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Abstract

China experiences frequent landslides, and therefore there is a need for landslide suscepti-

bility maps (LSMs) to effectively analyze and predict regional landslides. However, the tradi-

tional methods of producing an LSM are unable to account for different spatial scales,

resulting in spatial imbalances. In this study, Zigui-Badong in the Three Gorges Reservoir

Area was used as a case study, and data was obtained from remote sensing images, digital

elevation model, geological and topographic maps, and landslide surveys. A geographic

weighted regression (GWR) was applied to segment the study area into different spatial

scales, with three basic principles followed when the GWR model was applied for this pro-

pose. As a result, 58 environmental factors were extracted, and 18 factors were selected as

LSM factors. Three of the most important factors (channel network basic level, elevation,

and distance to river) were used as segmentation factors to segment the study area into 18

prediction regions. The particle swarm optimization (PSO) algorithm was used to optimize

the parameters of a support vector machine (SVM) model for each prediction region. All of

the prediction regions were merged to construct a GWR-PSO-SVM coupled model and

finally, an LSM of the study area was produced. To verify the effectiveness of the proposed

method, the outcomes of the GWR-PSO-SVM coupled model and the PSO-SVM coupled

model were compared using three evaluation methods: specific category accuracy analysis,

overall prediction accuracy analysis, and area under the curve analysis. The results for the

GWR-PSO-SVM coupled model for these three evaluation methods were 85.75%, 87.86%,

and 0.965, respectively, while the results for the traditional PSO-SVM coupled model were

68.35%, 84.44%, and 0.944, respectively. The method proposed in this study based on a

spatial scale segmentation therefore acquired good results.

Introduction

Located on the eastern edge of the Asian continent, China, with active geological tectonic

movements and a complex geological environment, is a country that experiences frequent
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geological disasters such as landslides. During the 15 years from 2002 to 2016, 275,787 land-

slides occurred in China, accounting for 73.0% of all geological disasters in the country. In

2018 alone, there were 2,966 geological disasters around the country, including 1,631 land-

slides, i.e., 55.0% of all geological disasters that year.

A landslide susceptibility map (LSM), as a non-deterministic method of prediction, is cur-

rently the main method used for the prediction of regional landslides. Using the engineering

geological analogy method, an LSM can be obtained through the use of a mathematical model

to determine and assign the degree of importance of the LSM factors that cause landslides.

Mondal and Mandal used a logistic regression (LR) model to evaluate landslide susceptibility

in the Balason River Basin in the Indian Darjeeling region of the Himalayas. The result showed

that the LR model can be used for landslide hazard research and decision making [1]. Wang

et al. compared several methods for constructing an LSM, such as the frequency ratio (FR),

LR, decision tree (DT), weights of evidence (WE), and artificial neural network (ANN) in a

study in Mizunami, Japan, and found that LR had the best area under the curve (AUC) value

[2]. Aditian, Kubota and Shinohara used three methods, FR, LR, and ANN, in a study of land-

slides triggered by heavy rains in the Ambon region of Indonesia: the study showed that the

ANN had the best results among these three methods, and was the best method for interpret-

ing the relationship between landslide and LSM factors [3]. Saro et al. used two methods, LR

and ANN, for the construction of an LSM in Inje City, South Korea, with the results indicating

that the accuracy of the ANN was higher than that of the LR model [4]. Hong et al. compared

the effects of four support vector machine (SVM) models based on different kernel functions

in the LSM by taking Luxi City, Jiangxi Province, as a study area. The results showed that the

SVM models using these four different kernel functions achieved good results, with the model

using a radial basis function (RBF) as the kernel function having the best effect, regardless of

the success rate or prediction rate [5]. Pham et al. conducted an LSM study in Pauri Garhwal,

India, and compared the SVM model with four Bayesian algorithms: the naive Bayes tree,

Bayes network, naive Bayes, and decision table naive Bayes models. The analysis results

showed that the SVM model had the best predictive performance [6]. Despite having achieved

acceptable results in their application, such methods tend to ignore the spatial distribution of

landslide hazards and extends them to the entire study area without considering the spatial

applicability of the models. This affects the selection and assignment of important evaluation

factors, and thus reduces the accuracy of the LSM.

