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Abstract

Safety and efficiency of human-AI collaboration often depend on how humans could appro-

priately calibrate their trust towards the AI agents. Over-trusting the autonomous system

sometimes causes serious safety issues. Although many studies focused on the importance

of system transparency in keeping proper trust calibration, the research in detecting and mit-

igating improper trust calibration remains very limited. To fill these research gaps, we pro-

pose a method of adaptive trust calibration that consists of a framework for detecting the

inappropriate calibration status by monitoring the user’s reliance behavior and cognitive

cues called “trust calibration cues” to prompt the user to reinitiate trust calibration. We evalu-

ated our framework and four types of trust calibration cues in an online experiment using a

drone simulator. A total of 116 participants performed pothole inspection tasks by using the

drone’s automatic inspection, the reliability of which could fluctuate depending upon the

weather conditions. The participants needed to decide whether to rely on automatic inspec-

tion or to do the inspection manually. The results showed that adaptively presenting simple

cues could significantly promote trust calibration during over-trust.

Introduction

There are growing interests in automation and autonomous AI technologies in many fields of

applications. One highly anticipated application is the unmanned autonomous vehicle, such as

driverless shuttles that transport people in rural areas and unmanned aerial vehicles for aerial

images, deliveries, and also military purposes. Other expanding application areas such as

robotics, autonomous web-based systems, and decision aids are changing all aspects of our

daily life.

Collaboration between human users and autonomous AI agents is always essential as such

technologies are never perfect. One key aspect of such collaborations is that users trust the

agents. Trust is an attitudinal judgment of the degree to which a user can rely on an agent to

achieve their goals under conditions of uncertainty [1]. Successful collaborations between

users and agents would require the users to appropriately adjust their level of trust with the

actual reliability of the agents. This process is called trust calibration [1, 2]. While an agent’s
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reliability changes for various reasons in an environment, the users often fail to calibrate their

trust in the agent and end up in the status called over-trust or under-trust. Over-trust is poorly

calibrated trust in which the user overestimates the reliability of the agent; it can result in mis-

use of an agent that performs outside of its designed capability. Under-trust is poorly cali-

brated trust in which the user underestimates the agent’s capability; it can result in disuse of

the agent, excessive user workload, and/or deterioration of the total system performance. Poor

trust calibration sometimes causes serious safety issues [3, 4].

In the current study, we focused on the problem of over-trust or under-trust and propose a

novel method of adaptive trust calibration that consists of a framework for detecting the inap-

propriate status of calibration and cognitive cues called “trust calibration cues” (TCCs) to

prompt the user to reinitiate trust calibration.

Considering the challenge of measuring trust, given that it is a complex psychological con-

struct, our framework focuses on trust as observable choice behavior [5] so that we can esti-

mate calibration status by monitoring user behavior. When over-trust or under-trust is

detected, a TCC is presented to the user to alert them to recalibrate their trust. Unlike existing

studies [6, 7] that emphasize the importance of continuously displaying system information to

maintain appropriate trust calibration, our method adaptively presents information that trig-

gers only when it is deemed necessary for users to recalibrate their trust. To our knowledge,

most of the existing studies on trust calibration have been about how to prevent inappropriate

calibration status; very few have investigated how to mitigate it. The initial idea of the proposed

method was discussed in the work [8]. In the current study, we defined a framework and con-

ducted an online experiment with a web-based drone simulator to evaluate the effectiveness of

our method in an over-trust scenario. The participants of the experiment performed a pothole

inspection task [9] to check if there were any holes or cracks in the road images from the

drone. Participants chose to use the drone’s automatic inspection or to check the road image

manually. By observing the participants’ choice behavior, the framework judged the trust cali-

bration status and presented TCCs when over-trust was detected. We measured behavioral

changes to see if our adaptive method could effectively restore an appropriate status of trust

calibration.

We found that adaptively presented TCCs significantly affected the choice behavior of the

participants. The participants of the group without TCC did not change their behavior when

they were in over-trust status, even if the system reliability information was continuously pre-

sented. One of the groups with TCCs had a significantly higher value of sensitivity d’ than the

group without TCC, showing that adaptive trust calibration was effective in situations where

continuous trust calibration was not effective. Despite several limitations in our framework

and our experiment, our study demonstrates the effects of adaptively presenting cognitive cues

in instances of over-trust.

