in diameter.

Since meteor crater methods detect circular shapes from coarse-grained, black-and-white

images, this purely heuristic approach likely misses bomb craters that are smaller in size, that

do not have a perfectly circular shape, that blend into the surrounding terrain, or that have dis-

turbance objects (e.g., plants or water) in or near the crater. Fig 1 provides examples that illus-

trate these differences between bomb craters and meteor craters. Higher resolution and

geometric data (i.e., LiDAR) can demarcate conflict areas with some success [18, 19]. But in

order to detect an object as small as 3 to 12 meters in diameter, researchers need to work with

Very High Resolution (VHR) satellite images, as craters on VHR images are roughly the equiv-

alent of 100 pixels in size, which provides enough information to detect a variety of feature pat-

terns with remote-sensing methods. Like in recent scholarship, Very High Resolution images

are defined as remote sensing data with a spatial resolution of 0.3 to 1 meter [20].

A machine-learning based detection framework draws on the advantages of VHR images

by detecting bomb craters through building classifiers based on specially designed features—a
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particularly well-suited method, given that crater detection is a target-specific learning task

with a relatively small number of samples available. Since bomb craters generally follow isotro-

pic patterns, the framework considers both shapes and appearances features, including circular

shapes [22–24], contours [25], morphological features [26], and gradients [27]. When building

these custom features, this framework accommodates the variation of shapes and surrounding

objects since some craters have eroded or have been planted in the fifty years following the

bombing. But by including a wider variation in shapes and appearances features in the classi-

fier, the pool of crater candidates is also expected to contain more false positives. The classifier

must be able to include the many types of true positives (that were likely missed in purely heu-

ristic models) while also filtering out the false positives (that result from the more inclusive

selection mechanism).

This article provides an innovative model structure built to achieve these objectives. Since

standard statistical learning models cannot typically accommodate the data variation pre-

sented in bomb craters—due to the fact that single stage learning models do not allow for sub-

sequent refinement on the feature level—an alternative framework is created. Recent research

shows that hierarchical learning models, such as decision trees and random forests, outper-

form statistical classifiers when dealing with multi-modal features (like appearance and geom-

etry) and non-continuous features [28, 29].

Therefore, a two-stage framework is developed for our learning method. In the first stage, a

first pass of bomb crater candidates is extracted from the 100 square-kilometer study area by

creating patches with a sliding window technique, in which a rectangular region slides across

an image with a fixed width and height. The patches are then classified into either potential

craters or rejected candidates. Specifically, a typical feature extractor concatenates a histogram

of oriented gradient (HOG) with a spectrum histogram feature vector for support vector

machine (SVM) based classification, which has reported better accuracy with spectrum value

based land-cover classification when compared to alternative methods [30].

Fig 1. Photographs of (a) a bomb crater in Cambodia [author’s image] and (b) meteor craters on moon [from NASA’s Earth

Observatory Database [21]]. Meteor craters tend to be more precisely circular and do not experience erosion, suggesting that bomb

craters require an alternative method of detection.

https://doi.org/10.1371/journal.pone.0229826.g001
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As mentioned earlier, the potential crater candidates likely contains many false positives.

Thus, the second stage involves a multi-method process to remove the non-craters from the

candidate pool. First, a simple SVM classifier eliminates easily recognizable false positives,

such as buildings and trees. Then, a novel feature descriptor is crafted specifically for crater

shape pattern identification. It is assumed that craters are approximately circular in shape with

very small singular regions that may have different textures, caused by variation in shade,

water, and terrain [17]. Building on feature space analysis [31], a robust adaptive mean-shift-

based shape (AMSBS) feature is developed to separate the different regions in a crater candi-

date. Then a location-specific Scale Invariant Feature Transform (SIFT) feature descriptor is

applied to best describe the texture of the regions, and concatenate it to the AMSBS feature

vector. Finally, a binary classification is performed on the final pool of crater candidates, using

a sum-of-trees model, specifically random forest, which is more suitable for multi-modal data.

The rest of the paper is organized as follows. Section 2 introduces the experimental dataset,

including the training and validation data collected from the satellite image. Section 3 presents

the proposed two-stage framework, which includes the novel patch dependent AMSBS feature.

Section 4 provides the experimental results. Section 5 uses the crater results in a real-world

application, estimating the number of UXO left in the study site. When our results are paired

with land classification data, we find that the majority of the contaminated land is actively cul-

tivated, suggesting that demining services should target this high-use area. Finally, the article

discusses the benefits and scope conditions of our proposed method as well as applications to

other real-world problems, and concludes.