To overcome the above problems, LSM methods that consider the spatial scale of landslides

have emerged. About 20 years ago, Fell et al. published LSM guidelines. The authors believed

that landslides of different scales should be evaluated at the corresponding spatial scale, and

that the selection of the LSM factors should have a scale that is compatible with the spatial

scale [7]. In the same year, Cascini affirmed the guidelines proposed by Fell et al. and focused

on the applicability of the susceptibility and hazard zoning of landslides at different scales. In

this study, according to the scales and applications of landslide zoning, landslides were divided

into two categories: small & medium scales and large & detailed scales, and the results indi-

cated that the guidelines were a “powerful tool for landslide and hazard zoning at different

scales” [8]. Paudel, Oguchi and Hayakawa extracted the best scale of each LSM factor using the

random forest model, and then constructed an LSM. Their experimental results for Niigata

and Ehime prefectures in Japan showed that a multi-scale LSM model was superior to a tradi-

tional model [9]. Schlögel et al. extracted LSM factors using a digital elevation model (DEM)

with different precisions (5, 10, and 25 m), and the experiments found that the LSM factors for

the DEM with 10-m precision was the best data combination for acquiring the LSM [10].

These methods explore the relationship between the spatial scale of the LSM and the selected

data accuracy, sampling accuracy, and applicable range, and promotes research on the spatial
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scale of LSMs. However, these methods weaken the concept of spatial scale in the scale or reso-

lution of an LSM, and do not analyze the differences between the LSM at different spatial scales

or consider the essential importance of such differences. They also ignore the definitiveness of

spatial scale to the production of an LSM.

Some researchers have used the geographic weighted regression (GWR) model to overcome

these problems. Zhang et al. employed the GWR model, and compared it with the traditional

LR models when producing an LSM of the Three Gorges Reservoir Area. Among the six evalu-

ation indicators considered in their study, the GWR model achieved the best outcome [11]. In

the following year, Hong et al. plotted a zoning plan for an LSM in Xingguo County, Shanxi

Province using the GWR model and compared it with the traditional LR and SVM models.

The results indicated that the GWR model had the highest success rate and prediction accu-

racy [12]. In the same year, Matsche studied the western part of Oregon and determined that

the precision of the GWR model was 6.2% higher than that of the LR model [13]. The use of

only the GWR model as an ordinary LSM prediction model improved the LSM to some extent,

and enabled spatial scale problems to be considered in an LSM study, but it failed to reveal the

essence of the spatial imbalance of the LSM.

In this study, we quantitatively expressed the spatial scale concept of an LSM when studying

the spatial scale problem, introduced the concept of spatial scale into the study of LSMs, and

built a GWR—particle swarm optimization—SVM (GWR-PSO-SVM) coupled model, to

determine the root cause of the impact of spatial scale on an LSM. The aim was to explain the

spatial imbalance problem of an LSM, and improve its scientific applicability, accuracy, and

reliability.

The remainder of this paper is organized as follows. Section 2 describes the study area and

data used in this work. Section 3 reviews the algorithms and model used in this work. Section

4 presents the process used to establish the GWR-PSO-SVM coupled model. Section 5 reports

the experimental results, including a comparison between the traditional PSO-SVM coupled

models and our new model. Section 6 is a discussion of our model and the final section pres-

ents our concluding remarks.

Study area and data sources

Study area

In this work, the Zigui-Badong in the Three Gorges Reservoir Area was used as a study area

(Fig 1). In terms of topography and geomorphology, the study area is located in the eastern

part of the two natural geography units of the Three Gorges Reservoir Area. The area is a

basin, and the topography along the river has the characteristics of being low in the middle

and high on both banks. In terms of geology, the strata in the study area are fully developed,

and only the Lower Devonian, the Upper Silurian and Carboniferous, most of the Cretaceous

and a small amount of Tertiary strata are deficient (Fig 2) [14]. Geological disasters occur fre-

quently in the study area, with landslides being the most prominent type of geological disaster.

There have been 202 proven landslides in the study area, covering a total area of 23.4 km2,

accounting for 6.03% of the entire study area [15].

Data Source

The following data were used in this study:

➢ 1: 10,000-scale landslide hazard map [15].

➢ Landsat-8 operational land imager (OLI+) sensor data, acquired on 15 September 2013,

with a path/row number of 127/39 (https://earthexplorer.usgs.gov/);

PLOS ONE A landslide susceptibility map based on spatial scale segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0229818 March 11, 2020 3 / 20

https://earthexplorer.usgs.gov/
https://doi.org/10.1371/journal.pone.0229818


Fig 1. Geographical location of the study area.

https://doi.org/10.1371/journal.pone.0229818.g001

Fig 2. Geological map of the study area.

https://doi.org/10.1371/journal.pone.0229818.g002
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➢ Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Ele-

vation Model (ASTER GDEM) data (https://lpdaac.usgs.gov/tools/data-pool/);

➢ 1: 50,000-scale topographic map and 1: 50,000-scale geological map [14];

➢ Seismic activity data and atmospheric rainfall data from the China Earthquake Adminis-

tration (CEA, http://www.ceic.ac.cn/history) and the China Meteorological Administra-

tion (CMA, http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_

V3.0.html).

