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Abstract

Shear stress comprises basic information for predicting the average depth velocity and dis-

charge in channels. With knowledge of the percentage of shear force carried by walls (%

SFw) it is possible to more accurately estimate shear stress values. The %SFw, non-dimen-

sion wall shear stress (
�tw
t0

) and non-dimension bed shear stress (
�tb
t0

) in smooth rectangular

channels were predicted by a three methods, the Bayesian Regularized Neural Network

(BRNN), the Radial Basis Function (RBF), and the Modified Structure-Radial Basis Function

(MS-RBF). For this aim, eight data series of research experimental results in smooth rectan-

gular channels were used. The results of the new method of MS-RBF were compared with

those of a simple RBF and BRNN methods and the best model was selected for modeling

each predicted parameters. The MS-RBF model with RMSE of 3.073, 0.0366 and 0.0354

for %SFw,
�tw
t0

and
�tb
t0

respectively, demonstrated better performance than those of the RBF

and BRNN models. The results of MS-RBF model were compared with three other proposed

equations by researchers for trapezoidal channels and rectangular ducts. The results

showed that the MS-RBF model performance in estimating %SFw,
�tw
t0

and
�tb
t0

is superior than

those of presented equations by researchers.

Introduction

The determination of shear stress distribution is key in identifying the hydraulic induced sedi-

ment transport phenomena. Shear stress parameter ascribes to the fluid-sediment interaction

particularly in the threshold of erosion and depositions, sediment incipient motion, and trans-

port rates [1,2]. The boundary layer or near bed shear stress determines the mode of sediment

transport either suspension or as bed load movement. Channel boundaries encompass of bed

and wall, whereby the shear force acting can be determined based on the divisions of the
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weight of flowing water flowing onto the boundary [3]. Percentage of shear force %SFw on

each boundary is the ratio of (wall or bed) shear force to the shear force on the wetted perime-

ter [4]. Bed shear stress dominantly is responsible for the calculation of bedload transport and

wall shear stress becomes effective in the discussion of channel migration and bank erosion.

Experimental, analytical and numerical procedures to determine the shear stress distribu-

tion in various shapes of channels have been exhaustively investigated [3–10]. Bed shear stress

comprises of three terms, i.e. gravitational, secondary flows and interfacial shear stress. Early

researchers considered negligibility in the last two terms (i.e. the secondary flows and interfa-

cial shear stress) to simplify the flow conditions and only regarded the gravitational compo-

nent. However, recent research reported that both secondary flows and interfacial stresses

should be included to have an accurate representation of both bed and wall shear stress [11].

The complexity of natural flow behavior and interaction has been recently supervised using

soft computing methods. These advanced artificial intelligence approaches proved to be suc-

cessful in capturing the dynamicity of flow and able to predict hydraulics related output with

high accuracy [12,13]. The use of the ability of Artificial Intelligent (AI) in data-driven model-

ling, percentage of shear force carried by flood plain walls in compound channels was success-

fully predicted [14]. Favourable prediction was also achieved for the estimation of shear stress

distribution in circular channels using Extreme Learning Machine (ELM) model [15]. By

assuming the dimensionless shear stress is a random variable, the entropy concepts of Renyi,

Tsallis, and Shannon was able to minimise (if not eliminate) the uncertainty and accurately

model the shear stress distribution along the channel boundaries [13].

The complexity of boundary shear stress limits available data through experimental and

analytical work. Using the available data, the nonlinear modelling of Artificial Neural Network

(ANN) is able to predict and forecasting the shearing behaviour at the boundary. The method

allows for interpretation of boundary shear values without requiring explicit mathematical

representations or further experimental work. The prediction can be made by a non-AI spe-

cialist as the application of ANN is relatively easy and the package is readily available within

major software such as MATLAB.

Therefore, a new MS-RBF, simple RBF and BRNN model are utilized to estimate three

parameters: percentage of shear force carried by walls, non-dimension wall shear stress

and non-dimension bed shear stress in smooth rectangular channels. RBF boasts several

advantages including faster training process, inherent approximation network, precise initial

states and performs good with noisy data [16]. The three models are compared to identify the

more robust model in predicting each parameter. Finally, the best model is compared with

nonlinear regression equations used in trapezoidal channels and ducts for performance

evaluation.

