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Abstract

Pedestrian dynamics models the walking movement of individuals in a crowd. It has recently

been used in the analysis of procedures to reduce the risk of disease spread in airplanes,

relying on the SPED model. This is a social force model inspired by molecular dynamics;

pedestrians are treated as point particles, and their trajectories are determined in a simula-

tion. A parameter sweep is performed to address uncertainties in human behavior, which

requires a large number of simulations. The SPED model’s slow speed is a bottleneck to

performing a large parameter sweep. This is a severe impediment to delivering real-time

results, which are often required in the course of decision meetings, especially during emer-

gencies. We propose a new model, called CALM, to remove this limitation. It is designed to

simulate a crowd’s movement in constrained linear passageways, such as inside an aircraft.

We show that CALM yields realistic results while improving performance by two orders of

magnitude over the SPED model.

Introducion

Pedestrian dynamics deals with modeling the movement of individuals, often as a part of a

crowd. Its has been used in a wide variety of applications, from panic simulation and crowd

behavior analysis [1–7] to diseases-spread modeling and robotics [6, 8–13].

The most popular models for the simulation of pedestrian dynamics are social force models

[14]. Two sets of forces determine the movement of each person in these models. Propulsive

forces tend to move a pedestrian toward that pedestrian’s destination. Repulsive forces,

induced by nearby pedestrians or physical obstacles in the environment, on the other hand,

tend to impede this movement. Newton’s law of motion is used with the aggregation of the

above forces to compute the trajectories of the pedestrians. These trajectories are subsequently

analyzed to extract the desired information for the target application.
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The Self Propelled Entity Dynamics (SPED) model is one notable social dynamics model

[8–10, 12]. It has been used to determine contact patterns while passengers board and disem-

bark from planes. These contact patterns are subsequently used to identify policies that would

hinder the spread of viral diseases in air-travel [10]. The results of this research, analyzing the

risk of an Ebola outbreak, was widely covered in more than 75 news outlets around the world

[15].

A critical challenge in the use of such models, especially during epidemics, lies in dealing

with the intrinsic uncertainties in human behavior. The above application handles it by param-

eterizing the sources of uncertainty and then performing a sweep of the parameter space to

generate all possible scenarios [8, 12]. Vulnerabilities of different policies can then be exam-

ined under this exhaustive set of possible scenarios.

The number of scenarios that need to be generated is large, leading to a high computational

effort. Chunduri et al. [8] observed that it is crucial to have the results of decision-support sys-

tems in less than a couple of minutes during decision meetings. The average runtime of SPED

code for a single simulation is over 350 seconds. This makes it infeasible to meet the time con-

straints needed for decision support. Consequently, there is a need for a model that can simu-

late the same application as SPED, while being faster.

The primary contribution of this paper lies in proposing a fast pedestrian dynamics

model—CALM—for constrained linear movement of individuals in a crowd. Similar to SPED,

this model is designed to simulate movement in narrow, linear, passageways, such as inside

airplanes. Our results show that CALM performs almost 60 times faster than the SPED model.

Apart from this performance gain, we have modeled additional behavioral features of pedestri-

ans. Therefore, the CALM model can overcome the limitations of SPED in a decision support

context where real time results are required.

Model description

Various types of methods have been used in pedestrian dynamics, such as cellular automaton

[16, 17], social force [5, 14], and lattice-gas [3, 18] models. Social force models are among the

most popular, and are particularly effective in generating fine-scale trajectories of each pedes-

trian. Both the existing SPED model and the proposed CALM model are social force models.

We first summarize the SPED model and then explain how its critical qualitative features are

carried forward to the CALM model, while enabling it to be computationally more efficient.

SPED model

Social force models treat each pedestrian as a point particle, analogous to an atom in molecular

dynamics. Molecular dynamics uses models that capture the actual attractive and repulsive

forces between atoms, which govern the movement of atoms. In social force models, concep-

tual forces are defined that perform a similar role, either increasing the speed or decreasing it.

