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Abstract

The long-range correlations within the current signal time series of the Beta vulgaris vacuo-

lar membrane under the influence of organolead compound (Met3PbCl) are investigated.

The current time series is transformed into a dwell time series. Then the rescaled range and

detrended fluctuations analyses are used. It is shown that the presence of Met3PbCl in the

solution decreases the mean value of the Hurst exponent and therefore influences the long-

range correlations in ionic channel current. This observation is statistically significant. An ion

channel model is built and the experimental results reconstructed and analysed.

Introduction

This paper is the continuation of the researches on the ionic current influenced by organolead

compounds [1]. The previous analysis was focused on the changes of the ion current distribu-

tion function related to the Met3PbCl presence while in the present study the correlations in

the dwell-time series of the ion channels are investigated. The main aim of the research is to

better understand the influence of organolead compounds on the living organisms. It is impor-

tant to stress that lead is mainly toxic to living organisms, which was reported in various publi-

cations e.g. [2–11]. Lead was reported as being the second most hazardous substance, after

arsenic, based on the frequency of occurrence, toxicity, and the potential for human exposure

by the Agency for Toxic Substances and Disease Registry [12]. Both acute and chronic lead

exposure has the potential to cause many serious systematic effects in people including hyper-

tension, anaemia, immune imbalances, infertility, cognitive deficits, adverse effects on nervous

and renal systems, delayed skeletal and deciduous dental development, vitamin D deficiency,

and gastrointestinal effects [13]. The accepted consensus is that any level of lead is unhealthy

[14]. In developing countries, pregnant women and children are still commonly experiencing

today the lead concentration in blood in the range 100–500 μg/L when values <50μg/L are

desirable [15]. An important source of lead for humans are plants as the food ingredient [16].

The lead toxicity is reported not only in the human aspects but also in plants. Studies on lead
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toxicity that have been published in the past decades suggest three main mechanisms of toxic-

ity of Pb2+: inhibition of photosynthesis, oxidative stress, and “genotoxicity” including DNA

damage and defects in mitosis [17].

Despite the general understanding of the problem and some successes in lead elimination

[18] or even development of lead removal methods [19] its industrial usage is, in fact, growing

[20], therefore the lead influence on the living organisms is still an important issue. In this

research, the vacuolar membrane of Beta vulgaris was selected, because the structure and func-

tion of this membrane is well-known [21–24] and it can be used as a model membrane. The

basic ion currents in vacuolar membranes of higher plants are conducted by the nonselective

slow activated cationic channels (SV), fast activated channels (FV), high-selective vacuolar

potassium channels. FV channels, in contrast to SV channels, are active at physiological con-

centration of cytoplasmic Ca2+ and blocked by calcium ions, while increasing their concentra-

tion in cytoplasm (above 1 μM) [24–26]. It was found that FV channels are also sensitive to

the redox potential [27] and other physiological factors [28]. The sensitivity of SV channels to

Ca2+ ion concentration is related to their involvement in Ca2+ homeostasis of the cells [29]. In

the conditions most commonly used in researches carried out in patch-clamp technique (sym-

metrical K+ ion concentration and millimolar lumen concentration of Ca2+) SV channels are

activated at positive membrane potentials. It is worth noticing that in vitro (in patch-clamp

experiments) SV channels are activated by the positive (nonphysiological) membrane voltages,

whereas in vivo these channels are, in theory, completely deactivated. In the experiments the

trimethyllead chloride (Met3PbCl) was used since its influence was investigated by standard

patch-clamp analysis methods [30]. Moreover, it is soluble in water, so it can be accumulated

in the root tissue through the soil environment. In this paper, a new aspect of lead toxicity is

verified therefore relatively high lead compound concentration was used.

In the experimental part of the study, the patch-clamp technique was used [31] and the

long term correlations of the open—close state time series investigated by the rescaled range

analysis (R/S) and detrended fluctuation analysis (DFA). The R/S analysis was proposed by

Hurst [32] to analyse changes of river levels but the method appeared to be very useful in the

various researches on time series among which were ion channel time series recordings [33,

34]. The main outcome of the R/S analysis is the Hurst exponent, which describes correlation

properties of the signal. DFA introduced by [35] is an alternative method to measure Hurst

exponent, which was successfully applied to ionic channel analysis [36–39]. In the case of infi-

nite time series, both techniques are expected to give the same results, however, in finite cases

the question which one gives a better estimation of the Hurst exponent is still a controversy

[40, 41].