The spatial resolution of the remote sensing (RS) data and the GDEM data was 30 m, and

the 1: 10,000-scale landslide hazard map, the 1: 50,000-scale topographic and geological maps

could match these data in terms of spatial resolution. The seismic activity and atmospheric

rainfall were point data, which had a temporal resolution but no spatial resolution.

Methods

The GWR model

Fotheringham et al. first proposed GWR as a method to study the quantitative relationship

between two or more variables with spatial distribution characteristics using the regression

principle [16]. Local features are used as weights to change the multicollinearity in the global

regression model [17, 18]. The related functions are defined as follows:

yi ¼ b0ðui; viÞ þ
XQ

k¼1

bkðui; viÞxik þ εi; i ¼ 1; 2; � � � ; L ð1Þ

where (ui, vi) are the spatial coordinates of the i-th sample; L and Q are the number of samples

and regression coefficients, respectively; yi is the independent variable of the function at point

i, xik is the value of the k-th explanatory variable of point i; βk(ui,vi) is the local regression

parameter of the k-th explanatory variable of point i; and β0(ui,vi) is the intercept parameter of

point i. The least squares estimate for βi is as follows:

b̂i ¼ ðX
TWiXÞ

� 1XTWiY ð2Þ

The variance is:

varðb̂Þ ¼ ðXTW � 1

i XÞ� 1
ð3Þ

where Wi is a diagonal matrix of n dimension, which is called the spatial weight matrix and is

the core of the GWR model. The value on the diagonal is the geographic weight:

Wi ¼

Wi1 0 � � � 0

0 Wi2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Win

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð4Þ

The Wi is chosen based on the choice of kernel function, and the selection of the spatial

weight function has a large influence on the parameter estimation of the GWR model.

The SVM model

The SVM model was first proposed by Vapnik [19]. The model, established on the basis of the

Vapnik–Chervonenkis dimension theory and structural risk minimization principle, has
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many unique advantages in solving small sample, nonlinear, and high-dimensional pattern

recognition problems [20, 21]. Its function is defined as follows:

min
1

2
kwk2

;

s:t:; yiðw � xi þ bÞ � 1

ð5Þ

8
<

:

where xi is a point on the hyperplane; yi is the classification marker, i = 1,2,� � �,R; R is the num-

ber of samples; w is a vector perpendicular to the hyperplane; b is a constant that is applied to

prevent the hyperplane from passing the origin of the coordinate axis; and kwk is the 2- norm

of w. When formula (5) introduces a non-negative slack variable ξi, a penalty factor C must be

introduced to represent the distance from a misclassified point to its correct position. There-

fore, the formula (5) can be expressed as:

min
1

2
kwk2

þ C
Xn

i¼1

xi;

s:t:; yiðw � xi þ bÞ � 1 � xi

ð6Þ

8
><

>:

The RBF can be selected as the kernel function of the SVM, and is used to map the vector of

the low-dimensional space into the high-dimensional characteristic space for classification.

The function is expressed as:

Kðxi; xjÞ ¼ expð� gkxi � xjk
2
Þ ð7Þ

where, γ is the kernel parameter of different radial basis functions.

The PSO algorithm

The performance of the SVM model relies heavily on two parameters, the penalty factor C and

the kernel parameter γ. The most common method for selecting these two parameters is to use

the PSO algorithm to find the optimal solution of the model. Eberhart and Kennedy first pro-

posed the PSO as an intelligent optimization algorithm that mimics bird foraging [22–24]. Its

function form is:

Vnþ1
i ¼ t � Vn

i þ c1 � r1 � ðpni � xni Þ þ c2 � r2 � ðpng � xni Þ

xnþ1
i ¼ xni þ Vn

i

ð8Þ

(

where i =1,2,� � �,K; K is the number of particles; n is the current number of iterations; t is the

inertia weight; pni is individual optimal position of the i-th particle; png is the optimal position of

all particles in the n-th iteration; Vn
i and xni are the velocity and position of the i-th particle in

the n-th iteration; Vnþ1
i and xnþ1

i are the speed and position at which the i-th particle is updated

in the (n+1)-th iteration, respectively; c1 and c2 are learning factors; and r1 and r2 are two ran-

dom numbers between 0 and 1.

Evaluation models

Specific category accuracy analysis. The specific category accuracy analysis method is an

improved quantitative analysis method [25]. In this study, the specific category accuracy

method considers the number of slope units in the prediction regions. It can be expressed as:

pi ¼
Ai

Bi
� 100% ð9Þ
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where, i = 1,2,� � �,n; n is the classification number of landslide-prone zonings; Ai is the number

of slope units occupied by landslides in i-th landslide susceptibility zoning classification; Bi is

the number of the slope units in i-th landslide susceptibility zoning classification; and Pi is the

specific category accuracy in the i-th landslide susceptibility zoning classification.