Materials and methods

Used data

Eight series of experimental data are used to predict the percentage of shear force carried by

walls in smooth rectangular channels. These experiments introduce aspect ratio (b/h) (where b
is the channel width, and h is the flow depth) as the most important parameter for shear stress

values. Fig 1 demonstrates the rectangular channel cross section and its notation. The data

employed in this study is obtained from [4,17–23]. Table 1 shows the range of data used.

Some nonlinear regression equations were produced by the above-mentioned researchers

from experimental studies, all of which indicate that %SFw is dependent on aspect ratio. They

additionally presented equations for
�tw
t0

and
�tb
t0

.
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The equation proposed by [24] was obtained from experimental data for fully developed

turbulent flow in a smooth rectangular duct with different depths as:

%SFw ¼
103:23

1þ 2b
3h

� �� �1:4128
ð1Þ

�tw

t0

¼
%SFw

100

� �
b
2h

� �

ð2Þ

�tb

t0

¼ 1 � 0:01%SFw ð3Þ

where b is the channel width, h is the water depth, τ0 = ρgRS (ρ is the fluid density, S is the bed

slope of the channel, and R is the hydraulic radius), %SFw is the percentage of shear force car-

ried by walls, �tw and �tb are mean wall and bed shear stresses.

Fig 1. Rectangular channel cross section and notation.

https://doi.org/10.1371/journal.pone.0229731.g001

Table 1. Ranges of the input and output parameters used for modelling.

Parameters

References

b/h %SFw �τ�w
τ0

�τ�b
τ0

Min Max SD Min Max SD Min Max SD Min Max SD

Cruff [17] 4.00 50.00 17.66 2.5 28.90 10.22 0.58 0.63 0.02 0.71 0.98 0.10

Ghosh and Roy [18] 1.91 3.12 0.72 36.4 76.20 14.83 0.43 0.57 0.05 0.24 0.64 0.15

Kartha and Leutheusser [23] 1.00 12.50 6.14 7.80 74.10 33.32 0.37 0.53 0.08 0.36 0.92 0.28

Myers [19] 1.56 19.12 6.16 6.90 56.50 20.01 0.44 0.67 0.08 0.44 0.93 0.20

Knight [4] 1.51 14.79 4.85 8.30 59.40 20.73 0.45 0.71 0.09 0.41 0.92 0.21

Noutsopoulos and Hadjipanos [42] 1.00 12.50 6.14 7.80 74.1 33.32 0.37 0.53 0.08 0.36 0.92 0.28

Knight et al. [21] 0.31 1.34 0.39 22.00 85.20 0.13 0.67 0.13 0.16 0.15 0.78 0.20

Seckin et al. [22] 6.59 14.80 2.69 11.83 18.44 2.84 0.54 0.61 0.03 0.82 0.87 0.02

https://doi.org/10.1371/journal.pone.0229731.t001
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Rhodes and Knight [25] proposed the following equation for the percentage of shear force

carried by walls in ducts:

%SFw ¼
100

1þ
1þ1:345ðh=bÞ
1þ1:345ðb=hÞ

� �� 1:057
ð4Þ

Eqs (2) and (3) were proposed for non-dimension wall and bed shear stress respectively.

Using the concept of the relationship between %SFw and wetted perimeter ratio (Pb/Pw),

Flintham and Carling [26] presented a general equation for trapezoidal channels:

%SFw ¼ ea ð5Þ

where α is a function of wetted perimeter ratio. By plotting log-log scales and assuming a sim-

ple relationship between %SFw and Pb/Pw, the following equation is derived:

logð%SFwÞ ¼ C1 log
Pb

Pw
þ C2

� �

þ C3 ð6Þ

where C1, C2 and C3 are coefficients, and the limiting case is fixed by defining %SFw = 100%

for
Pb
Pw
¼ 0 and then eliminating one constant. Therefore,

C3 ¼ 2 � C1 logðC2Þ ð7Þ

Thus, the α parameter of Eq (5) is given by:

a ¼ � 3:23 log
Pb

Pw
þ 1

� �

þ 4:6052 ð8Þ

Eqs (2) and (3) were also proposed for non-dimension wall and bed shear stress. Since the

results of numerous researchers show that the shear stress is dependent on aspect ratio (b/h),

in the present study only this parameter was applied as input combination for all models.