Each pedestrian wishes to reach a certain destination, which motivates a propulsive force f prop.
The pedestrian may be hindered by other pedestrians and fixed objects, whose net effect is

considered a repulsion, f rep. Newton’s law of motion, shown in Eq (1), is then solved using a

finite difference solver to determine the position xi and velocity vi of each pedestrian i with

mass mi as a function of time t.

mi
dvi
dt
¼ mi

d2xi
dt2
¼ f propi ðtÞ þ f repi ðtÞ ð1Þ

Both SPED and CALM use the model for propulsive force given in Eq (2), which is com-

mon in social dynamics [14]. Here, τ is the average reflex time of an individual and v0i is the
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desired velocity of pedestrian i (if there were no obstacles or other pedestrians). SPED assigns

normally distributed random values for |v0i|, with the direction of v0i determined by the pedes-

trian’s destination. The parameters for the distribution are based on empirically observed val-

ues for human movement [19].

f propi ¼
ðv0i � viÞ

t
�mi ð2Þ

Social dynamics models typically differ in their definition of the repulsive force. The basic

idea is that the speed of a pedestrian should decrease on getting close to other persons or fixed

objects on their path.

SPED computes repulsion for each pedestrian as follows. It considers the distance di of the

closest pedestrian or fixed object in the direction of motion. It then uses one of the following

criteria, depending on the value of di. (i) If di is very large, then it ignores the repulsive force in

Eq (1). (ii) If di is very small, then it adapts the Lennard-Jones potential from molecular

dynamics to compute f repi in Eq (1) as explained below. (iii) If di is between these extremes,

then it decreases the speed of the pedestrian by multiplying the speed of the pedestrian by

a factor α to obtain the speed at the next time step of the finite difference scheme. That is,

vi(t + Δt) αvi(t), where α is computed using Eq (3). In that equation, λ is a constant giving

the desired stopping threshold of a pedestrian; that is, the pedestrian aims to stop when the dis-

tance to the nearest pedestrian reaches this value.

a ¼ 1 �
l

di
ð3Þ

A modified version of the Lennard-Jones potential from molecular dynamics is used to

compute repulsion when di is very small. In that case, the distance rij to each of the other

pedestrians j is determined and a “potential” computed for each as shown in Eq (4) [10]. The

net repulsive force on pedestrian j is given by f repi ¼
P

j6¼ifij, where fij is the negative of the gra-

dient of the potential VLJ
ij . Repulsion is computed in an identical manner if the closest entity is

a fixed obstacle rather than a pedestrian.

VLJ
ij ¼ �

s

r12
ij

ð4Þ

Here, � and σ are suitably defined constants obtained by fitting against empirically deter-

mined values. A few other behavioral characteristics are directly incorporated into the SPED

code. (i) Passengers take a certain time to stow their luggage while boarding. (ii) Passengers

take a certain time to retrieve their luggage while disembarking. (iii) Passengers let those in the

row ahead of them leave first while disembarking.

We observed by profiling the code that the Lennard-Jones potential is the primary compu-

tational bottleneck. In addition, the methodology to reduce the speed in the intermediate

range is numerically awkward for the following reason. In order to verify convergence, a typi-

cal test would be to repeat the simulation with a smaller time step size and check if the results

are similar. However, the method adopted in SPED makes the velocity a function of the time

step size, which would not yield similar results when the time step size is changed. We

designed the CALM model to overcome both limitations, and also added an additional behav-

ioral feature that ensures that the simulation always progresses.
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CALM model

We note that actual human movement is not precisely defined by any particular potential.

Rather, it varies so much that it is sufficient to capture its qualitative tendencies, and then use a

parameter sweep to examine the range of movement patterns. We, therefore, define a simpler

repulsive force by using a single curve that yields results qualitatively similar to SPED. It must

satisfy the basic requirements that the speed should be the desired speed |v0i| when the nearest

pedestrian is far away, and should decrease to 0 when the nearest passenger gets too close.