Study site and experimental data

To build this two-stage framework, the article draws on experimental data from a WorldView-

2 multispectral image of Kampong Trabaek town in Prey Veng province, Cambodia. This

VHR image covers an area of 100 km2 (0.5 meter ground sampling distance). The date of data

acquisition was July 4, 2015, and its radiometric resolution is 16-bit. The bands and their wave-

length used for this study are near-infrared (770-895 nm), R (630-690 nm), G (510-589 nm),

and B (450-510 nm). Geometric and radiometric correction is performed at level 1. As shown

in Fig 2, the image is located in southeastern Cambodia, roughly 30 kilometers away from the

Vietnam border, and is one example of the many areas in the eastern half of the country that

experienced heavy bombing.

The declassified US Air Force records reveal that 3,205 general purpose bombs (more com-

monly known as carpet bombs) were dropped within this 100 km2 area. The bombing was part

of the US 7th Air Force interdiction and close air support campaign from May 1970 to August

1973, also known as Operation Freedom Deal. Although the campaign was initially restricted

to within 50 kilometers of the South Vietnam border, after two months the operation moved

west past the Mekong River and covered the majority of the country—all in an effort to sever

the People’s Army of Vietnam supply lines that ran through Cambodia and Laos.

There are, of course, limits to any single study site. Yet there are two reasons to believe that

the Prey Veng location and the model built from data generated from this site have external

validity. First, the site provides an array of terrains—most notably rice paddies, peri-urban

development, and river floodplains—that surround existing bomb craters. Fig 3 provides a

closer look at the entire satellite image. The Kampong Trabaek river runs north to south, irri-

gating the region’s rice paddies. Kampong Trabaek town (population 1,358) lies due south of

the training region, at the intersection of Route 1 and the river that shares its name. The wood

and metal buildings, water features, and trees are common disturbances that will be incorpo-

rated into the model.
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Second, this area represents a “most likely” case for finding a high ratio of undetonated to

detonated bombs. Only 119,857 m2 (or 0.12% of the image) have been cleared by professional

deminers, despite the Cambodian Mine Action Center labelling this region as a high priority.

Within that cleared space, deminers found two general purpose bombs and hundreds of scrap

metal pieces. This ratio highlights the recurring inefficiency in the clearance process, particu-

larly the difficulty that deminers face in distinguishing bombs from leftover metals. Despite

the substantive importance of aiding the demining process in Kampong Trabaek and its sur-

rounding fields, the proposed method may also be applicable to a wide range of cases, a claim

that nonetheless requires further comparative study.

Fig 2. The Very High Resolution (VHR) satellite image is located in Prey Veng province, Cambodia, part of a heavily bombed area

roughly 30 kilometers from the Vietnam border. Each gray dot represents one of 113,716 payloads dropped over Cambodia from 1965

to 1973. Basemap from USGS National Boundaries Dataset (URL: https://viewer.nationalmap.gov/advanced-viewer/).

https://doi.org/10.1371/journal.pone.0229826.g002
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We selected two regions from the satellite image in which to collect training and validation

data. These regions were chosen according to their proximity to the river (flooded craters tend

to be closer to the water source), intersection with a road (which provides more buildings and

urban disturbances), and mix of active and inactive rice paddies (leading to color variation of

green and brown craters). Fig 3 shows the regions where the model was trained and validated,

before it ran on the entire satellite image. The size of the training and validation region are

approximately 1757 × 3554 and 5206 × 7394 pixels of the entire satellite image (ca.

22666 × 18524 pixels), making the training and validation sets statistically significant and rep-

resentative of the overall image.

To create the training and validation datasets, craters were labeled with the best manual

effort in small image patches of 64 × 64 pixels. This is equivalent to a 32 × 32 m2 footprint in

the WorldView satellite image, which captures the size of the largest craters, approximately 12

meters in diameter. The human coder was provided an initial sample of ground-truthed crater

images, verified through international demining organizations working in Cambodia, and

used them to identify 49 positive crater images and 108 negative crater images in the training

region. An image patch was coded as a positive sample if a bomb crater appears in its center;

Fig 3. The satellite image (100 km2) of the study site. After we built and evaluated the two-stage model on the training and validation

region, detection was performed over the entire region.

https://doi.org/10.1371/journal.pone.0229826.g003
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otherwise it was regarded as a negative sample. Fig 4 provides some examples of positive and

negative crater images from the training data.

To expand the training data, we performed several data augmentations on the labeled crater

image patches. This included horizontal flipping and rotating of the training data patches 90,

180, and 270 degrees. The data augmentations help to avoid patch rotation dependence and

over-fitting [32]. This expanded the original training data from 157 to 1,256 samples. Then the

model was run on the validation region, outlined in black in Fig 3 above. The algorithm’s out-

put was checked against the human coder’s labels, and the model was further refined before it

was run over the entire satellite image. The two-stage crater detection framework is described

in detail in the next section. The model’s results and its performance statistics compared to

alternative approaches are provided in the section after that.