Overall prediction accuracy analysis. The overall prediction accuracy analysis is a com-

monly used evaluation method for the construction of an LSM. In this study, the original formula

was rewritten because there were no landslides in some prediction regions. It was expressed as:

p ¼

Xnpr

i¼1

ðai þ biÞ

Xnpr

i¼1

Si

� 100% ð10Þ

where i = 1,2,� � �,npr; npr is the number of prediction regions; ai is the number of slope units cor-

rectly predicted as landslides in the i-th prediction region; bi is the number of slope units correctly

predicted as non-landslide areas in the i-th prediction region; and Si is the number of total slope

units in the i-th prediction region.

Receiver operating characteristic (ROC) curve analysis. Each point on the ROC curve

reflects the susceptibility to the same signal stimulus, with the X- axis representing the negative

positive rate specificity and the Y- axis representing the true positive rate sensitivity [26, 27].

There are four possible cases for a binary classification problem, as shown in Table 1.

The AUC refers to the area under the ROC curve. It ranges between 0–1 and its value can

be used to intuitively evaluate the quality of the classifier.

The proposed model

Coupled model for the LSM based on spatial scale segmentation

By taking the spatial autocorrelation of LSM factors as the breakthrough point, this study

regarded the GWR coefficients of the LSM factors as the mathematical basis for the segmenta-

tion of the study area. Three basic principles were followed to ensure the rationality of segmen-

tation. First, 58 environmental factors were extracted from the data sources, 18 factors were

selected as LSM factors after factor screening, and three of the most important factors were

used as segmentation factors to segment the study area into 18 prediction regions. Then, the

SVM parameters were optimized by the PSO algorithm, and an LSM for each prediction

region was obtained. Finally, all the prediction regions were integrated to establish the LSM

model with spatial scale segmentation. A flowchart of the coupled model for the LSM based on

a spatial scale analysis was established, as shown in Fig 3.

Selection of LSM calculation units

According to Guzzetti et al., all LSM calculation units can be summarized as either grid cells,

geographic units, unique conditional units, slope units, or sub-basin units [28]. In this study,

Table 1. The four cases for a binary classification problem.

Prediction Total

Positive, P Negative, N

Actual Positive, P True Positive, TP False Negative, FN Actual Positive, TP+FN

Negative, N False Positive, FP True Negative, TN Actual Negative, FP+TN

Total Predicted Positive, TP+FP Predicted Negative, FN+TN TP+FP+FN+TN

https://doi.org/10.1371/journal.pone.0229818.t001
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the slope unit was selected as the LSM calculation unit. After calculation and modification, a

total of 2,790 slope units were obtained in the study area, of which the smallest area was

11,823.9 m2 and the largest was 819,444 m2.

Screening of LSM factors

In this work, through an analysis of historical landslide data and a summary of previous

research in the study area, the LSM factors were divided into two categories: control factors and

influencing factors. The control factors included geomorphological, geological, and hydrologi-

cal factors. The influencing factors included surface cover index, geophysical, and meteorologi-

cal factors. In this study, based on the geological and topographic maps, RS image data, field

survey reports, and other data, a total of 58 LSM factors in two categories and eight sub-catego-

ries were extracted by RS and geographic information system. This is summarized in Table 2.

Some of these 58 LSM factors were obtained by the DEM, and had a large correlation with

each other. Therefore, not all of these 58 factors were involved in the modeling and calculation

of LSM, but they needed to be further analyzed and screened. There were two main steps in

the analysis.

Pearson product-moment correlation coefficient (PPMCC) analysis and principal com-

ponent analysis (PCA). In this study, a PPMCC analysis was used to analyze the correlations

among the LSM factors of five sub-categories (geomorphology, hydrology, vegetation index,

wetness index, and building index), and the factors with a significant correlation were deleted

[29].

Fig 3. A flowchart of the establishment of the coupled model for the LSM based on spatial scale segmentation. Abbreviations in this figure:

GWR = geographically weighted regression, PSO = particle swarm optimization, SVM = support vector machine, LSM = landslide susceptibility

map, ROC = receiver operation characteristic, DEM = digital elevation model, CA = catchment area, FPL = flow path length, TWI = topographic

wetness index, ELA = engineering lithologic assemblage, DF = distance to fault, BS = bedding structure, ARVI = atmospherically resistant

vegetation index, DVI = difference vegetation index, GVI = green vegetation index, EWI = enhanced water index, MNDWI = modified normalized

difference water index, NDMI = normalized difference moisture index, MNDBI = modified normalized difference building index, ULI = urban

land-use index, AAR = average annual rainfall, SM = slope morphology, SL = slope length, CNBL = channel network basic level, DR = distance to

river.

https://doi.org/10.1371/journal.pone.0229818.g003

Table 2. The initial landslide susceptibility evaluation factors.