Bayesian regularized neural network

The Bayesian regularized neural network (BRNN) is one of the algorithms that has become

popular nowadays for solving non-linear problems [27]. The Bayesian regularized neural net-

work (BRNN), is one of the most efficient algorithms for solving regression problems. This

algorithm implements the two-layer Bayesian regularized neural network, as introduced in

[28] and [29]. The schematic structure of the two-layer neural network represented in Fig 2.

The input of neural network is set X = {X1.X2.. . ..Xn}. In order to provide a weighted linear

combination, first input values are manipulated by sets of weights. This combination uses a

nonlinear function to transform and create values of the state of neurons in the hidden layer.

In general, this algorithm contains three layers of input, hidden and output. The hidden layer

could consist of a different number of hidden neurons, while output layers include only one

neuron and linear and sigmoid transfer functions are used to reach the neuron output.

The BRNN algorithm assigns initial weights to neurons using the Nguyen-Windrow ini-

tialization algorithm in order to nearly equally distribute the active regions of the layer’s neu-

rons over the input space. This algorithm also optimizes result with the help of the Gauss-

Newton method. Moreover, to improve the regression result of BRNN algorithm, we scaled

input information for the training set to normalization information and rescaled the training

data to be in the format of [0, 1]. This process is done once that the model is fitted. In the pre-

diction phase, we used the testing set in the original scale; in this case, the algorithm rescaled

testing information by employing normalization information that it acquired from the training
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set. It is then mapped back the output information to the original scale to represent results. Fur-

thermore, we tuned the algorithm using a grid search method to find an optimal number of

neurons with the highest performance for various train and test set of information. This process

had a positive impact on train and prediction results and led the algorithm to achieve more

accurate results on short process time. Fig 3 demonstrated the structure of BRNN algorithm.

Radial basis function neural network

RBF neural networks [30,31] are among the most common artificial intelligence methods uti-

lized for simulating various hydraulic engineering problems. An RBF consists of three different

Fig 2. The structure of the two-layer neural network.

https://doi.org/10.1371/journal.pone.0229731.g002

Fig 3. The BRNN structure.

https://doi.org/10.1371/journal.pone.0229731.g003
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layers: the input, hidden and output layers layer. The input layer introduces the input variables

to the model and transfers them to the hidden layer. The hidden layer reduces the experimen-

tal dimensionality through a non-linear projection of the input variables. The projection is

done by some functions known as “radial basis functions”. The radial basis function, φ(x,c), is

a real function value which depends on the original distance [32], where x and c are the input

variable and center of the function, respectively. Thus, a radial basis function value changes

only with a change in radial distance and is defined as follows:

r ¼ kx � ck ð9Þ

where r denotes to the Euclidean norm, and x is an input variable, and finally, c refers a

centroid.

By running the RBF neural network, an N-dimensional linear function is constructed as:

f�ðjj x � xijjÞji ¼ 1; 2; . . . ;Ng ð10Þ

Following the hidden layer, a linear regression is done in the output layer. Therefore, the

RBF neural network results are determined using the weighted summation of the hidden layer

neurons. The coefficients of this weighted summation are determined using the least squared

method, and the results are presented as follows:

f ðxÞ ¼
PN

i¼1
ci�ðjjx � xijjÞ ð11Þ

The number of input layer neurons is equal to the number of input variables, and the number

of output layer neurons and output variables is the same. However, there is no particular rule

to determine the number of hidden layer neurons. In the present study, trial and error is done

in order to determine the number of hidden layer neurons [33,34]. The diagram of the RBF

illustrated in Fig 4.

Hybrid decision tree-based neural networks

The novel hybrid MS-RBF method is introduced in this section. A DT classification problem

[35] comprises a number of variables including class variables (Y) and input variables (X).