Methodology

The study is composed of two major methodological stages: (i) support vector machine (SVM)

classification to identify patches with circular shapes of various colors, and (ii) a novel classifi-

cation method that extracts texture, color, and location information from a variety of circular

sizes within an image patch, using adaptive segmentation to detect circular objects, extracting

central scale-invariant feature transform (SIFT) points and adaptive mean-shift-based shape

features, and classifying with a random forest model.

Fig 4. Example patches of correctly identified bomb craters (a) and falsely identified bomb craters (b). The selection of false bomb

crater images include a building, pond, and trees from the first stage classification.

https://doi.org/10.1371/journal.pone.0229826.g004

PLOS ONE Estimation of unexploded ordnance density with remote-sensing methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0229826 March 18, 2020 7 / 22

https://doi.org/10.1371/journal.pone.0229826.g004
https://doi.org/10.1371/journal.pone.0229826


In the first step, a sliding window extracts image patches from the satellite image. Then, a

support vector machine (SVM) algorithm detects circular or near-circular objects with spectral

values that match the sample craters. This method follows standard SVM classification, based

on Histogram of Gradient (HOG) and spectral information. We expect the SVM classification

to include several false positives because conventional classification methods typically extract

feature vectors using all pixels in the patch, so other circular objects, like ponds and buildings,

were detected in model building. Therefore, disturbances surrounding a bomb crater (e.g.,

trees or small buildings that lie in the corner of the patch) will be absorbed in the feature vector

and bias the extracted data. By the end of the first stage, the model has sorted the patches into

preliminary groups of true and false candidates, which we will use to compare our first-stage

results with two alternative approaches.

In the second stage, a novel method of feature extraction is built that first segments each

candidate patch so that the circular object is separated from the surrounding region, a process

that we call adaptive mean-shift segmentation. Then, the shape, location, and radiometric

information is extracted out of the circular object, building a new adaptive mean-shift based

shape (AMSBS) feature. Next, the textural patterns are extracted, using scale-invariant feature

transform (SIFT) points. Finally, a random forest classifier is trained to use the AMSBS feature

and the SIFT points in order to determine whether each patch candidate is a false positive or

contains a real bomb crater. Fig 5 illustrates the workflow for our proposed method.

Stage 1: Patch-based SVM classification using HOG and spectrum

information

One of the defining features of a bomb crater is its circular shape. So for the first stage of pro-

cessing, contour shape features are extracted using Histogram of Gradient (HOG), which is

capable of describing objects with distinct contours in near circular shapes. It is robust to

changes of illumination and shadow, and has been successfully applied to pedestrian detection

in close range images [27].

However, the contour features of HOG may not be sufficient to distinguish craters, as there

may exist other circular or near-circular objects, like ponds, silos, and cluster of trees or rocks.

To address this issue, a histogram distribution of the spectral values of the patch is introduced

to serve as another set of features to reflect the statistical spectrum of each patch, noted as vcolor

2 R30. Afterward, vcolor is concatenated with the HOG feature. To account for noise in the fea-

ture vector, principal components analysis (PCA) transformation retains the first few compo-

nents that preserve 0.9 of the cumulative sum of the eigenvalues. The obtained final feature

vector of the first stage is noted as v1.

After training the SVM algorithm using the HOG + spectrum histogram feature, the classi-

fier is tested on the satellite image by taking patches using a sliding window. The sliding win-

dow is a square that consists of 64 pixels (8 by 8), and scans in both horizontal and vertical

directions. The SVM algorithm classifies each image crop inside the box, known as a patch,

according to whether or not it contains the object of interest, circular shapes with coloring

similar to the confirmed bomb craters. The classifier is able to separate almost all of the bomb

craters from background terrains according to the experimental results. In other words, this

first stage of processing is conservative enough to have retained most of the real bomb craters,

but it comes at the expense of extracting many irrelevant objects with a similar appearance.

The spectrum histogram identifies some incorrect patches along with some of the highly dis-

tinctive craters, so a large number of false positives are contained in the set of detected bomb

craters. Our goal in the second stage is to develop a method that corrects the over-inclusion of

false craters.
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Stage 2: Novel feature extraction and learning on random forest

In order to separate the false positives from the real bomb craters, a second stage of processing

uses shape features more specifically designed for classifying bomb craters, such as area size

and isotropy. Conventional classification approaches typically extract feature vectors using all

the pixels of a patch. However, it is possible that one patch may contain other objects. For

example, a patch with a bomb crater in its center region might have trees at the four corners,

and these textures, if used in the feature vector, are likely to impact the detection results.