In the following subsections, we review related work on trust calibration and propose our

adaptive trust calibration approach. Next, we cover our experiment and the results. Finally, we

discuss the results and describe our future work.

Factors influencing trust

Extensive research has been conducted to examine the factors that influence a human’s trust in

autonomous agents such as automation. Hancock et al. [10] examined factors that affect trust

by applying meta-analysis methods to existing empirical studies. They identified three major

trust factors: robot-related factors (performance-based and attribute-based), human-related

factors (ability-based and human characteristics), and environment-related factors (team col-

laboration and task-based factors). They found that the factors related to the robot and its
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performance had the greatest current association with trust. Hoff and Bashir [11] proposed a

three-layered trust model to categorize factors that influence automation trust: dispositional

trust representing an individual’s overall tendency to trust, situational trust based on the exter-

nal environment and context-dependent human characteristics, and learned trust, which is

knowledge of a system drawn from past experiences or a current interaction. Learned trust is

further divided into two types: initial learned trust, trust prior to interacting with a system, and

dynamic learned trust, trust formed during an interaction.

In this study, we investigate trust calibration by focusing on dynamic learned trust factors

and performance-based factors such as agent reliability.

System transparency and continuous trust calibration

Humans require a user interface that captures the state of an entire system in order to interact

appropriately with the agent. Studies such as [2, 12, 13] have emphasized the importance of

system transparency in maintaining proper trust calibration. System transparency has been

defined as “the quality of an interface pertaining to its ability to afford an operator’s compre-

hension about an intelligent agent’s intent, performance, future plans, and reasoning process

[14].” This definition is essentially in accordance with the factors that influence a human’s

trust.

McGuirl and Sarter [15] showed how continually updated system confidence information

can improve trust calibration and increase the performance of the human-machine team.

Studies on visualizing car uncertainty during autonomous driving [16, 17] have indicated that

providing good transparency by constantly presenting the system information helps maintain

appropriate trust of the vehicles. Seppet [7] demonstrated that continuous feedback on auto-

mation behavior viably promotes calibrated trust and reliance.

Most of the studies investigated how to maintain appropriate trust calibration by continu-

ously presenting system information to prevent over-trust or under-trust. Very few studies

have focused on detecting poor trust calibration or how to recover from over-trust or under-

trust swiftly.

Measuring trust

Trust is a latent construct and cannot be directly measured; measuring trust experimentally is

difficult in general. Most previous literature used self-report measures such as subjective rating

with questionnaires [18] or rating scales [19, 20]; however, self-report measures are too intru-

sive to be viable in applied settings. Physiological and neural measures have been proposed,

such as gaze behavior [21], facial and voice tracking [22], heart-rate, and EEG. Although these

measures can be used for dynamic tracking of trust, they usually require special hardware.

Behavioral measures are useful for applications in real-world situations. Behavior used as

trust measures includes choosing manual or automatic tasks [23], choosing an automation

level [24], and accepting advice (reliance behavior). Behaviors might not be observable if there

is no interaction; nevertheless, behavioral measures are practical and can easily be used as a

basis for modeling and prediction [25].

Our approach: Adaptive trust calibration

Once users fall into the categories of over-trust or under-trust, it might not be easy for them to

escape them. Calibration can only occur in response to new evidence that may change the

users’ prevailing recognition, while no new evidence can be learned without changing the cur-

rent behavior first [5]. To solve this dilemma that could perpetuate an inappropriate status of
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trust calibration, a new trigger would be necessary in instances of over-trust or under-trust. To

realize this idea, we propose a new framework to detect inappropriate trust calibration.

Framework for detecting over-trust and under-trust. We propose a framework for

detecting the inappropriate status of the trust calibration with a behavior based approach. Sup-

pose a user and an AI agent are jointly working on a set of tasks. The user should decide

whether to rely on the agent or do each task manually. In our framework, three parameters,

Pauto, Ptrust, and Pman, are defined as follows:

• Pauto: Probability that a task done by an agent will be successful. This is called the “reliability

of the agent.”

• Ptrust: User’s estimation of Pauto. This is a user’s trust in the agent.

• Pman: Probability that a task done manually by a user will be successful. This is called the

“capability of the user.” Note that “man” means “manual.”