We accomplish this by using Eq (1) with propulsion defined by Eq (2) as with SPED, and

repulsion by Eq (5) as defined below, for a value of β explained below.

f repi ¼
ðb � 1Þv0i

t
�mi ð5Þ

Fig 1 shows the values of this repulsion against di with three different values of v0i. The

force becomes negative when a pedestrian reaches close to another, with stronger repulsion for

faster moving pedestrians.

Use of the above repulsive force is equivalent to solving Newton’s law of motion with the

net force defined by Eq (6) below, which is the actual equation that we solve.

mi
d2xi
dt2
¼
ðbv0i � viÞ

t
�mi ð6Þ

Comparing the above with the expression in Eq (2) shows that the above formulation aims

to achieve a velocity of βv0i. We choose β as a function of di such that βv0i is a suitable velocity

for the pedestrian whose nearest pedestrian is at a distance di.
We accomplish this goal as follows. We calculate the variation of vi with di for SPED and fit

a curve that will yield a qualitatively similar result for CALM. The specific details are as follows.

We note that the typical desired speed v0i varies around 1m/s. We solve SPED’s equation when

there are only two pedestrians, one stationary and another moving toward that pedestrian

with an initial velocity of 1m/s while at a distance of 4m, with only the repulsion term

Fig 1. Repulsive force as a function of di.

https://doi.org/10.1371/journal.pone.0229690.g001
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considered. The intermediate zone is taken as a distance from 0.4m to 2.0m. We get the result

shown in Fig 2.

In fitting the CALM model, we assume β of the form given in Eq (7) and determine parame-

ters that give a best fit to the SPED results. We obtain a = 2.11, b = 0.366, and c = 0.966. We

use the same value of β for any value of v0i. The range of values of v0i is small around 1ms/, and

so the same value of β is considered a reasonable scaling factor.

b ¼ c � e� aðdi � bÞ ð7Þ

Fig 3 demonstrates a comparison of the pedestrian dynamics results between the CALM

and the SPED model in three different cases of v0i = 0.8(m/s), v0i = 1.0(m/s), v0i = 1.5(m/s). In

Fig 2. Fitting the repulsion term of CALM (solid line) to the SPED solution (dotted line).

https://doi.org/10.1371/journal.pone.0229690.g002

Fig 3. Comparing the pedestrian dynamics results of the SPED model vs the CALM model in three different cases.

https://doi.org/10.1371/journal.pone.0229690.g003
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each case, we assumed that a pedestrian is moving toward a stationary entity. These figures

show a qualitative match between SPED and our model for this situation. Given a range of val-
ues of v0i for SPED, we can find a range of values for CALM that yield similar results.

Deadlock. We incorporate the same behavioral features as SPED in our simulations. In

addition, we include the following. We have designed the CALM model for simulation of

movement in narrow passageways, such as airplane aisles. In these situations, people cannot

walk side-by-side. As a consequence, sometimes, a deadlock situation can happen when two

people try to get right of way but neither can move forward. The SPED model will not progress

in these situations.

We have designed a mechanism to resolve this. One of the passengers will be declared the

winner, with a random component to the decision, and get the right of way. This reflects

human behavior in practice, where one person would yield to another.

Application to air travel

As we discussed in the introduction section, using pedestrian dynamics models for simulation

of passengers movement in the airplanes is a critically important application for public health

policy analysis. Namilae et al. [10] used the SPED model for suggesting policies that help to

mitigate the risk of diseases spread during the flights. We use the CALM model in the same

application to demonstrate that it yields realistic results. In this section, we explain the imple-

mentation details for airplane boarding and deplaning procedures.

Deplaning

We initialize the simulation by inputting the initial positions of passengers and physical obsta-

cles from a file. We also assign each passenger a value of |v0i| drawn independently from a

Gaussian distribution with mean v0 and standard deviation 0.2 m/s. The parameter v0 varies

in different simulations, with 1:1 � v0 � 1:3 m/s. These values are derived from empirical

data available for pedestrian speed [19].

After the initialization, each step of the simulation computes the position of all passengers

at several different points in time. This is accomplished by using an explicit Euler scheme to

solve Eq (1) with a time-step size Δt of 0.005s for the CALM model. We repeat these steps

until all the passengers leave the plane. Algorithm 1 gives the pseudocode of the deplaning

procedure.