Materials and methods

The experiment

Electrophysiological measurements presented in the paper were carried out on patches of red

beet (Beta vulgaris L.) tonoplast. The plants used for the study came from organic farming.

Vacuoles were isolated from taproots according to the method described by Coyaud et al [21].

Fresh root was cut with a sharp tool and then washed with the incubation solution, enabling

the vacuoles to be directly extruded into the recording chamber (1 ml in volume).

The control bath solution was: 100 mM KCl, 2 mM MgCl2, 0.1 mM CaCl2, 5 mM MES, 5

mM TRIS and 400 mM sorbitol; pH 7.5 (adjusted by 0.1 N NaOH), osmolarity 656 mOsm.

Pipettes were filled with a solution of composition: 100 mM KCl, 2 mM MgCl2, 1 mM CaCl2,

5 mM MES, 5 mM TRIS, 340 mM sorbitol, pH 5.5, 587 mOsm. The osmolarity of all the
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solutions used was adjusted under the control of cryoscopic osmometer Semi-Micro_Osm-

ometer K-7400, (Knauer, Germany).

Electrophysiological measurements were carried out using EPC-7 plus amplifier equipped

with data acquisition hardware, Instru TECH LIH 8+8 (List-Medical-Electronic, Darmstadt,

Germany) and software Patch-Master (HEKA Electronic, Lambrecht, Germany). Signal was

probed every 50 μs and analog filtered by Bessel filter (in the device) at cut-off frequency 1

kHz. Transmembrane voltage was controlled in voltage clamp condition. Membrane polarity

was consistent with Bertl et al. convention [42].

Micropipettes were made from borosilicate glass tubes (Kimax-51, Kimble Products,

Toledo, Ohio, USA) using two stage puller (Model L/M-3-PA, List medical, Germany), fire

polished with a microforge CPZ 101 (List medical, Germany) and coated with Sylgard (Dow

Corning, Midland, MI, USA). The resistance of micropipette filled with a pipette solution was

in the range of about 2–4 MO, and seal resistance 4–20 GO.

Microscopic currents were recorded in the inside-out configuration (cytosolic side out

patch), which was obtained in the following way. First starting from the vacuole-attached con-

figuration and using electroporation of membrane within a micropipette (applying short-time

voltage pulse in the range of 300 to 900 mV), a whole vacuole system was obtained. Next, after

detachment of the patch from tonoplast with a quick micropipette movement, we got the

inside-out configuration.

Measurements protocol was as follows. The voltage was maintained as a constant function

in a given time interval. Starting from zero (10 s) the potential was subsequently changed to

-50 mV (operating voltage) and kept on this value for 10 seconds, after which it was switched

back to zero for another 10 s. Such cycle was repeated with the gradation of operating voltage

every 10 or 20 mV in the range (- 50 mV, 100 mV) and in some experiments only 80 and 100

mV. Effect of 100 μM trimethyllead (Met3PbCl) on SV channels activity were studied. Due to

the duration of our experiments (from a few to several mins) we decided to use higher lead

concentration than those present in nature). During experiments, the control solution was

changed for a new one of the same composition, supplemented by trimethyllead.

After doing several such series of records in the control the same vacuole was incubated in

a solution containing trimethyllead. The exchange of incubated media was carried out by con-

tinuous perfusion of the measuring chamber using an infusion pump (SP 200, World Preci-

sion Instruments, USA). Replacement time of the incubation solution was approx. one

minute.

Experiments were carried out in the room temperature (22±1˚C). For the data analysis, the

ion current recordings were pre-normalized by subtracting the leak currents (the zero offset).