Y takes amounts between 1 and k, where k is the number of classes, considered for the prob-

lem. For each sample set, X is equal to X1 to Xp, where p is the number of input variables. Pre-

dicting the class of a new sample (Y) by using the input variables (X) is the goal of the DT

Fig 4. The diagram of the RBF model.

https://doi.org/10.1371/journal.pone.0229731.g004
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algorithm. A DT algorithm applies recursive partitioning in order to classify problems. This

method has the advantage of no limitation on the number of input variables. The DT algo-

rithm is discussed by [35] in detail. The power allocation of the RBF method to the dataset is

optimized by the hybrid MS-RBF method. In this hybrid approach, despite assigning the entire

power of an RBF neural network to the whole dataset, the RBF and the dataset are partitioned

into some parts. The procedure of the MS-RBF method is as follows: (1) Dataset division: In

the MS-RBF method, first the whole dataset is divided into three parts according to the

amounts of output variables. Therefore, the entire dataset is partitioned into three types of

samples, with low, medium, and high amounts of output variables. It is worth nothing here

that the percent of each sample type (low output, medium output, and high output samples) is

determined by MS-RBF via trial and error.

(2) DT training: After dividing the dataset, the DT is trained with the input variables of the

problem as X variables, and “Low,” “Medium,” and “High” as the Y variables of the classifica-

tion problem. An important element in DT training is classification precision. With high pre-

cision, misclassified samples can be arranged; however, the DT structure becomes very

complex. On the other hand, weak classification would lead to a simple and easy-to-use DT

structure, but the number of misclassified samples would be high. In the MS-RBF method, the

trial and error is utilized to find the optimum precision of DT classification.

(3) RBF partitioning: In this step, the RBF neural network is split into three smaller RBF

models. In this study, the maximum allowable number of hidden layer neurons of the main

RBF is 12. Therefore, the sum of the maximum allowable number of hidden layer neurons of

the smaller RBF is 12.

(4) Finding the RBF optimum structure: Now, trial and error method is utilized to deter-

mine the number of hidden layer neurons in the main RBF model and three smaller RBF mod-

els (by considering the maximum allowable number of hidden layer neurons from the

previous step).

(5) Result combination: In order to compare the results of the main, simple RBF model

with the hybrid MS-RBF, the results of the three smaller RBFs are combined. In this paper, the

MS-RBF model is utilized to simulate the percentage of shear force carried by walls, non-

dimension wall shear stress and non-dimension bed shear stress in smooth rectangular chan-

nels. This modeling procedure of MS-RBF technique is shown in Fig 5. In this figure five steps

can be seen that each step is as:

Step 1: Input dataset into the MS-RBF model.

Step 2: Divide the entire dataset into three types of samples, with low (LD), medium (MD),

and high (HD) amounts of output variables.

Fig 5. The structure of MS-RBF model.

https://doi.org/10.1371/journal.pone.0229731.g005
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Step 3: Generate the classifications of the three groups HD, MD, and LD using the Decision

Tree classifier.

Step 4: Input the three predicted datasets of HD, MD, and LD to the RBF-HD, RBF-MD, and

RBF-LD predictor models.

Step 5: Combine all results of separated RBF neural network models and Forecast Shear stress.

Results

Performance evaluation

The performances of models were evaluated using some global statistics: These applied criteria

are as Correlation Coefficient (R2), Root Mean Square Errors (RMSE), Mean Absolute Error

(MAE), Nash-Sutcliffe Efficiency (NSE), and Percentage of BIAS (PBIAS) that defined as:

R2 ¼

Pn
i¼1
ðxim � �ximÞðxip � �xipÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðxim � �ximÞ

2
�
Pn

i¼1
ðxip � �xipÞ

2
q

0

B
@

1

C
A

2

ð12Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxip � ximÞ

2

n

s

ð13Þ

MAE ¼
1

n
Pn

i¼1
jxip � ximj ð14Þ

NSE ¼ 1 �

Pn
i¼1
ðxim � xipÞ

2

Pn
i¼1
ðxim � �ximÞ

2
ð15Þ

PBIAS ¼ 100�

Pn
i¼1
ðxim � xipÞ
Pn

i¼1
xip

" #

ð16Þ

where, xip denotes the value of predicted parameter by the model, xim is the measured values in

the experiments, and �xim and �xip are the mean of measured and predicted values respectively.