Compared to the human-identified craters, bomb craters present relatively homogeneous

regions in terms of color. Given our selected detection method, a bomb crater is defined to be

a circular object in the center of the patch. Therefore, the candidate patches are segmented to

identify such patterns, using a mean-shift segmentation algorithm [31]. If a patch can be seg-

mented to a few regions where the center regions are relatively isotropic and flat, there is

chance that the patch may contain a bomb crater. However, if inappropriate parameters are

used in the mean-shift segmentation, the patch may be over-segmented or under-segmented,

leading to incorrectly identified patterns.

Adaptive mean-shift segmentation. Given the large variation of spectrum information

across different image patches, no single parameter set will capture the range of bomb craters.

Therefore, an adaptive mean-shift (MS) segmentation method is used to tune the associated

parameters (i.e., the range bandwidth) of the classic MS algorithm [31].

Our adaptive MS method tunes the range radius rradius dynamically and ensures that only

one segment appears in the center of the patch. This central segment represents the object of

interest (i.e., the bomb crater), where the features will be extracted. The range bandwidth

parameter reflects the sensitivity of the algorithm when segmenting images; normally a large

value refers to fewer large segments while a small value indicates more segments that are small

in size. For each patch, we freeze the other parameters and initialize range bandwidth to a high

value (5 in this case). Then the range bandwidth is monotonically decreased until the central

segment appears with an expected segment, eexp. We define segment s to be contained within

the expected segment (s 2 eexp) when the most distant point in the segment is within 10 pixels

from the center. If the central segment does not meet the size criterion, we discard the patch.

Fig 5. Workflow of the two-stage framework for bomb crater detection.

https://doi.org/10.1371/journal.pone.0229826.g005
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This decision tree is illustrated in Fig 6a. Fig 6b traces the adaptive MS segmentation process

through two example patches—a bomb crater and a building that the first-stage had identified

as a bomb crater candidate.

Adaptive mean-shift based shape (AMSBS) feature. Once the adaptive MS algorithm

finds the specified segment in the center of the patch, the extracted features from this segment

are used for classification. Since the features are extracted from regions adaptively defined by

the segmentation algorithm, this shape feature is patch-dependent, and we call it the adaptive

mean-shift based shape (AMSBS) feature. The AMSBS feature extracts the shape, location, and

radiometric information out of the segment, and stacks the information as a feature vector. It

is defined by (i) the centrality of the segment, or the maximum and minimum distance from

the patch center to the segment’s boundaries, dmax and dmin, as shown in Fig 7b and (ii) the

maximum distance from the segment’s barycenter to the segment’s boundary, rmax, as shown

in Fig 7c. To simplify, hereafter we refer to it as the maximum radius of the segment. The alge-

braic description of the shape features is shown in Table 1. The shape features, stacked along-

side the number of segments and the mean color values of the segment, constitute the AMSBS

feature vector, as seen in Eq 1.

v0 ¼ ða; dmax; dmin; rmax; ngroups;R;G;BÞ 2 R8 ð1Þ

Central SIFT point. One additional feature vector is created to extract textural patterns

from the central segment: the central SIFT point feature. The scale-invariant feature transform

(SIFT) is a computer vision algorithm widely used in pattern recognition [33]. It extracts inter-

est points over an image and forms a unique feature vector that describes the local textures.

In our framework, a 128-dimension SIFT feature vector extracts key point features from

our human-coded bomb craters and our image patches. Since the target of concern is the cen-

tral segment in the patch, only the feature vector associated with a detected point in the central

segment is used. If more than one SIFT point is detected in the segment, then only the SIFT

point closest to the patch center is used. This implementation does not lose any generality

because the difference of descriptors among multiple SIFT points in the same segment is usu-

ally very small. See, for instance, Fig 5, in which the yellow dots indicate the detected SIFT

points and the red dot represents the central SIFT point. To bring together all of the segment-

Fig 6. A diagram of the algorithm for our adaptive mean-shift (MS) segmentation (a) and an illustrative example of the adaptive

MS segmentation process (b). An image of a real bomb crater is segmented in the top row, and an image of a building (a false positive) is

segmented in the bottom row. Column i shows the original patches. Column ii, iii, and iv show the segmented results with a range radius

of 5, 4, and 3 pixels respectively. The range bandwidth is reduced progressively until the central segment appears as specified.

https://doi.org/10.1371/journal.pone.0229826.g006
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specific information collected in the second stage, the central SIFT point feature vector vSIFT 2

R128 is concatenated with the AMSBS feature vector v0, estimating equations of the form:

vfinal ¼ ðv0; vSIFTÞ 2 R136 ð2Þ

Binary classification using random forest. The objective of our second stage detection is

to take the crater candidates from the first stage detection and refine the sample with more

informative features. In our final step, a classifier is trained on the concatenated AMSBS fea-

ture and central SIFT point, vfinal. The scale distribution of each dimension of vfinal lacks bal-

ance and varies significantly. With respect to categorical data, the random forest classifier has

shown to be able to handle unbalanced distributions with reasonable accuracy [34]. The ran-

dom forest is an ensemble classifier that uses a large number of decisions trees, providing an

advantage over traditional classifiers [29]. Each tree is trained independently, and a mean pre-

dictor is taken over all trees. Consequently we use a random forest model with 850 decision

trees. This classifier separates the crater candidates into two categories: likely bomb craters and

false positives.