Data analysis

Data from 28 different vacuolar patches were analyzed. On most of them due to the instability

of the patch-micropipette layout for a longer period (over ca. 10 minutes), the data comes

from individual protocols (control and then solution supplemented with Met3PbCl). If the

patch was sufficiently stable, the measurement protocol was repeated several times in control

and then in the presence of a modifier. The analysis included a total of 80 individual traces

(each of them with a duration of 10 seconds), 40 for the control and 40 for the modifier,

respectively. The activity of SV channels in the membrane was usually determined by record-

ing the macroscopic current (in the whole vacuole system, before forming the inside out). This

current shows characteristic typical for SV channels: sigmoidal time course with activation

constant of seconds and rectifying current-voltage characteristics (data not shown). Recorded

microscopic currents were consistent with what is observed in the whole system and in good
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agreement with the data of other authors—conductivity of single-channel—72 pS and voltage-

dependent gating (activity were observed at a voltage above 40 mV).

In the experiment, the current through an ion channel was measured for the following

external potential: (-50 mV, 100 mV), with step 10 mV. However, the best results with clearly

open and closed states were observed for the external potential equal 80 mV and these time

series were analysed within this paper. The experiment was repeated 40 times (standard bath

solution) and 40 times in the bath solution with 0.1 mM of Met3PbCl.

Each analysed time series consists of 2 � 105 data points with the resolution of 0.05 ms (10 s

recordings). The time series registered during the patch-clamp measurements were verified

against the presence of more than one active channel and stationarity of the ionic channel

recordings.

The problem of sometimes observed instability of the functioning of the channel, in partic-

ular, spontaneous loss of channel activity over time called run-down is not sufficiently recog-

nized in the literature so far. It should be emphasized that this phenomenon is rather not the

result of the destruction of the channel structure because the current through a single channel

does not change, while its activity is temporarily lost. Furthermore, the latter is also correlated

with the loss of macroscopic current.

A large number of ion channels, in particular potassium channels, are regulated by sub-

stances contained in the cytosol, such as nucleotides, calcium ions and other signaling mole-

cules. In patch clamp experiments, homeostasis of membrane contact with the intracellular

environment is disturbed by washing out these substances as a result of membrane perforation

(whole-cell) or patch detachment.

In general, the molecular mechanism responsible for the run down has not been well

understood, however, this phenomenon has been thoroughly studied on L-type calcium chan-

nels. A binding site (C-terminal sequence 1572–1651 of the α1C subunit for the intracellular

modulator, calpastatin, responsible for the run down effect was found in this channels [43].

In the case of SV channels of higher plants [44, 45] observed run-down of ion current was

rather low on the level of 18%–19% within several minutes of observation. Much higher influ-

ences were observed in animal cells [46].

Some solution to the run down problem in patch clamp experiments (in whole cell configu-

ration) seems to be the use of pore-forming substances, such as antibiotics (amphotericin B,

nystatin). The pores thus created allow electrical contact between the micropipette solution

and the interior of the cell without disturbing its homeostasis, due to the possibility of only

small ions penetrating the pore formed [47]. Another method of the run-down prevention is

the usage of dedicated compounds e.g. by adding DTT [48], ATP [49] or DTP [50], however

none of the authors does not discuss the recovery of statistical properties of the ion channels.

Therefore, the protocol, which allowed to analyse ion current without additional components

was chosen.

The probability distribution functions (see Sec. Probability density of ionic current) of the

registered signals were obtained and the cases with two maxima chosen i.e. with one active

ionic channel. The stationarity of the time series was verified by the bootstrap method [51]

and the time series with fluctuations of the 90 and 10 percentile exceeding 5% were rejected.

After the inspection of the data, the analysis was continued on the 35 recordings at the stan-

dard bath solution and 23 time series at the solution with 0.1 mM of Met3PbCl. The exam-

ples of the registered time series are presented in Fig 1. For the chosen time series the

value of the threshold was obtained and the current time series were transformed into the

dwell-time series. Finally, the long-range correlations were investigated by R/S and DFA

analyses.

Long range correlations of the ion current in SV channels
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Probability density of ionic current

A histogram is the simplest probability functions approximation, however, the results are

rather rough. In order to resolve this ambiguity the kernel density estimator with the Gauss-

ian kernel density was used [52, 53]. The examples of the obtained probability distribution

functions (PDF) are presented in Fig 2. The procedure of the threshold current approxima-

tion proposed by [36, 37] was modified due to the number of time series analysed (more

than a thousand samples). The threshold current between the open and close states was

found as a local minimum of the fitted PDF. Finally, the ionic current signal was converted

into the dichotomous signal (open and close states) and the time series of open and

close states times were obtained. The example of the converted time series is presented in

Fig 3.