Categories Sub-categories Factors

Control Factors Geomorphology Elevation, Slope, Aspect, Slope Morphology (SM), Terrain Ruggedness Index (TRI), Slope Length (SL), Plan Curvature (PLC),

Profile Curvature (PRC), Terrain Surface Texture (TST), Terrain Surface Convexity (TSC), Topographic Position Index (TPI), TPI

based Landform Classification (TPILC), Topographic Convergence Index (TCI), Cross-Sectional Curvature (CSC), General

Curvature (GC), Longitudinal Curvature (LC), Tangential Curvature (TAC), Maximum Curvature (MAXC), Minimum Curvature

(MINC), Mid-slope Position (MSP), Total Curvature (TOC), Slope Height (SH), Valley Depth (VD)

Geology Engineering Lithologic Assemblage (ELA), Distance to Fault (DF), Bedding Structure (BS)

Hydrology Catchment Area (CA), Flow Path Length (FPL), LS Factor (LSF), Melton Ruggedness Number (MRN), Topographic Wetness

Index (TWI), Distance to River (DR), Catchment Slope (CS), Channel Network Basic Level (CNBL), Floe Width (FW), Stream

Power Index (SPI), Terrain Classification Index for Lowlands (TCIL), Vertical Distance to Channel Network (VDCN), Flow Line

Curvature (FLC)

Influence

Factors

Vegetation

Index

Atmospherically Resistant Vegetation Index (ARVI), Difference Vegetation Index (DVI), Green Vegetation Index (GVI),

Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), Ration Vegetable Index (RVI),

Transformed Vegetable Index (TVI), Fractional Vegetation Cover (FVC)

Wetness Index Enhanced Water Index (EWI), Modified Normalized Difference Water Index (MNDWI), Normalized Difference Moisture Index

(NDMI), Normalized Difference Water Index (NDWI), Ratio Moisture Index I (RMI1), Ratio Moisture Index II (RMI2), The

Wetness Index of the Tasseled Cap (WITC)

Building Index Modified Normalized Difference Building Index (MNDBI), Urban Land-use Index (ULI)

Geophysics Magnitude

Meteorology Average Annual Rainfall (AAR)

https://doi.org/10.1371/journal.pone.0229818.t002
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In the three sub-categories other than geomorphology and hydrology, there were strong

correlations among multiple factors. In the geomorphology sub-category, the profile curva-

ture, topographic position index (TPI), TPI based landform classification, cross-sectional cur-

vature, general curvature, longitudinal curvature, maximum curvature and minimum

curvature factors had strong correlations, and formed a curvature factor combination. The

same phenomenon occurred in the vegetation index, wetness index and the building index

sub-categories, and formed the vegetation index factor combination, the wetness index factor

combination, and the building index factor combination.

To retain the multi-factor effective information and remove the linear correlation of these

factor combinations, the PCA method was used [30]. In this study, the first, second, and third

principal component of the curvature factor combination (PCCFC-1, 2, 3), the first principal

component of the vegetation index factor combination (PCVIFC-1), the first principal compo-

nent of the wetness index factor combination (PCWIFC-1), and the first principal component

of the building index factor combination (PCBIFC-1) were retained. After the PPMCC analy-

sis and PCA, there were 32 factors remaining.

Factor importance screening based on the SVM model. In this study, the SVM was used

as the prediction model for the LSM. The model can determine the importance of each factor

according to the degree of contribution of the LSM. Based on this, this study removed the

unimportant factors to improve the efficiency and accuracy of the LSM. After repeated experi-

ments and comparisons, in combination with previous research results and based on the LSM

factors that played a major role in most landslide studies, the importance threshold of the LSM

factors was determined (0.005). Finally, 18 LSM factors were obtained. This is summarized in

Table 3.

Table 3. Final landslide susceptibility evaluation factors after screening.