The percentage of shear force carried by walls modeling

The BRNN, RBF and MS-RBF estimates for the entire dataset and testing period were com-

pared with observed wall shear force and are illustrated Fig 6. The MS-RBF with R2 of 0.98 per-

formed better than simple RBF model with R2 of 0.94, and the results of MS-RBF model are

close to results of BRNN model with R2 of 0.97. It is clear from the fit line equations (assuming

the equation is y = a0x + a1) that the a0 and a1 coefficients for MS-RBF are closer to 1 and 0

respectively, than those of the simple RBF model and BRNN model. This confirms the statisti-

cal results which presented in Table 2. According to the results of Fig 6A, the MS-RBF model

can estimate results closer to experimental data than those of the simple RBF and BRNN meth-

ods, meaning that the MS-RBF method produces much better estimations of %SFw.

Table 2 provides the statistical parameter values for predicting %SFw by BRNN, RBF, and

MS-RBF models for both the training and testing stages. As expected, the improved MS-RBF

method with lower statistical parameter values exhibits superior performance over the simple

RBF and BRNN methods. As seen in Table 2, the statistical values of the MS-RBF model are
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close to each other for testing and training, signifying that the model has no overturning in the

modeling process of shear force carried by walls. According to the results of Table 2, the

Fig 6. Observed and estimated percentage of shear force values: (a) for the entire dataset and (b) for the testing

dataset.

https://doi.org/10.1371/journal.pone.0229731.g006

Table 2. Performance evaluation of the BRNN, RBF and MS-RBF models for both test and train stage for modeling the shear force carried by walls.

Models RMSE MAE NSE PBIAS

BRNN Test 4.35 2.63 0.97 -3.40

Train 2.15 1.63 0.99 0.38

RBF Test 5.46 4.59 0.94 6.01

Train 6.69 5.61 0.91 16.97

MS-RBF Test 3.07 2.34 0.98 1.47

Train 3.66 2.53 0.97 2.57

https://doi.org/10.1371/journal.pone.0229731.t002
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MS-RBF model with RMSE of 3.07 performs better than the simple RBF model with RMSE of

5.46 and BRNN model with RMSE of 4.35, respectively, for the testing dataset.

Non-dimension wall shear stress modeling

Fig 7 shows the observed and predicted values of
�tw
t0

for all datasets and for the test dataset as a

scatter plot for the BRNN, RBF and MS-RBF models. According to the figure, the MS-RBF

model approximates the observed data better than both RBF and BRNN models. The MS-RBF

model has an R2 coefficient of 0.8315, which is much higher than 0.2716 obtained with the

simple RBF model. In the scatter plot, the trend line of values predicted by the MS-RBF model

is much closer to the fitted line than the RBF model, indicating the greater performance of the

improved RBF model than the simple RBF model. The results of BRNN model for estimating

Fig 7. Observed and estimated non-dimension wall shear stress values: (a) for the entire dataset and (b) for the test

dataset.

https://doi.org/10.1371/journal.pone.0229731.g007
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�tw
t0

is much better than simple RBF model for testing stage and whole dataset but the accuracy

of BRNN in estimating
�tw
t0

is lower than MS-RBF model. The MS-RBF model has better func-

tion than the BRNN and RBF model with respect to the fit line equation, since the a0 and a1

coefficients of the MS-RBF model are respectively closer to 1 and 0 than those of the BRNN

and RBF models.

Non-dimension wall shear stress (
�tw
t0

) was simulated using BRNN, RBF and MS-RBF mod-

els. The statistical parameter simulation results for the testing and training stages are shown in

Table 3. Clearly, the values of these parameters decrease as the RBF model improves, with

RMSE of 0.04 for the MS-RBF model with the testing dataset compared with the RBF model

with RMSE of 0.08. The results of BRNN predictions are close to the results of simple RBF

model with RMSE of 0.07. For the MS-RBF model, all statistical parameters for the training

dataset are close to the statistical parameters for testing stage, shows the superior performance

of the MS-RBF model in estimating the
�tw
t0

. The statistical result values of the RBF model are

increased in training stage in compare with the testing stage. Overall, the MS-RBF model with

lower statistical parameter values (MAE of 0.03) shows better performance than the simple

RBF model (MAE of 0.08) in predicting
�tw
t0

.

Non-dimension bed shear stress modeling

The BRNN, RBF and improved MS-RBF models were also used to model non-dimension bed

shear stress. The results of all three models for estimating mean bed shear stress are compared

in Fig 8. Evidently, the results of the MS-RBF model in all datasets are closer than those of the

BRNN and RBF models to experimental data. Additionally, according to the scatter plot for

the test dataset, the MS-RBF model with R2 of 0.9759 performs better than the BRNN and RBF

models with R2 of 0.8159 and 0.8352 respectively. The a1 and a2 fit line equation coefficients of

the MS-RBF model (0.9742 and 0.0195) respectively closer to 1 and 0 respectively, than those

of the BRNN (0.7616 and 0.104) and RBF models (0.6309 and 0.2199).