Algorithm 1 Deplaning
while there are passengers in the plane do
for each remaining passenger Pi do
Find the nearest passenger or physical obstacle to Pi on its path
Compute the repulsion

end for
for each remaining passenger Pi do
Compute the propulsion
Update the velocity and position of Pi
Check for deadlock and update Pi’s state if necessary

end for
end while

During the deplaning procedure, each passenger will go through a few different states. The

initial state of each passenger is going toward the overhead bin to collect the carry-on baggage.

We assume that each passenger has a bag that is in the nearest overhead bin and that they take

5-12s in a state where they are collecting baggage. Passengers will then attempt to go toward the
center of the aisle and subsequently move forward in the aisle toward the exit. In the latter state,

they will first wait for the passengers in the rows in front of them to go ahead before they move
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forward. When passengers reach the end of the aisle, they have to turn toward the exit door
and leave the plane. Once a passenger is out of the airplane, we remove that passenger from the

simulation. Fig 4 shows the state diagram for passengers during the deplaning, and Fig 5 dem-

onstrates the progress of a disembarkation simulation.

Fig 4. States of passengers while deplaning.

https://doi.org/10.1371/journal.pone.0229690.g004

Fig 5. Progress of a deplaning simulation.

https://doi.org/10.1371/journal.pone.0229690.g005
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In addition to v0 , we use five parameters to address the uncertainties in human behavior

during the deplaning process. Passengers move from the seat to the overhead bin at a fraction

of their maximum reachable speed. Therefore, in our model, we use a coefficient 0<

toward_bag_speed_coefficient< 1 that multiplies v0i when passengers are in the toward_the_o-
verhead_bin state. Similarly, passengers’ alignment on the center of the aisle, after taking their

bag, takes place with a fraction 0< aligning_speed_coefficient< 1 of their maximum reachable

speed. After this step, passengers should wait for the passengers in the front rows to move

toward the end of the aisle first. Hence, the first passenger from row i can proceed only if the

last passenger from row i − 1 has already moved in the aisle for aisle_distance_threshold
meters. People often reduce their speed when getting close to an intersection at which they

want to turn. In our model, passengers, reduce their speed by a factor intersection_speed_coeffi-
cient when their distance to the end of the aisle is less than intersection_distance_threshold
meters.

According to [20], the average deplaning rate for the planes is 15-17 passengers per minute.

In our application, the goal is to capture some extreme scenarios in addition to normal ones

[8]. As a consequence, we tuned the parameter values for the CALM model to generate simula-

tions with a slightly more extensive range of deplaning rates. We use 1000 parameter combina-

tions for running simulations of the deplaning procedure for a full Airbus A320 with 144 seats

and used the results of this parameter sweep for tuning the parameters of the CALM model.

For this airplane, the deplaning rate of 15-17 passengers per minute yields to deplaning time of

8.47 to 9.6 minutes, and the CALM model generates simulations with the deplaning time of

6.52 to 11.10 minutes after parameter tuning. Table 1 shows the range of values for all six

parameters of the CALM model after such adjustment.

Boarding

The CALM model can also be used for boarding of airplanes with implementation details

being similar to deplaning to a large extent. The main difference lies in the state diagram of the

passengers, which is roughly in the reverse order of deplaning, as shown in Fig 6. Passengers

are initially outside of the airplane. As the simulation starts, passengers move toward the aisle

from the exit door. Then, they go into the aisle until they reach the row of their seat. There,

they will stow their bag in the overhead bin, and then go to their seat.

We have implemented boarding with three zones. Other boarding strategies can be imple-

mented without changing the code, just by using suitable input files.

Boarding involves a few parameters, similar to deplaning. The parameter �v0 was explained

earlier. We assume passengers are in an aisle outside the airplane (behind the airplane

door) and will move toward the airplane door when the passenger in front of them has

moved for line_distance_threshold meters. Passengers reduce their speed by a factor intersec-
tion_speed_coefficient when their distance to the intersection of the aisle is less than

Table 1. CALM model parameter ranges for deplaning.