Fig 7. A visual example of the critical shape parameters that define the AMSBS feature. The original image of a crater (a) is measured

to obtain the minimum and maximum distance from patch center to the segment boundaries, dmin and dmax (b), in addition to

maximum compactness rmax (c).

https://doi.org/10.1371/journal.pone.0229826.g007

Table 1. Adaptive mean-shift based shape feature (AMSBS).

Description Formula Definitions

Occupancy ratio a ¼ s
H�W s is the number of occupied pixels f the

center segment. H and W are height and

width of the patch.

Maximum distance

to patch center
dmax ¼ maxf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu � ucenterÞ
2
þ ðv � vcenterÞ

2

q

g
(ucenter, vcenter) is the center to patch center

of the patch. (u, v) are points throughout

the patch.

Minimum distance

to patch center
dmin ¼ minf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu � ucenterÞ
2
þ ðv � vcenterÞ

2

q

g

Maximum radius of

center segment
rmax ¼ maxf1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu � ucenterÞ
2
þ ðv � vcenterÞ

2

q

g

Number of

segments

ngroups Total number of segments in the patch. This

serves as additional information about

crater background

Spectrum RGB Spectrum of central segment

https://doi.org/10.1371/journal.pone.0229826.t001
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Experiment and results

For the first stage of processing, the Scikit-image processing library extracts HOG feature with

standard parameter sets [27, 35]. To calculate the spectrum histogram feature, the number of

bins is set to 10 so that each bin covers a spectral bandwidth of 25.5. This ensures that most of

the bins include some samples without making the histogram feature too sparse. Then princi-

pal components analysis (PCA) is applied to the concatenated HOG + spectrum histogram fea-

ture. The lowest decile of the transformed components is discarded to remove feature noise

without losing dominant information [36]. Optimal parameters of SVM are identified by

10-fold cross validation using Scikit-Learn Library [36]; the penalty parameter C and kernel

coefficient γ in the SVM are 0.0001 and 2.2 respectively. The sliding window stride is set to 8

pixels since this is large enough to accommodate the largest bomb crater, roughly 12 meters in

diameter. It also saves computational cost compared to per-pixel sliding window approaches.

During the second stage of processing, the spatial bandwidth and minimal density in the

means-shift segmentation were both set to 20 [31]. As mentioned earlier, the range bandwidth

is initially assigned a relatively high value of 5 to achieve a relatively loose segmentation, and

then is monotonically decreased by 1 in each iteration to get more refined segmentation until

a central segment of the specified size appears. The segment must be from 25 to 624 pixels in

size; given the WorldView 0.5 meter resolution image, this range covers all possible sizes of

bomb craters, as indicated by the sample images provided by the international demining agen-

cies. If a central segment of this size does not appear even when the range bandwidth has

decreased to 1, the patch is coded as not containing a crater and discarded. When the SIFT

points are detected, parameters are set to default using OpenCV throughout the second stage

[37]. This specification helps avoid missing important feature points in the segmented texture-

less patch.

We apply our two-stage detection framework to the entire WorldView image, and provide

the classification results of each stage in Fig 8. On the left side, the crater candidates detected

after the first stage are highlighted in blue. There are 22,366 candidate patches detected on the

entire image. On the right side, the 1,585 craters identified as likely bomb craters after the sec-

ond stage. Roughly 83% of the crater candidates were discarded as false positives.

In order to evaluate the accuracy of our new method, we compare our two-stage framework

to two alternatives, HOG + SVM and Convolutional Neural Network, for accuracy compari-

son purposes. All the bomb craters were manually extracted for validation on a small test

region. The human coder identified 177 bomb craters on the validation region. Our method

finds 1299 bomb craters after the first stage; 157 are bomb craters while the other 1142 are

false positives. Therefore, the first stage is able to find 89% of the bomb craters but it also finds

many false positives. After the second stage refinement, the 1299 detection candidates are

reduced to 207. Among these, 152 are bomb craters and the other 55 are false positives, so the

two-stage framework has an accuracy of 85.9% (152/177). The second stage successfully elimi-

nates 96% of the false positives while it also preserves the number of real bomb craters, only

losing five.