Categories Sub-Categories Factors Units Ranges

Control Factors Geomorphology Elevation m 80.00~2,000.00

Slope ˚ 0.00~78.42

SM - (1) V/V; (2) GE/V; (3) X/V; (4) V/GR; (5) GE/GR; (6) X/GR; (7) V/X; (8) GE/X;

(9) X/X

SL m 0~3,938.24

TST - 0.00~0.69

PCCFC-1 - 173.06~573.32

Geology ELA - (1) mudstone, shale and Quaternary deposits; (2) sandstones and thinly bedded limestones;

(3) limestones and massive sandstones

DF m 0~8 739.89

BS - (1) over-dip slope; (2) under-dip slope; (3) dip-oblique slope; (4) transverse slope; (5) anaclinal-oblique

slope;

(6) anaclinal slope [31]

Hydrology MRN - 0~42.292

TWI - 4.442~18.03

DR m 377.32~4,562.34

CNBL m 80.23~1,353.91

Influence

Factors

Vegetation

Index

PCVIFC-1 - 0.00~1.00

Wetness Index PCWIFC-

1

- 0.00~1.00

Building Index PCBIFC-1 - 0.00~1.00

Geophysics Magnitude Ms 1.0~5.0

Meteorology AAR mm 964.03~1,090.24

https://doi.org/10.1371/journal.pone.0229818.t003
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The GWR-based segmentation of the study area

Based on the calculation of the GWR coefficients of each LSM factor, the natural breakpoint

method was used for classification in this study [32]. To segment the study area, theoretically,

the classification results of all the LSM factors should be superimposed to reduce the spatial

autocorrelation for each LSM factor. However, due to the excessive number of LSM factors,

the superposition of all LSM factor classification results may generate too many small areas,

and have a great impact on the subsequent steps. Moreover, too many segmentation areas may

also make the spatial distance between the areas smaller, in turn increasing the spatial autocor-

relation of the LSM factors. After repeated studies, three basic principles were identified that

should be followed when the GWR model was used for spatial scale segmentation:

➢ Select the same appropriate number of classifications for all LSM factors;

➢ Select only the most important LSM factors as the segmentation factors to segment the

study area;

➢ In light of the results of spatial scale segmentation, regions that are too small should be

merged into adjacent regions, and the integrity of the landslide surface should be

guaranteed.

Based on principles 1 and 2, we selected the three most important LSM factors in the SVM

model (channel network basic level (CNBL), elevation, and distance to river) for use as the seg-

mentation factors. Each segmentation factors was then divided into two categories by the natu-

ral breakpoint method. The final result of the spatial scale segmentation of the study area was

superimposed and processed by principle 3, with a total of 18 small areas, which were called 18

prediction regions. The segmentation process is shown in Fig 4.

Establishment of an LSM model based on GWR

For each prediction region, all the landslide slope units and randomly selected non-landslide

slope units constituted a training data set (at a 1: 1 ratio) to conduct training of the PSO-SVM

coupled model. All the slope units in the region, as the verification sample data set, were input

into the trained coupled model, and an LSM was obtained for each prediction region. The

optimal solution of the PSO-SVM coupled model for each prediction region is shown in

Table 4.

Results

Experimental results of the GWR-PSO-SVM coupled model

The LSMs of all prediction regions were combined to obtain an LSM based on spatial scale seg-

mentation, i.e., the LSM of the GWR-PSO-SVM coupled model. The landslide susceptibility

index (LSI) is a form of LSM, which is a continuous value from 0 to 1. This is shown in Fig 5.

Establishment of a comparative experiment to test the PSO-SVM coupled

model

To compare the precision and accuracy of the GWR-PSO-SVM coupled model proposed in

this study, and especially to verify the correctness of the study area spatial scale segmentation

using the GWR method, a comparative experiment was conducted. To verify the influence of

spatial imbalance on the LSM, the PSO-SVM coupled model was used in the comparative

experiment. The operational process of the PSO-SVM coupled model was basically the same as

that of the GWR-PSO-SVM coupled model, with just the spatial scale segmentation using
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Fig 4. The process of spatial scale segmentation based on GWR.

https://doi.org/10.1371/journal.pone.0229818.g004

Table 4. Optimal solutions of the PSO-SVM coupled model for each prediction region.

Prediction Regions ID C γ Prediction Regions ID C γ

2 16 1 10 4 0.5

3 8 2 12 8 0.25

4 8 0.125 14 4 4

5 2 4 15 8 0.25

6 8 2 16 4 0.125

8 8 1 18 8 1

9 4 4 - - -

https://doi.org/10.1371/journal.pone.0229818.t004

PLOS ONE A landslide susceptibility map based on spatial scale segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0229818 March 11, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0229818.g004
https://doi.org/10.1371/journal.pone.0229818.t004
https://doi.org/10.1371/journal.pone.0229818


GWR coefficients removed, and the selection of the LSM factors were consistent with those

selected for the GWR-PSO-SVM coupled model. The PSO algorithm determined that the opti-

mal solutions for C and γ in the SVM model were 4 and 1, respectively, and the LSM for the

PSO-SVM coupled model was obtained. This is shown in Fig 6.