Table 4 presents the RMSE, MAE, NSE and PBIAS values of the applied models for both

training and testing stages. According to the results of Table 4 the BRNN model demonstrated

the least accurate results for estimating dimensionless bed shear stress with the highest values

of error for both training and testing stages. All statistical parameters values of the RBF model

for the testing and training datasets are much bigger than those of the MS-RBF model. Accord-

ing to the results in Table 4, it can be deducted that the improved MS-RBF model performs

much better than the simple RBF and BRNN models. The MS-RBF model enhancement has

been so successful because for the test dataset the MS-RBF model with RMSE of 0.04 showed

better function than the RBF model with RMSE of 0.10. Moreover, the statistical parameters

values for the testing dataset are close to the training dataset, which suggests that the models

performed well during modeling.

Table 3. Performance evaluation of the BRNN, RBF and MS-RBF models for both test and train stage for modeling the dimensionless wall shear stress.

Models RMSE MAE NSE PBIAS

BRNN Test 0.07 0.05 0.36 -3.70

Train 0.08 0.06 0.63 5.68

RBF Test 0.08 0.07 -0.02 -1.76

Train 0.12 0.09 0.24 10.12

MS-RBF Test 0.04 0.03 0.81 -1.18

Train 0.04 0.03 0.92 0.54

https://doi.org/10.1371/journal.pone.0229731.t003
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Fig 8. Observed and estimated non-dimension bed shear stress values: (a) for the entire dataset and (b) for the test

dataset.

https://doi.org/10.1371/journal.pone.0229731.g008

Table 4. Performance evaluation of the BRNN, RBF and MS-RBF models for both test and train stage for modeling the dimensionless bed shear stress.

Models RMSE MAE NSE PBIAS

BRNN Test 0.11 0.08 0.77 -0.87

Train 0.14 0.11 0.60 9.85

RBF Test 0.10 0.08 0.78 6.24

Train 0.11 0.07 0.74 6.83

MS-RBF Test 0.04 0.03 0.97 1.43

Train 0.05 0.03 0.96 2.27

https://doi.org/10.1371/journal.pone.0229731.t004
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Comparison of MS-RBF model results and other equations for %SFw
Since the MS-RBF model demonstrated more appropriate results with the lowest statistical val-

ues in estimating %SFw, MS-RBF was selected as the best model and was compared with Eqs

(1), (4) and (5). The results of this comparison are illustrated in Fig 9. The equation offered by

[26] [Eq (5)] predicted underestimated values for %SFw and so did the other two proposed

equations for ducts [Eqs (1) and (4)]. The MS-RBF model with R2 of 0.9759 showed the best

performance over Eqs (5), (1) and (3) with R2 of 0.9698, 0.9463 and 0.9329 respectively. The

trend line of the MS-RBF model results is very close to the exact line, while other nonlinear

regression equations’ trend lines are farther from the fitted line, which indicates the numerical

model can predict more accurate %SFw values than other equation. As seen from the fit line

equations in the scatterplots, the a0 and a1 coefficients for the MS-RBF model are 0.9712 and

1.0304 respectively and are closer to 1 and 0 than those of other equations. According to the

results of the comparison equations, the equation for trapezoidal channels [Eq (5)] exhibited

better performance than duct equations. Generally, the MS-RBF model has a better function

and high performance in predicting %SFw.

Comparison of MS-RBF model results and other equations for
�τw
τ0

The non-dimension wall shear stress results of the MS-RBF model and other nonlinear regres-

sion equations are represented in Fig 10 in the form of a scatterplot. This figure indicates

the greater closeness of the MS-RBF model’s prediction of
�tw
t0

with the target predictions than

other equations. All three relations for trapezoidal channels and rectangular ducts showed

Fig 9. Scatter plot of comparison between the best model and other experimental equations for percentage of

shear force.

https://doi.org/10.1371/journal.pone.0229731.g009
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underestimated values for
�tw
t0

, while the proposed model with R2 of 0.9037 showed high perfor-

mance in predicting values for
�tw
t0

. The equations presented for rectangular ducts approximately

estimate constant values for flow depth ranging from 0.4 to 0.75 and their trend lines are

straight, meaning their results are not sufficiently accurate in predicting the target parameter.