We also conduct comparative experiments to demonstrate the effectiveness of our

approach. Since no other algorithms that we are aware of address crater detection on natural

terrains, we compare our framework with state-of-the-art object-recognition methods, HOG

+SVM [25] and Convolutional Neural Network (CNN) [38–40]. In order to elicit a fair com-

parison, the standard HOG+SVM approach and CNN extracted feature with SVM (CNN

+SVM) approach are applied to the satellite image in the same sliding window manner as our

first stage framework. The HOG feature parameter settings are identified by 10-fold cross vali-

dation with grid search, as was done in the first stage of framework. We also adopt the state-
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of-the-art CNN architecture, VGG-16, as the basic CNN feature extractor [41]. Its parameters,

such as kernel weights and bias, are loaded from previously trained values on ImageNet [40].

The fully connected layers used for classification are removed, and only the CNN and pooling

layers in front are kept for feature extraction. Patches are warped from 64 × 64 to 224 × 224

before feeding them to VGG-16. The output dimension from the neural network is 7 × 7 × 512,

which is then reshaped into a vector with a total dimension of 25,088. After applying PCA, the

feature vector dimension is reduced to 379 to keep the dominant feature information [42].

Then, the second stage of our framework is compared to Bag of Words (BoW) and CNN

feature maps, which are both able to detect false positives [43]. These comparative experiments

are performed on the candidate patches from the first stage of our method. They also both use

a random forest classifier, like our method. The parameters are defined accordingly: number

of trees ntree and the maximum depth of the tree depthmax are identified by 10-fold cross valida-

tion with grid search. To determine the SIFT points, the BoW features were built using K-

means clustering with the SIFT points located in the central segment [44]. The number of clus-

ters is set to 15 because it is the smallest value that can sufficiently distinguish SIFT feature

samples. We have observed in other repetitive tests that other possible parameter settings are

able to achieve a similar performance. For CNN features, VGG-16 is used again as the basic

CNN feature extractor on the segmented patch. The same pre-processing steps are used as in

the first stage comparison. Then, PCA is applied to the features extracted from CNN to reduce

dimensions before classification.

Our evaluation of model performance is based on three metrics commonly used in machine

learning: F1-score, recall and precision [45]. Their definitions follow:

F1 ¼
2 � recall � precision
precisionþ recall

ð3Þ

recall ¼
number of bomb craters detected

number of total bomb craters
ð4Þ

precision ¼
number of bomb craters detected

number of detection patches
ð5Þ

Fig 8. Detection results over the entire WorldView image. Eighty-three percent of the crater candidates from the first

stage were dropped after the second stage refinement.

https://doi.org/10.1371/journal.pone.0229826.g008
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Statistical results are presented in Table 2, and patch detection is visualized across the two

stages in Fig 9. Our method’s first stage has a high recall value (0.89), ensuring that crater can-

didates detected in this stage include most of the actual bomb craters, which will be important

for the second stage refinement. Our first stage alone out-performs the traditional HOG

+ SVM and CNN+ SVM approaches in each metric, though the discrepancy is not large and

the alternative methods are still comparable to ours.

In addition, our second-stage features are able to further refine the detection results with

higher precision. Note that our method’s second-stage result is equivalent to the final result of

this whole two stage framework. Our proposed feature representation of AMSBS plus central

SIFT obtains the highest score for each metric, outperforming the other classification options.

Notably, our two-stage framework has an F1-score of 0.79 compared to 0.57 of BoW and 0.43

of CNN feature. Additionally, the precision level after the second stage has tremendously

increased from 0.12 to 0.73, with only a slight drop in recall value (from 0.89 to 0.86). The pro-

posed method increased true bomb crater detection by over 160 percent. Our second-stage

processing effectively removes a large portion of the false detection without dropping the real

bomb craters, which illustrates the main advantage of this two-stage framework.

In short, when compared to alternative methods, our two-stage framework reports

improved results and can be easily applied with a limited number of training samples, requir-

ing minimal human labor involvement. Our proposed framework can also be modified so that

if new method outperforms either of the two stages, it can be integrated into our proposed

workflow.

Application of results to UXO estimation and post-conflict

reconstruction

The results from our two-stage framework can help demining organizations proactively locate

areas that have a high density of unexploded ordnance. Since a bomb crater provides physical

evidence of a successful detonation, we are able to estimate the number of bombs that have not

detonated within the target buffer, thereby providing more detailed locations of areas that

need professional clearance. A single B-52 payload holds up to 108 225-kilogram or 42

340-kilogram bombs, which were dropped on a target area of 500 by 1500 meters [46]. The

declassified US Air Force dataset indicates that 3,205 general purpose bombs, more commonly

known as “carpet bombs,” were dropped over the 100 km2 area represented in the satellite

image. Following a recommendation from an international demining agency working in Cam-

bodia, we draw slightly larger buffers around each payload coordinates (1,750 meters in diame-

ter) to compensate for the human error in reporting the coordinates.