To increase the readability of the LSM, the fixed threshold method was used in this study.

Values of 0.1, 0.3, 0.7, and 0.9 were selected as the classification thresholds. The LSI was divided

into five categories to obtain the landslide susceptibility zoning (LSZ): very low susceptibility

areas, low susceptibility areas, medium susceptibility areas, high susceptibility areas, and very

high susceptibility areas. The LSZs from the two experiments are shown in Fig 7 and Fig 8.

Evaluation model results and analysis

Specific category accuracy analysis. The specific category accuracy results of the two

experiments were calculated using formula (9) and are shown in Table 5.

Fig 5. The landslide susceptibility index (LSI) produced by the GWR-PSO-SVM coupled model.

https://doi.org/10.1371/journal.pone.0229818.g005

Fig 6. The LSI produced by the PSO-SVM coupled model.

https://doi.org/10.1371/journal.pone.0229818.g006
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The results in Table 5 show that the GWR-PSO-SVM coupled model identified more slope

units in the “Very High” LSZ category (85.75%) than the PSO-SVM coupled model (68.35%).

The GWR-PSO-SVM coupled model was significantly superior to the PSO-SVM coupled

model.

Overall prediction accuracy analysis. The overall prediction accuracy analysis results of

the two experiments are shown in Table 6.

It can be clearly seen from Table 6 that the overall prediction accuracy of the PSO-SVM

coupled model was 84.44%. In the GWR-PSO-SVM coupled model, the prediction accuracy of

most prediction regions was greater than that of the PSO-SVM coupled model. The overall

prediction accuracy of the GWR-PSO-SVM coupled model was 87.86%, which was more accu-

rate than the PSO-SVM coupled model.

The ROC curve analysis. In this study, the ROC curve was constructed using the real

data of each slope unit as the state variable, and the LSMs at different spatial scales as the test

variable, as shown in Fig 9.

Fig 7. The landslide susceptibility zoning (LSZ) based on the GWR-PSO-SVM coupled model.

https://doi.org/10.1371/journal.pone.0229818.g007

Fig 8. The landslide susceptibility zoning (LSZ) based on the PSO-SVM coupled model.

https://doi.org/10.1371/journal.pone.0229818.g008
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It can be seen from Fig 9 that both of the experiments produced good results. However, in

the ROC curve of the GWR-PSO-SVM coupled model, the closest point to the upper left cor-

ner was farther from the reference line than for the PSO-SVM coupled model. A qualitative

analysis showed that the result of the GWR-PSO-SVM coupled model was better.

For a quantitative analysis, the AUC calculations for the two experiments are shown in

Table 7.

As shown in Table 7, the AUC value of the GWR-PSO-SVM coupled model was 0.965, i.e.,

greater than the value of 0.944 for the PSO-SVM coupled model, indicating that in the ROC

curve analysis, the result for the GWR-PSO-SVM coupled model was better than that for the

PSO-SVM coupled model.

Discussion

Based on previous analyses and LSM characteristics, there were four main reasons for the dif-

ferences among LSMs: (1) the spatial scale of LSMs; (2) the factors used in the construction of

LSMs;(3) the calculation unit used to the construct the LSMs; and (4) the prediction model

used to construct the LSMs. In most LSM studies, the factors, calculation units, and prediction

Table 5. Specific category accuracy analysis results for the two experiments.

LSZ GWR-PSO-SVM PSO-SVM

Number of Slope Units for

Landslides

Number of Slope

Units

Specific Category

Accuracy

Number of Slope Units for

Landslides

Number of Slope

Units

Specific Category

Accuracy

Very Low 8 1,439 0.56% 7 1,615 0.43%

Low 3 281 1.07% 9 260 3.46%

Medium 37 567 6.53% 20 251 7.97%

High 21 103 20.39% 37 168 22.02%

Very

High

343 400 85.75% 339 496 68.35%

https://doi.org/10.1371/journal.pone.0229818.t005

Table 6. Overall prediction accuracy analysis results for the two experiments.

Experiments Prediction Region 1 Number of Correct Predictions Number of Total Predictions Prediction Accuracy 2

GWR-PSO-SVM 2 82 93 88.17%

3 159 185 85.95%

4 125 138 90.58%

5 76 91 83.52%

6 104 126 82.54%

8 131 144 90.97%

9 94 104 90.38%

10 34 38 89.47%

12 352 399 88.22%

14 272 310 87.74%

15 241 279 86.38%

16 101 109 92.66%

18 111 126 88.10%

Total 1,882 2,142 87.86%

PSO-SVM Study Area 2,356 2,790 84.44%

1 In this table, the prediction regions of the GWR-PSO-SVM coupled model did not contain the prediction regions without landslides.
2 Represents the prediction accuracy in each prediction region, with the overall prediction accuracy of the two experiments marked in bold.

https://doi.org/10.1371/journal.pone.0229818.t006
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models have been considered to be the main reasons for the differences among LSMs.