Pauto varies depending on the conditions of the agent. Ptrust also changes accordingly and

becomes equal to Pauto if trust is appropriately calibrated. Over-trust occurs if Ptrust> Pauto,
and under-trust occurs if Ptrust< Pauto. Since measuring Ptrust is difficult, we modified the defi-

nitions of over-trust and under-trust by using a third parameter Pman in addition to Ptrust and

Pauto as follows:

• Over-trust: the user estimates that the agent is better at the task than the user even though

the actual reliability of the agent is lower than the user’s capability.

ðPtrust > P̂manÞ ^ ðPman > PautoÞ ð1Þ

• Under-trust: the user estimates that they are better at the task than the agent even though the

actual reliability of the agent is higher than the user’s capability.

ðPtrust < P̂manÞ ^ ðPman < PautoÞ ð2Þ

P̂man is a user’s self estimation of Pman, which corresponds to the user’s self-confidence. These

two parameters were not clearly distinguished in [8]. Several studies [13, 23, 26] have demon-

strated that reliance behavior can be explained by the relationship between a user’s trust in the

agents and the user’s self-confidence. When a user decides to rely on an agent, it is reasonable

to say that this behavior indicates Ptrust > P̂man. If the user decides to do the task manually

rather than rely on the agent, it indicates Ptrust < P̂man. Instead of directly measuring Ptrust or

P̂man, the first inequalities of (1) and (2) can be estimated by observing the user’s reliance

behavior; thus, the trust calibration status can be detected, if the second inequalities of Pman

and Pauto can be estimated.

Trust calibration cue as a new trigger. In this study, we explore the novel idea of giving

cognitive cues to users when over-trust or under-trust is detected. This cue is expected to trig-

ger the user to promptly notice what has been happening in the environment and to calibrate

the trust based on the new findings. We call this cognitive cue a “trust calibration cue” (TCC).

Visser et. al [27] proposed a design guideline for trust cues, which are information elements

used to make a trust assessment about an agent. They classified the cues in terms of trust

dimensions (intent, performance, process, expressiveness, and origin) and the trust processing

stages (perception, comprehension, projection, decision, and execution). Unlike our TCC,
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their trust cues were to bring the information specific to the dimensions and stages. Komatsu

et.al [28] proposed an intuitive notification methodology called “artificial subtle expressions”

(ASE). One of the design requirements is “complementary,” which means that notifications

should not interfere with the main communication protocol. Cowell et.al [29] discussed the

five non-verbal behaviors of an embodied conversational agent. Waytz et.al [30] demonstrated

that anthropomorphism increases trust in an autonomous vehicle. Laughert et. al [31] exam-

ined three important objectives in effective warnings: attract attention, elicit knowledge, and

enable compliance behavior. Based on these pieces of literature, we designed four types of

TCCs (Visual/Audio/Verbal/Anthropomorphic) and evaluated them in the experiment.

Details will be explained in the next section.

Adaptive trust calibration. With the framework and TCCs described above, we propose

a method of adaptive trust calibration as follows. (Details of the detection algorithm will be

described later).

Method Adaptive trust calibration
loop
Observe a user’s reliance behavior on an agent.
Evaluate expression (1) and (2) of the framework.
if the over-trust or under-trust is detected then
Present a TCC to the user.

end if
end loop

The purpose of this method is to adaptively prompt a user to calibrate her/his trust by pre-

senting a TCC only when our framework detects over-trust or under-trust by observing the

user’s choice behavior. This approach is to mitigate over-trust or under-trust, in contrast with

the traditional approach of trying to maintain appropriate trust calibration with continuous

system transparency.

Hypothesis

We expected users to change their choice behavior if TCCs were adaptively presented when

the framework detected inappropriate trust calibration. If our method could effectively miti-

gate the over-trust or under-trust, the following are hypothesized:

[H0] the manual choice rates decrease in cases of over-trust or increase in cases of under-trust.

[H1] the users with TCCs perform better than the users without TCCs.

Materials and methods

All studies were carried out in accordance with the recommendations of the Ethical Guidelines

for Medical and Health Research Involving Human Subjects provided by the Ministry of Edu-

cation, Culture, Sports, Science and Technology and Ministry of Health, Labor, and Welfare in

Japan with written informed consent from all participants. All participants gave written

informed consent in accordance with the Declaration of Helsinki. The protocol was approved

by the ethics committee of the National Institute of Informatics.