R/S analysis

The detailed description of rescaled range analysis (R/S) can be found in various books on the

fractal analysis e.g. [54]. Here the key elements are presented. Let denote the time series by A

and its elements as {a1, a2, . . ., an}, then

Fig 1. An example of the registered ionic current in the control solution and in the presence of Met3PbCl. Membrane potential was 80 mV.

https://doi.org/10.1371/journal.pone.0229433.g001
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1. Create the mean adjusted time series bi = ai − hAi, where hAi is the mean value of the time

series.

2. Calculate cumulative time series: ct ¼
Pt

i¼1
bi; t ¼ 1; 2; 3 . . . ; n.

3. Create the range series: rt = max{c1, c2, . . ., ct} − min{c1, c2, . . ., ct}, t = 1, 2, 3. . ., n.

4. Create the standard deviation time series: st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

Pt
i¼1
ðai � uÞ

q

, where t = 1, 2, 3. . ., and

u ¼ 1

t

Pt
i¼1
ai.

5. Calculate R/S time series: R
S

� �

t ¼
rt
st
.

6. Finally the power law R
S

� �

t � t
H is fitted to the transformed time series and the Hurst expo-

nent (H) estimated.

In the case of the persistent time seriesH > 1

2
, while for the antipersistent time seriesH < 1

2
.

DFA analysis

The detrended fluctuation analysis (DFA) is an alternative method for Hurst exponent estima-

tion. Details can be found in e.g. [55, 56].

1. The procedure starts form the transformation of a time series A (of N samples), {a1, a2, . . .,

aN} into a cumulated mean adjusted time series: Xt ¼
Pt

i¼1
ðai � haiiÞ, then

2. the time series is divided into n equal size boxes, and

3. in every box a local trend yn is fitted. In fact any function could be used to approximate the

trend, but in practice the linear function is the most popular choice. The higher order poly-

nomials are rarely used e.g. [57].

Fig 2. PDF’s of the time series presented in Fig 1 fitted by the kernel distribution function. Membrane potential

was 80 mV.

https://doi.org/10.1371/journal.pone.0229433.g002

Long range correlations of the ion current in SV channels

PLOS ONE | https://doi.org/10.1371/journal.pone.0229433 March 3, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0229433.g002
https://doi.org/10.1371/journal.pone.0229433


4. The trend is subtracted from the integrated signal and its fluctuation calculated:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
k¼1
½Xk � ynðkÞ�

2
q

. F(n) is calculated for all possible sizes of boxes.

5. Finally the power law function F(n)*nα is fitted. (Usually by fitting linear function to the

log-log transformed plot.)

The interpretation of the results is: (i) if α< 0.5, then the anti-correlated time series is

observed, (ii) α’ 0.5 the uncorrelated white noise is measured, (iii) α> 0.5 the correlated

time series is observed.

The main difference between R/S and DFA is that R/S removes a constant trend from the

data while DFA subtracts the linear trend.

Results

One example of DFA analysis is presented in Fig 4. The results of the DFA and R/S analysis are

presented in Tables 1 and 2. The Hurst exponents for both methods applied and in all consid-

ered experimental data significantly exceed the value 0.5 showing the existence of long-range

correlations of open-close states. Analysing the results obtained by R/S and DFA it is observed

that the Hurst exponents calculated by R/S analysis are smaller than those received by DFA.

The difference between mean values of the Hurst exponent at R/S analysis is equal 0.07 while

for DFA analysis 0.13. However, the most important result is that the observed changes in

long-correlation being the result of the Met3PbCl presence are statistically significant. The one

way ANOVA analysis have been applied and the p-value of the null hypothesis stating that

there is no difference of the Hurst exponent of the ion current in the control solution and in

the presence of Met3PbCl is equal 1.2 � 10−5 at R/S analysis and even 6.4 � 10−13 at DFA analy-

sis. Therefore, the null hypothesis is rejected and the alternative accepted. Due to the uni-vocal

Fig 3. The dichotomous open-close state signal obtained from the signal presented in Fig 1. Membrane potential

was 80 mV.

https://doi.org/10.1371/journal.pone.0229433.g003
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result, there comes the question on the possible mechanism of theMet3PbCl influence. This

problem is analysed in the following section.