Table 2. Accuracy assessment our two-stage framework and two alternative approaches.

Model Performance
Precision Recall F1-Score

Candidate Detection (first stage)
Our First Stage 0.121 0.887 0.213

HOG+SVM 0.010 0.763 0.176

CNN+SVM 0.006 0.740 0.011

Crater Refinement (second stage)
Our Second Stage 0.734 0.859 0.792

BoW Feature 0.612 0.525 0.565

CNN Feature 0.364 0.531 0.432

https://doi.org/10.1371/journal.pone.0229826.t002
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First, an accuracy assessment is performed by triangulating our model’s detection results

with ground reference information. Since information about each UXO location is limited, we

rely on the US Air Force dataset combined with the experience of the international demining

agencies to draw “most-likely” spaces of where we expect to find bombs—both detonated (cra-

ters) and undetonated (UXO). Fig 10, we draw the effective target zones—that is, the buffers

surrounding each payload drop—to illustrate how our model finds craters where we would

expect to see them. Almost all of the craters detected by our model (98%) are found within

these buffers, i.e., within 1,750 meters of a payload drop coordinates, suggesting that our

model performs high degree of accuracy.

Then, our model’s performance statistics are used to estimate the number of bomb craters

on the image, compared to the number of craters detected by our model. When our model is

applied over the entire satellite image, it detects 1,585 craters. Given our two-stage frame-

work’s recall value of 0.86, there could be an estimated 1,843 total craters on the overall image.

At a minimum, our model detects 1,585 craters while our best estimate is 1,843 craters. When

the estimated number of craters is subtracted from the total number of bombs dropped in this

area, we estimate that 1,407 to 1,620 bombs are undetonated. While a professional demining

Fig 9. Results of candidate detection (first stage) and crater refinement (second stage), comparing our two-stage

framework to widely-used alternatives. A red box indicates the model correctly found a bomb crater. A blue

box indicates the model found a false positive.

https://doi.org/10.1371/journal.pone.0229826.g009
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agency had cleared a small field within this area, they had only found two general purpose

bombs. As discussed above, the cleared field reflects 0.12% of the entire image; incidentally

two bombs represent 0.12% of an estimated 1,620 undetonated bombs, providing some indica-

tion that our predictions reflect real-world UXO density. In sum, anywhere from 1,405 to

1,618 unexploded carpet bombs are still unaccounted for in this area. Combined with declassi-

fied US Air Force records and demining reports, our results suggests that 44 to 50 percent of

carpet bombs remain unexploded around this particular Cambodian village.

Although our results suggest that a substantial number of unexploded bombs are likely to

be left within this 100 km2 region, demining agencies may not want to devote scarce resources

to clearing areas that are not accessible or widely used. Therefore, we provide land cover classi-

fications for the VHR image to assess how the contaminated land surrounding Kampong Tra-

baek village is being used. The land classification data are generated using eCognition software

and the object-based classification method, which divides the image into six classes: cultivated

agricultural land, uncultivated land, buildings, water, trees, and clouds. The results show that

the majority of the experimental satellite image is cultivated agricultural land (see Fig 11) while

a close-up of the validation region describes our two-stage model’s accuracy across land classes

(see Fig 12).

Across varying terrain, the two-stage framework has high precision and recall (see Table 3).

The density statistics indicate that bomb craters are found likely to be found in across all land

classes. This pattern reflects the indiscriminate nature of the carpet bombing, in which bomb-

ers dropped payloads at such high altitudes that they had near zero visibility of targets on the

ground. These conditions made the damages of the air raids widespread across all types of

land. The model’s high detection rate of craters in tree-covered areas indicates the similarity

between the shapes and textures of tree groves and craters, and motivates further inquiry for

future models.

Fig 10. Payload drop zone for the US airstrikes over the satellite image during the Vietnam War. Over 98 percent

of detected craters fall within 1,750 meters from a payload drop coordinates. These craters are highlighted in blue while

craters outside the target buffers are represented in red.

https://doi.org/10.1371/journal.pone.0229826.g010
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Discussion

Our technical contribution includes a two-stage framework that integrates segmentation [47]

and detection [48] as key tasks for crater detection. Through extensive experiments and com-

parative analysis, we demonstrate that our method significantly outperforms typical object

detection algorithms. Moreover, the proposed two-stage framework requires only a limited

amount of data for learning, i.e. 157 labeled samples. The effectiveness and data-efficiency of

this two-stage framework can dramatically alleviate human labeling labor. This two stage

framework is also easily modifiable and amendable such that any method outperforms in any

of the two stages, and can be integrated into our proposed workflow to achieve satisfactory

results. We hope this framework can provide ideas for similar wide-area bomb crater detection

tasks.