Although these are not the same points considered in this work, this is not a contradictory

position.

At the same spatial scale, the main reasons leading to the differences among LSMs were

derived from the factors, calculation units, and prediction models. However, as research has

intensified and with the introduction of spatial scale problems, the spatial scale, factors, calcu-

lation units, and prediction models have been identified as the root causes of the differences

among LSMs.

In the actual experiments, the LSMs obtained from large areas were often different from

and even the opposite of those obtained from a smaller area inside the large area when the

same factors, calculation unit, and prediction model were used.

However, many of the LSM prediction models used previously were not originally based on

geology or geography, but evolved from economics, statistics, and other disciplines. Therefore,

Fig 9. The ROC curves for the two experiments.

https://doi.org/10.1371/journal.pone.0229818.g009

Table 7. Area under the curve (AUC) analysis for the two experiments.

Test Result Variable(s) Area Std. Error a Asymptotic

Sig. b
Asymptotic 95% confidence Interval

Low Bound Upper Bound

PSO-SVM 0.944 0.005 0.000 0.934 0.953

GWR-PSO-SVM 0.965 0.005 0.000 0.956 0.974

a Under the nonparametric assumption.
b Null hypothesis: true area = 0.5.

https://doi.org/10.1371/journal.pone.0229818.t007
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these prediction models have been subjected to repeated verifications over several years or

even decades, and have been shown to have objectivity, applicability, and stability. Although

there are five kinds of calculation unit, they are all fundamentally based on the grid unit. The

grid unit is determined by the mathematical and physical properties of remote sensing satellite

images, which also have objectivity. Considering this situation, this study focused on the LSM

factors and spatial scale.

A total of 13 experiments using the GWR-PSO-SVM coupled model were completed in this

study, and in each experiment, each LSM factor had a different importance, as shown in Fig

10. For the convenience of comparison, the order of factors in the legend was arranged from

high (0.241) to low (0.005) according to the importance score of LSM factors in the SVM

model.

The following results can be observed from Fig 10:

The important factors in the PSO-SVM coupled model did not have importance (i.e., the value

was 0) in some prediction regions of the GWR-PSO-SVM coupled model. In prediction

region 5, for instance, the most important LSM factor in the PSO-SVM coupled model

(CNBL) had no importance. There were significant differences in the importance of LSM

factors at different spatial scales.

After the study area was segmented, the figure shows that even the adjacent regions 2 and 3

had different importance rankings for the LSM factors, indicating the variable importance

of the LSM factors in different prediction regions, and illustrating that the LSM factors had

regional characteristics.

Conclusion

Using Zigui-Badong in the Three Gorges Reservoir Area as a case study, the GWR model was

coupled with the PSO-SVM model to utilize the advantages of GWR in the processing of

Fig 10. Schematic diagram of the changes in the significance of LSM factors in each prediction region based on the GWR-PSO-SVM coupled model.

https://doi.org/10.1371/journal.pone.0229818.g010
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spatial heterogeneity. According to the GWR coefficients of LSM factors, the study area was

divided into several prediction regions to solve the problem of spatial imbalances in an LSM.

To verify the effectiveness of the proposed method, the outcomes of the GWR-PSO-SVM cou-

pled model and the PSO-SVM coupled model were compared using three evaluation methods:

specific category accuracy analysis, overall prediction accuracy analysis, and AUC analysis.

The results for the GWR-PSO-SVM coupled model for these three evaluation methods were

85.75%, 87.86%, and 0.965, respectively, while the results for the traditional PSO-SVM coupled

model were 68.35%, 84.44%, and 0.944, respectively. Comparing the three evaluation methods,

the results for the GWR-PSO-SVM coupled model were 17.4%, 3.42%, and 0.021 higher than

those of the PSO-SVM coupled model, respectively, and the new model had obvious advan-

tages over the former model.

It was found that the importance of LSM factors in different areas were actually different.

The method in which LSM factors were statistically calculated and assigned a weighted value

by the prediction model for a complete study area was obviously questionable.

The spatial scale of the study area essentially affects the importance of LSM factors. There-

fore, based on the LSM factors and GWR model, the spatial scale segmentation method of the

study area developed in this study that was obtained by the selection of regional segmentation

factors, calculation and classification of GWR coefficients, superposition of the classification

results, and human-computer interaction modification was an effective method to solve this

problem.
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