Parameter Minimum Value Maximum Value

v0 1.1 m/s 1.3 m/s

toward_bag_speed_coefficient 0.2 0.6

aligning_speed_coefficient 0.2 0.7

aisle_distance_threshold 0.5 m 1.6 m

intersection_speed_coefficient 0.2 0.8

intersection_distance_threshold 0.2 m 1.5 m

https://doi.org/10.1371/journal.pone.0229690.t001

PLOS ONE Constrained Linear Movement Model (CALM)

PLOS ONE | https://doi.org/10.1371/journal.pone.0229690 March 5, 2020 8 / 14

https://doi.org/10.1371/journal.pone.0229690.t001
https://doi.org/10.1371/journal.pone.0229690


intersection_distance_threshold meters. After passengers place their baggage in the overhead

bin, they will move toward their seat with a fraction of their maximum reachable speed, that

we call toward_seat_speed_coefficient. These parameters are analogous to those for deplaning,

and we use the same range of values for them, as shown in Table 2.

Results

We first show that the CALM models results are consistent with empirically observed metrics

for disembarkation in airplanes. We then show that the CALM model yields substantial perfor-

mance gains over the SPED model.

Experimental setup

We run all our experiments on the Frontera supercomputer at the Texas Advanced Comput-

ing Center. This system consists of 8008 compute nodes with 56 cores per node for a total of

448448 cores and ranks the 5th fastest supercomputer in the world. Each node contains two

Xeon Platinum 8280 28C processors running at 2.7GHz with 128 GB memory. Nodes are con-

nected through Mellanox Infiniband HDR-100 network connected in a fat tree topology.

We use a scrambled Halton low dispcrepancy sequence for performing efficient parameter

sweep [8]. We employ dynamic load balancing for running this parameter sweep, using a mas-

ter-worker algorithm where the master assigns a simulation to a core that has just completed

its previous simulation. We use one node with 32 cores in all of our experiments. Each simula-

tion of the parameter sweep is run on one core, with each core running multiple simulations.

Implementations of the CALM model for running parameter sweeps of deplaning and

boarding simulations can be found at https://gitlab.com/Mehran_SL/calm.

Model validation

We validate our results by examining disembarkation times on three different types of air-

planes. A single simulation does not capture the variety of human movement patterns, and so

we perform a parameter sweep with 1000 different combinations of parameter values, covering

the range mentioned in Table 1. We compare it against the empirically observed deplaning

rate of 15-17 passengers per minute [20]. The airplanes considered are: Boeing B757-200 with

Fig 6. State diagram of passengers during the boarding procedure.

https://doi.org/10.1371/journal.pone.0229690.g006

Table 2. CALM model parameter ranges for boarding.

Parameter Minimum Value Maximum Value

v0 1.1 m/s 1.3 m/s

line_distance_threshold 0.5 m 1.6 m

intersection_speed_coefficient 0.2 0.8

intersection_distance_threshold 0.2 m 1.5 m

toward_seat_speed_coefficient 0.2 0.6

https://doi.org/10.1371/journal.pone.0229690.t002

PLOS ONE Constrained Linear Movement Model (CALM)

PLOS ONE | https://doi.org/10.1371/journal.pone.0229690 March 5, 2020 9 / 14

https://gitlab.com/Mehran_SL/calm
https://doi.org/10.1371/journal.pone.0229690.g006
https://doi.org/10.1371/journal.pone.0229690.t002
https://doi.org/10.1371/journal.pone.0229690


182 seats, B757-200 with 201 seats and CRJ-200 with 50 seats. In all of our experiments, all the

planes are full.

Table 3 shows the ranges for deplaning time of each airplane based on empirical observa-

tions, along with the results from our simulations using the CALM model.