The presented study shows that Very High Resolution satellite images not only deliver

sound information on bomb crater density, but also provide detailed insight into UXO expo-

sure and the complex surface dynamics related to small-scale agricultural activities. In particu-

lar, a combination of a HOG and spectral information classifier and a novel patch-dependent

spatial feature that adapts to different crater sizes and terrains reveals that 44 to 50 percent of

Fig 11. Land classification for the satellite image. Land cover classification suggests that the majority of the land

surrounding Kampong Trabaek is actively cultivated, despite likely UXO contamination. The gray squares represent

detected craters.

https://doi.org/10.1371/journal.pone.0229826.g011
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carpet bombs are still unaccounted for. Nevertheless, crop cultivation goes on, documented by

the actively cultivated land surrounding the craters and payload drops. This observation

matches well with reports summarizing that Cambodian farmers adapt to these dangerous liv-

ing conditions by changing their land management practices [49, 50]. The current study and

Fig 12. Land classification within the validation region. A close-up of the validation region shows that the two-stage

framework has reliable accuracy across cultivated, uncultivated, and developed land. The red squares are false positives

and the blue squares are true positives.

https://doi.org/10.1371/journal.pone.0229826.g012

Table 3. The two-stage framework results from validation region indicates a nearly equal density of craters on cultivated, uncultivated, and forested land. There

tends to be a higher density of craters near residential buildings, suggesting that households are actively living in bombed areas.

Crater Count Density (Count/km2)

Total Detected True Positive Total Detected True Positive

Cultivated 143 147 121 23.3 24.0 20.8

Uncultivated 23 30 18 23.2 30.3 18.2

Tree cover 4 18 4 20.8 93.8 20.8

Residential building 5 6 4 51.1 61.3 40.9

https://doi.org/10.1371/journal.pone.0229826.t003
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the results of the detailed analysis further complement the scholarly findings, providing

explicit spatial information on the extent to which contaminated areas are still farmed. It sug-

gests that future research can use novel land classification techniques to quantify the agricul-

tural productivity on UXO-contaminated land for further comparison with safe land.

Still, identifying a bomb crater does not provide definitive proof of a detonated bomb, but

serves more as an indication. By triangulating our model’s findings with declassified US Air

Force records and deminer interviews, we can substantiate our assessment while we also

acknowledge the role that future research can play in verifying these findings with, for exam-

ple, farmer surveys and soil tests that can confirm the existence of explosive material within

the crater candidate. Although crater verification is a standard issue for all remote sensing

methods, one of the advantages of remote sensing is that it can be applied in more remote and

insecure areas, where deminers may be unsure if they should spend precious resources on a

scoping mission. A two-stage approach, such as the one described here, can detect bomb cra-

ters more efficiently than alternative, out-of-the-box approaches.

Conclusion

The identification and removal of UXO have been recognized as key to long-term economic

development and peace-building in post-conflict countries [4, 51]. In the six decades following

the secret bombing of Cambodia, over 64,000 people have been killed or injured by UXO, and

today the injury count averages one person every week. In Afghanistan, UXO from the post 9/

11 airstrikes, which relied on carpet bombing and dropping cluster munitions, restricted farm-

ers’ access to fields and shepherds’ access to pastures, as well as other disrupting daily routines

to schools, markets, and neighboring villages [52, 53]. The presence of UXO and mines in

Pakistan has encouraged many Kashmir residents to move to refugee camps, due to loss of

jobs and poor access to agricultural lands [54]. Even where weapons testing took place in Vie-

ques, Puerto Rico, dangerously high levels of carcinogens were found in the waters and coral

reefs surrounding the corroding live bombs dropped by the US Navy [55]. It is alleged to con-

tribute to unusually high rates of cancer in fish-consuming households near the exposed reef

[56]. Many of the most dangerous areas in Syria, Afghanistan, Libya, Ukraine, and Sudan are

littered with unexploded ordnance dropped by international or rebel forces. In these post-con-

flict settings, scores of stabilization, development, and peacekeeping missions are taking place

in literal minefields, where we have little information on hot spot boundaries and the location

of explosive remnants of war.

A remote-sensing method that identifies the location of UXO has many downstream appli-

cations, such as helping operational teams more safely traverse conflict-affected regions.

Beyond logistical support, this method can also help guide policy to set the foundations for

long-term growth in areas that still suffer from the threat of violence. For instance, since the

process of demining is an expensive and time-intensive one, this framework helps identify the

most vulnerable areas that should be demined first. Meanwhile, more studies are needed to

inform how, in post-conflict regions, extra food and economic aid may need to be distributed

to UXO-dense areas and which local health clinics and social services may need to prepare for

UXO explosions.
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