The trend lines of the equations from other studies indicate the poor function of the equations

in estimating non-dimension wall shear stress; the a0 coefficients are 0.4218, 0.1951 and

0.2634 for the relations of Flintham and Carling [26], Knight and Patel [24] and Rhodes and

Knight [25] respectively. These values are not close to 1, therefore the MS-RBF model with the

highest R2 values performs better in estimating
�tw
t0

than other equations.

Comparison of MS-RBF model results and other equations for
�τb
τ0

The MS-RBF model results are compared with those of Eq (3) in terms of computation with

different relations of percentage of shear force carried by walls. Fig 11 presents the results of

this comparison. The MS-RBF model with results closer to experimental data performs the

best among all methods. The trend line of the MS-RBF model matches the exact line with R2 of

0.9635, rather than equations for trapezoidal channels and rectangular ducts with R2 of 0.9680,

0.9438 and 0.9299 respectively. The equations proposed by other researchers predict overesti-

mated values for
�tb
t0

, but the equation for trapezoidal channels performs better than the relations

for rectangular ducts. The non-dimension bed shear stress values estimated by other relations

show higher accuracy than equations for non-dimension wall shear stress, but the MS-RBF

model performs the best among all equations.

Fig 10. Scatter plot of comparison between the best model and other experimental equations for non-dimension

wall shear stress.

https://doi.org/10.1371/journal.pone.0229731.g010
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Discussion

The shear stress is one of the vital components in hydraulic of channels. The prediction of

accurate values of shear stress due to designing more stable channels [13]. For prediction of

shear stress distribution around wetted perimeter by using some analytical methods the mean

wall and bed shear stresses also the percentage of shear force carried walls is needed [36–38].

Therefore, the more accurate results of these three parameters more accurate results of shear

stress will be obtained. In this study three different methods are applied to estimate %SFw,

dimensionless mean wall and bed shear stresses. The most important issue in this study is

applying simple RBF model and modified structure of RBF and investigation of accuracy of

MS-RBF model in estimation. Many researchers used simple models and then hybrid one to

improve the results of predictions [39–41]. Sheikh Khozani et al. [40] applied some tree-based

models to forecast apparent shear stress in compound channels. They investigated the best

input combination which estimate more accurate results. In this study because we only have

an input parameter as y/P then the structure of models is simpler than models with more

input variables and no need to investigate the best input combination. In the study of Sheikh

Khozani et al. [40] the hybrid model Bagging-M5P performed better than other simple models.

In present study the MS-RBF model proved higher prediction power of hybrid algorithms in

compare with simple RBF and BRNN models.

Conclusion

Three shear stress parameters (%SFw,
�tw
t0

and
�tb
t0

) were modeled with the BRNN, simple RBF and

MS-RBF models and the most appropriate model for predicting these parameters was selected.

Fig 11. Scatter plot of comparison between the best model and other experimental equations for non-dimension

bed shear stress.

https://doi.org/10.1371/journal.pone.0229731.g011
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Also, the estimated values by the best model are compared with three different nonlinear equa-

tions proposed by other researchers. The obtained results are as:

1. The MS-RBF model with RMSE of 3.073, 0.0366 and 0.0354 for predicting %SFw,
�tw
t0

and
�tb
t0

respectively for the test dataset, displayed better function compared with the BRNN and

RBF models.

2. The MS-RBF model with R2 of 0.9757 showed higher ability in estimating % SFw than other

equations with R2 of 0.9698, 0.9463 and 0.9329 presented by Flintham and Carling [26],

Knight and Patel [24] and Rhodes and Knight [25] respectively.

3. All nonlinear equations computed underestimated values for
�tw
t0

while the MS-RBF model

demonstrated the best performance with R2 of 0.9037.

4. In the comparison between the MS-RBF model’s results with other equations in estimating
�tb
t0

, the trend line of the MS-RBF model was closer to the fitted line with R2 of 0.9635 and the

other equations predicted overestimated values for this parameter.
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