As the results of our experiments show, the empirically-observed deplaning time ranges

are subsets of the ranges produced by the CALM model. We can draw two conclusions from

these results. First, the results demonstrate that the CALM model generates results for all the

expected scenarios. Second, the CALM model provides results that are a little outside the nor-

mal range. This was a deliberate design choice because our application goal is to generate rare

scenarios that can capture extreme events [8].

In addition to validating the deplaning times, we selected several random simulations and

checked the video output to examine if the behavior was realistic, as is commonly done in vali-

dation of pedestrian dynamics [21]. Simulation results in all these tests were consistent with

the empirically observed behavior of passengers during deplaning and boarding, such as for-

mations of clusters.

Moreover, it is common in this field use other features of crowds movements, such as the

relationship between the density (number of passengers per unit area) and space-mean veloc-

ity, to validate models of pedestrian movements [22–24]. We assess the relationship between

density and velocity in the CALM model and compare it against the empirically-observed

trend [25, 26].

Analyzing these characteristics of the flow at bottlenecks in passengers’ paths is critical as

these bottlenecks usually have a significant role in crowd movements [22]. Therefore, we mea-

sure the density and space-mean velocity of passengers toward the end of the aisle, where pas-

sengers decrease their speed in order to turn toward the exit. We define this bottleneck region

as a rectangle with a width of 0.4m (width of an average person) centered at the center of the

aisle. The length of this rectangle is 4 meters for each airplane, except for the small CRJ-200

airplane, for which it is 3 meters.

We print the current position and velocity of all passengers every 100 iterations (which is

equal to 0.5 seconds of real-world time) in deplaning simulations and then compute the den-

sity and space-mean velocity of passengers in the bottleneck for each of the sample iterations.

Eqs (8) and (9) define these two factors.

rt ¼
Nt

A
ð8Þ

vt ¼
Nt

PNt
i¼1

1

Nt

ð9Þ

In these equations, ρt, vt and Nt represent density in m−2, space-mean velocity in m
s and

number of passengers in the bottleneck at time t, respectively, and A is the area of the bottle-

neck region.

Table 3. Comparison of predicted and empirically observed deplaning times.

Airplane Deplaning time Empirically-observed deplaning time

B757–200 (182 seats) [8.21, 16.43] (min) [10.71, 12.13] (min)

B757–200 (201 seats) [9.32, 15.17] (min) [11.82, 13.4] (min)

CRJ–200 (50 seats) [1.46, 4.06] (min) [2.94, 3.33] (min)

https://doi.org/10.1371/journal.pone.0229690.t003
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For each of the four airplanes that we consider in this paper, we select three deplaning sim-

ulations randomly from the fastest third, the slowest third and the moderate third of 1000 sim-

ulations in our parameters sweep. Then we compute the density and space-mean velocity for

these simulations. For each value of density, different values of space-mean velocities may be

observed. We compute the average of these space-mean velocities for each value of density in

our plot of the fundamental diagrams.

Fig 7 presents the fundamental diagrams that show the relation between density and veloc-

ity for the four airplanes. We compare results from our model against empirical results. Empir-

ical results have been determined through a relationship between velocity and density given

by Eq (10), which fits empirical data [25, 26]. In this equation, vF,hi(D), vF,hf, D and Dmax are

velocities at a particular density, velocity when density is zero, density, and the maximum

possible density respectively. λ is a constant with the value of 1.913 [26]. We use the values of

vF,hf = 1.34(m/s) and Dmax = 5.4(person/m2) as specified in literature [26].

vF;hiðDÞ ¼ vF;hf � 1 � e� l�
1
D�

1
Dmaxð Þ

� �
ð10Þ

Fig 7 shows that the results of the model reflect empirically observed trends, with decrease

in speed at high densities. Velocities in the CALM model tend to be a little below the

Fig 7. Fundamental diagram of passenger movement during deplaning.

https://doi.org/10.1371/journal.pone.0229690.g007
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empirical curve for the following reason. The empirical formula sets the maximum speed of

passengers as 1.34(m/s). However, CALM uses a variety of values for this in the parameter

sweep, with the largest possible value set as 1.3(m/s), and the typical value much lower. This

makes a notable impact on the extremely small CRJ-200 airplane. Passengers move more

slowly in such a small aircraft, and thus the low value reflects this reality. In summary, given

the variability of human behavior, the model correctly captures the relationship between den-

sity and velocity.