Channel model

Within the present work, the long memory effects are investigated therefore the problem of

developing a model is interesting itself and the reader may refer to [58]. Within the present

Fig 4. The DFA of the signal presented in Fig 1. n denotes the box size, while F(n) the fluctuations. Membrane

potential was 80 mV.

https://doi.org/10.1371/journal.pone.0229433.g004

Table 1. The mean value and the standard deviation of the Hurst exponent approximation obtained by R/S analy-

sis. Additionally the statistical significance of the difference between means is presented. Membrane potential was

80mV.

control Met3PbCl

mean 0.85 0.78

std 0.03 0.03

ANOVA p-value 1.2 � 10−5

https://doi.org/10.1371/journal.pone.0229433.t001

Table 2. The mean value and the standard deviation of the Hurst exponent approximation obtained by DFA anal-

ysis. Additionally the statistical significance of the difference between means is presented. Membrane potential was 80

mV.

control Met3PbCl

mean 1.05 0.93

std 0.07 0.13

ANOVA p-value 6.4 � 10−13

https://doi.org/10.1371/journal.pone.0229433.t002
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analysis, the model developed in [58] is used. For the convenience of the reader, the key model

features and the algorithm generating the dwell time series are presented here. The main

advantage of the model is that it does not only reconstruct the desired open-close state proba-

bility but also generates appropriate autocorrelations among the states. The model is defined

on a 1-dim lattice with given boundaries and the arbitrarily chosen point dividing the lattice

space into open and close states. The open-close states time series are generated by random

walk on a lattice with an external potential and a threshold between open and close states

spaces.

The conformational space is defined on 1-dim lattice with N-nodes. The ends of the lattice

are denoted as BMIN and BMAX. The reaction coordinate (RC) corresponding to the state of the

channel gate is placed on the lattice and at each step of the simulation RC can be moved by

one node. The range of the accessible nodes is limited by movable boundaries B1 and B2. The

motion of these boundaries corresponds to the thermal fluctuations in the membrane thick-

ness and internal strains within protein segments influencing the conformational space of

open and close states. They are synchronised in directions (i.e. if the spaces corresponding to

the open states shrinks the same happens to the close states space). At the centre of the lattice

the threshold point (TP) is placed. This point divides the conformational space into open and

close spaces. During the simulations, there are two movable elements: RC, B1 and B2 (B1 and

B2 are synchronised). Since there is a significant difference in mass of the fluctuating mem-

brane and the mass of the putative activation gate the fluctuation rate of both parameters are

on different time scales. The change of the boundaries is performed after a given number of

iterations according to the formula:

DB ¼
DRC

600
; ð1Þ

which was estimated on the experimental data (DB is the boundary diffusion coefficient while

DRC denotes reaction coordinate diffusion coefficient) [58]. The RC perform on the lattice a

biased random walk. The probabilities of decreasing (q) or increasing (p) position of RC are

given by the Eqs (2) and (3) [59].

q ¼
1

2
þ
DU
4kT

ð2Þ

p ¼
1

2
�
DU
4kT

ð3Þ

Where k is the Boltzmann constant, T the absolute temperature and ΔU a potential energy dif-

ference within a lattice step centred around RC. In order to recover appropriate drift force

(being the result of the external potential on the membrane e.g. V = 80mV) the potential U(x)

is postulated in the following form [58]:

UðxÞ ¼ ðx � B1Þ � Aþ UB1; x 2 hB1;TP � 1:5Þ

UðxÞ ¼ ðx � ðTP � 1:5ÞÞ � Bþ UTP� 1:5; x 2 hTP � 1:5;TPÞ

UðxÞ ¼ ðx � TPÞ � ð� BÞ þ UTP; x 2 hTP;TP þ 1:5i

UðxÞ ¼ ðx � ðTP þ 1:5ÞÞ � Aþ UTP� 1:5; x 2 hTPþ 1:5;B2Þ

A ¼ UTP� 1:5 � UB1

TP� 1:5� B1

B ¼ UTP � UTP� 1:5

TP� ðTP� 1:5Þ

8
>>>>>>>>>><

>>>>>>>>>>:

; ð4Þ

where B1 and B2 are the locations of the left and right boundaries, respectively, TP is the
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threshold point position, UB1, UTP and UTP−1.5 are values of the potential at the given points. It

is also assumed that the potential changes its value linearly and A and B are the slope coeffi-

cients defining potential slopes on the intervals (B1;TP − 1.5) and (TP − 1.5;TP), respectively.

After each iteration step the position of RC is checked and if it is on the left of TP then open

state is recorded in generated time series otherwise the close state is registered.

The lattice size was set to 2BMAX + 1 = 29 nodes—determining the maximum size of the

open and closed state spaces. The starting position was set at the closed neighbourhood of the

threshold TR (RC = {−1, 0, 1}). In fact, the choice of the initial position does not influence the

results of simulations. Assuming that the iteration step of the simulation necessary to move

RC is equal to 1 then the boundaries positions B1 and B2 were changed every 600 iteration

steps to satisfy Eq (1).

While performing the simulations the experimental limitations were taken into account:

the ion channel time series were of limited size (i.e. 2 � 105 data points), the statistical parame-

ters of ion channel time series (i.e. open probability, and Hurst exponent obtained by R/S and

DFA analyses) have a dispersion—due to the biological variability and time series size. More-

over, the theoretical model is in fact a non-linear model with four parameters. Therefore, the

possibility that there are more than one solution (a parameter set under which the simulations

generate time series of required properties) should not be excluded. In order to find multiple

solutions, instead of optimization technique [58] the scanning of the state space was per-

formed. The initial parameter combination were {UB1 = 1kT, UB2 = 1kT, UTP = 1kT, UTP−1.5 =

1kT} till {UB1 = 25.5kT, UB2 = 25.5kT, UTP = 25.5kT, UTP−1.5 = 25.5kT} with resolution 0.5kT,

so 6.25 � 106 states where examined. The temperature was set T = 300K. The others parameters

agreed with [58] (BMAX = −BMIN = 14, TP = 0).

Since the Hurst exponent analysis (both R/S and DFA) are computationally complex the

simulations were divided into two steps. During the first scan the opening probabilities were

calculated and after filtering the results such that the opening probabilities were in the interval

average opening probability ± standard deviation, then the simulations were repeated for the

filtered parameter set. At this stage for each set of parameters twelve samples of time series

were generated and the DFA and R/S analyses were performed. Finally the parameters sets

matching the results obtained on the experimental data (Tables 1 and 2) were collected. The

simulation parameters that generates time series with expected open probability and Hurst

exponent are presented in Tables 3 and 4.

The simulations parameters of the numerical model generating dwell time series (Table 3)

of the properties similar to the ionic current time series at the presence of Met3PbCl are char-

acterised by low values of the considered set of UB1 potential and are at the range from 1 kT

up to 8.5kT. The potential threshold at TP takes high values at the interval from 19.5kT up to

25.5kT. Similar values are observed for UTP15, which is responsible for the potential just

before and after TP, and the values are in the range 20.5kT to 25.5kT. The difference between

UTP and UTP15 is relatively small considering the range of the simulation parameters and

vary from -1kT up to 2kT, but most of the collected simulation parameters are characterised

by the positive difference between UTP and UTP15. The significant spread between UB1 and

UTP15, which in fact “keeps” RC at the close state side of the lattice. It is also noticeable that

within the chosen range of simulation parameters there are more parameters sets which recon-

struct the behaviour of the ionic channel at the presence of Met3PbCl than in control solution.