Performance analysis

We compare the performance of CALM and SPED using a parameter sweep of size 1000 for

disembarkation process on an Airbus A320 with 144 seats. We present the runtime of the

parameter sweeps and the average runtime of a single simulation that is computing by get-

ting the average runtime of 1000 simulations of the parameter sweep in Table 4. We have

repeated these experiments five times and we report the minimum runtime among the five

samples here. The results show that the average runtime for simulations of the SPED model

is 277.52 seconds while it is only 4.7 seconds for simulations of the CALM model. Conse-

quently, the CALM model performs approximately 59 times faster than the SPED model.

The parameter sweep of the SPED model took 9209.04 seconds while the parameter sweep of

the CALM model took 156.86 seconds to complete. Therefore, the CALM model runs

approximately 59 times faster than the SPED model when used for the parameter sweep of

size 1000.

There are two significant reasons for this considerable performance difference between

these two models. First, we used a simpler force formulation to decrease its computational

time in our model. In particular, much of the reduction in time was obtained by eliminating

the Lennard-Jones potential and using a single simple formula to determine the impact of

repulsion. This was the primary reason for decrease in simulation time, and led to around a

factor 20 improvement in performance. Second, we removed passengers that had reached

their destinations from the simulation. Both SPED and CALM models use algorithms of O
(N2) time complexity where N is the number of passengers in the simulation. For the SPED

model, this N is constant during the whole simulation. By removing passengers, N linearly

decreased in the CALM model. This provided the secondary performance boost, yielding

almost a factor 3 improvement.

Conclusions

Pedestrian dynamics is finding increased applications in diverse real-world problems. How-

ever, slow performance of existing models has been a bottleneck for policy analysis, especially

in an emergency. In decision support meetings, a result is required in the order of a couple of

minutes. The new CALM model delivers results in that time frame in contrast to the SPED

model. Our validation simulations also show that the CALM model produces results that are

consistent with empirical observations.

Table 4. Comparing performance of the CALM and the SPED model.

SPED model CALM model Speedup

Average runtime of a single simulation 277.59 (s) 4.7 (s) 59.06

Runtime of the parameter sweep 9209.4 (s) 156.86 (s) 58.70

https://doi.org/10.1371/journal.pone.0229690.t004

PLOS ONE Constrained Linear Movement Model (CALM)

PLOS ONE | https://doi.org/10.1371/journal.pone.0229690 March 5, 2020 12 / 14

https://doi.org/10.1371/journal.pone.0229690.t004
https://doi.org/10.1371/journal.pone.0229690


Acknowledgments

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University

of Texas at Austin for providing HPC resources that have contributed to the research results

reported within this paper. URL: http://www.tacc.utexas.edu.

The authors would like to acknowledge Robert Pahle for providing a webservice for pro-

ducing the video outputs of the simulations. They would also like to thank Pierrot Derjany for

helpful discussions about the SPED model.

Author Contributions

Data curation: Mehran Sadeghi Lahijani, Tasvirul Islam.

Formal analysis: Mehran Sadeghi Lahijani, Ashok Srinivasan.

Investigation: Mehran Sadeghi Lahijani.

Methodology: Sirish Namilae.

Project administration: Mehran Sadeghi Lahijani, Ashok Srinivasan.

Supervision: Ashok Srinivasan, Sirish Namilae.

Validation: Mehran Sadeghi Lahijani, Tasvirul Islam, Ashok Srinivasan, Sirish Namilae.

Writing – original draft: Mehran Sadeghi Lahijani.

Writing – review & editing: Ashok Srinivasan.

References
1. Helbing D, Johansson A. In: Meyers RA, editor. Pedestrian, crowd and evacuation dynamics. New

York, NY: Springer New York; 2009. p. 6476–6495. Available from: https://doi.org/10.1007/978-0-387-

30440-3_382.
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