Another interesting observation is the difference between the Hurst exponent obtained by R/S

and DFA methods. In Table 3 the Hurst exponent obtained by R/S is smaller than received by

DFA. The similar difference is observed for experimentally observed time series. Although,

both methods should give similar results it is true only in an infinite time series [40]. In the

case of real observations, there is a “sample size effect” and both methods give different results.
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Table 3. The parameters (in kT units) of the theoretical model reconstructing time series of the properties of the

ion channel in the presence of Met3PbCl.

parameters

(UB1; UB2; UTP; UTP15)

open prob.

p±σ
H by R/S

h±σ
H by DFA

h±σ
(1; 1; 24.5; 24) 0.019±0.005 0.78±0.02 1.19±0.03

(1; 1.5; 25.5; 25.5) 0.018±0.004 0.77±0.02 1.22±0.03

(1; 10.5; 24.5; 24) 0.020±0.006 0.78±0.02 1.19±0.03

(1; 12.5; 24; 22.5) 0.024±0.006 0.78±0.02 1.13±0.03

(1; 14; 24.5; 25.5) 0.017±0.004 0.77±0.03 1.24±0.13

(1; 16; 23; 23) 0.019±0.004 0.77±0.03 1.22±0.03

(1; 17.5; 24.5; 24.5) 0.018±0.005 0.77±0.02 1.21±0.03

(1; 22; 25.5; 25) 0.021±0.007 0.77±0.02 1.19±0.04

(1; 24; 25; 24.5) 0.021±0.004 0.77±0.02 1.19±0.03

(1; 24; 25.5; 24) 0.021±0.007 0.78±0.02 1.14±0.03

(1.5; 5; 23.5; 23) 0.019±0.006 0.77±0.02 1.19±0.03

(1.5; 5; 25.5; 25.5) 0.018±0.005 0.78±0.02 1.20±0.03

(1.5; 11; 22.5; 22.5) 0.018±0.005 0.77±0.02 1.22±0.03

(1.5; 8.5; 25; 24) 0.021±0.006 0.78±0.02 1.17±0.05

(1.5; 9.5; 21.5; 23) 0.016±0.005 0.77±0.02 1.25±0.05

(1.5; 13.5; 25; 23.5) 0.023±0.005 0.78±0.02 1.15±0.04

(1.5; 14.5; 21.5; 22) 0.017±0.004 0.77±0.02 1.23±0.03

(1.5; 20.5; 22; 23) 0.017±0.005 0.77±0.02 1.24±0.03

(1.5 15 23.5 24) 0.018±0.006 0.77±0.02 1.23±0.03

(1.5; 15; 25; 24.5) 0.020±0.004 0.77±0.02 1.20±0.03

(2; 7.5; 24; 23.5) 0.018±0.006 0.77±0.02 1.19±0.03

(2; 9; 24; 23) 0.022±0.007 0.78±0.02 1.17±0.03

(2; 13; 24.5; 22.5) 0.023±0.006 0.78±0.02 1.11±0.04

(2; 15; 20.5; 19) 0.019±0.006 0.77±0.02 1.14±0.04

(2; 16; 23.5; 23.5) 0.021±0.007 0.77±0.02 1.22±0.03

(2; 23; 21.5; 20.5) 0.020±0.007 0.77±0.02 1.17±0.03

(2; 24; 21.5; 21) 0.021±0.005 0.77±0.02 1.19±0.02

(2.5; 19.5; 24; 22.5) 0.025±0.007 0.78±0.02 1.14±0.03

(2.5; 21; 24.5; 25.5) 0.017±0.004 0.77±0.02 1.25±0.03

(2.5; 24; 24; 24) 0.018±0.006 0.78±0.02 1.2±0.03

(3; 5; 24; 23) 0.020±0.006 0.77±0.02 1.16±0.04

(3; 6.5; 24; 24.5) 0.016±0.005 0.77±0.02 1.23±0.03

(3; 11; 22; 22.5) 0.018±0.005 0.77±0.02 1.22±0.03

(3; 12.5; 24; 23) 0.021±0.006 0.78±0.02 1.16±0.04

(3; 14; 22.5; 22) 0.018±0.006 0.77±0.02 1.19±0.04

(3; 15.5; 24.5; 23.5) 0.020±0.007 0.77±0.02 1.17±0.03

(3; 17; 24; 23.5) 0.019±0.006 0.77±0.02 1.20±0.03

(3; 17.5; 25.5; 25.5) 0.020±0.006 0.77±0.02 1.21±0.03

(3.5; 17.5; 24.5; 24.5) 0.018±0.005 0.77±0.02 1.22±0.03

(4.5; 25; 24; 22.5) 0.021±0.007 0.78±0.02 1.14±0.03

(5; 5.5; 25.5; 25) 0.017±0.004 0.77±0.02 1.19±0.03

(5; 25; 20.5; 20.5) 0.017±0.004 0.78±0.02 1.21±0.03

(6.5; 1.5; 25.5; 25) 0.020±0.005 0.77±0.02 1.19±0.02

(8.5; 13; 24.5; 24.5) 0.020±0.006 0.78±0.02 1.21±0.03

https://doi.org/10.1371/journal.pone.0229433.t003
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However, the difference between Hurst exponent obtained by both methods is analogous in

experimental and simulated time series.

The parameters of the model reconstructing the time series of the ion channel in the control

solution are presented in Table 4. In this case, the UB1 potential takes much higher values,

which lies in the interval 4.5kT to 25.5kT however the high values (>20kT) prevail. Particularly

interesting is the analysis of the threshold potentials UTP and UTP15. These potentials do not

define a threshold but rather a potential well, which forms a “trap” for RC with the depth in

the range 2kT and 2.5kT. In three out of five sets have potential UB2>UB1.

Discussion

The transport mechanisms, within ion current are crucial to cell biology. The recent researches

indicate long-range correlations in the open-close state time series of the single ion channel

currents [36–39]. The main aim of the present study is to verify whether the reported long-

range correlations are sensitive to the presence of organolead. In the analysis, the ionic time

series were registered by the patch-clamp technique and subsequently transformed into the

dichotomous signal, which was finally converted into the dwell time series. The transformed

series were investigated by R/S and DFA analyses. Besides the result that the open-close state

time series of SV channels of the vacuolar membrane is persistent (H> 0.5), which was also

reported in similar studies [39, 60] it has been shown that the long-range correlations are sen-

sitive to the presence of Met3PbCl. This result is new and provides two important observations:

firstly the long correlations in ion channels currents might be sensitive to various compounds

and more specific is that the lead influences such correlations. The origins of the long-range

correlations are still a subject of investigations. The observed phenomenon was further investi-

gated by the numerical model reconstructing dwell time series of required properties. The sets

of model parameters generating the time series of the characteristic of the ion channel current

at the control solution and at the presence of Met3PbCl were found. The most important dif-

ference of the sets was that those reconstructing the organolead compound influence were

characterised by significantly lower values of UB1 potential such that instead of potential well

the threshold is observed.

It should be stressed that the disturbance of the long-term correlations could be considered

as a destabilization element, which in consequence may results in an increase of vulnerability

of the organisms.

Besides the direct result of our study i.e. the observation that Met3PbCl change long range

correlation in ion channel current we would like to draw attention on another problem. In

physical systems the existing correlations are the results of interactions. So, if the long memory

of ion channels has biological significance than there exists a mechanism responsible for it.

This hypothesis is very intriguing because on the microscopy level there are not many reasons

that the molecules might “remember” its previous state. On the other hand, this study shows

Table 4. The parameters (in kT units) of the theoretical model reconstructing time series of the properties of the

ion channel in the control solution.

parameters

(UB1; UB2; UTP; UTP15)

open prob.

p±σ
H by R/S

h±σ
H by DFA

h±σ
(4.5; 23.5; 1; 3) 0.447±0.038 0.80±0.03 0.77±0.03

(10.5 24 7.5 9.5) 0.413±0.023 0.79±0.02 0.77±0.03

(21.5; 11.5; 16; 18.5) 0.485±0.033 0.82±0.03 0.85±0.04

(23.5; 5; 19; 21.5) 0.409±0.029 0.80±0.02 0.80±0.02

(25.5; 23; 20; 22.5) 0.489±0.046 0.81±0.03 0.84±0.03

https://doi.org/10.1371/journal.pone.0229433.t004
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that some compounds indeed change long memory parameters, so the ion channel models

should include mechanisms properly reconstructing also this aspect.

The obtained results open a new area of research showing that long correlations of ion

channels may be influenced by various compounds and this aspect should be also a subject of

investigations.
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