Participants

We recruited participants online through a crowdsourcing service provided by Macromill,

Inc. Regarding online experiments in general, Crump et al. [32] showed that the data collected

online using a web-browser seemed mostly in line with laboratory results, so long as the exper-

iment methods were solid.
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194 participants joined the experiment online. They were between 20 to 69 years old

(M = 44.35, SD = 14.10). 96 participants were male and 98 were female.

Apparatus and materials

We developed a 3D drone simulator based on an open-source JavaScript WebGL library

CesiumJS [33] and the Bing Map API [34]. A screenshot of the simulator running on a

Chrome browser is shown in Fig 1.

Pothole inspection tasks. A route with 30 checkpoints (CKPs) was defined in the simu-

lated environment. Each CKP was located in the center of a rectangular area that was to be

inspected to see if there were any potholes in it. Out of the 30 CKPs, 10 had potholes in the cor-

responding areas while the other 20 did not. CKPs on the route were shown as small yellow

circles on the screen. When the drone came close enough to one of the CKPs on the route, a

message popped up (Fig 2) in which the drone asked the participants to make a choice.

The indicator at the bottom left area of the screen always showed the reliability of the auto-

matic pothole inspection (Fig 3). This continuous display helped to increase the system trans-

parency in terms of the reliability.

If the participants selected the “Auto” button, an automatic-inspection result was shown for

three seconds with a road image of the area around the CKP. This feedback information

helped the participants understand how well the automatic inspection performed, thereby

increasing the system transparency [2, 14]. If the “Manual” button was selected, a road image

Fig 1. Online drone simulator. Operating the simulator was relatively easy, with two cursor keys for controlling the direction of the drone and mouse

buttons for making choices. Geospatial Information Authority of Japan (https://maps.gsi.go.jp) CC BY 4.0. The image is similar but not identical to the

original one used in the experiment due to a copyright reason.

https://doi.org/10.1371/journal.pone.0229132.g001
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was displayed, and the participants had to make a pothole report manually. Popup windows of

both cases are as shown in Fig 4.

Trust calibration cues (TCCs) in experiment. We designed and evaluated four types of

TCCs (Fig 5) in our experiment.

The visual TCC was designed as a red warning sign in the shape of an upside-down triangle,

which is considered to be one of the most common alerting signs according to [31, 35]. The

audio TCC uses a sound with a frequency that decreases from 400 Hz to 250 Hz and can con-

vey that the agent has a low confidence level [28]. Verbal TCC is a tooltip balloon with the

warning message “This choice might not be a good idea.” The anthropomorphic TCC is an

animated drone image with cartoon-like eyes that show the agent’s state. TCCs were presented

to the participants when the framework detected the over-trust status: the audio TCC was

played once, and other TCCs were displayed on the screen close to the “Auto” button for two

seconds.

Fig 2. Popup message asking the participants for choice. Geospatial Information Authority of Japan (https://maps.gsi.go.jp) CC BY 4.0 The image is

similar but not identical to the original one used in the experiment due to a copyright reason.

https://doi.org/10.1371/journal.pone.0229132.g002

Fig 3. Reliability indicator at the bottom left area of the screen. (A) Showing a higher reliability. (B) Showing a deteriorated reliability.

https://doi.org/10.1371/journal.pone.0229132.g003
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Over-trust detection based on the proposed framework

The following algorithm was used to detect over-trust. Note that a simple moving average of

three CKP window was used here.

Algorithm Over-trust detection
Initialize:
Total number of check points(CKPs): M = the number of CKPs.;
Over-trust flag list: OT[1], . . ., OT[M] are initialized with zero;
The number of current CKP: i ( 1;
while i ≦ M not time-over do
if the drone reached a CKP then
if choice behavior is AUTO and Pman > Pauto then

Fig 4. Popup windows of the pothole inspections. (A) Automatic inspection result window. (B) Manual inspection window. Both images contain

potholes as dark brown spots in the upper road areas. Geospatial Information Authority of Japan (https://maps.gsi.go.jp) CC BY 4.0. The images are

similar but not identical to the original ones used in the experiment due to a copyright reason. Potholes were artificially rendered as irregular shapes in

a dark brown color on a road image in the popup window.

https://doi.org/10.1371/journal.pone.0229132.g004

Fig 5. Four types of TCCs. The image of the anthro. TCC is similar but not identical to the original one used in the experiment due to a copyright

reason.

https://doi.org/10.1371/journal.pone.0229132.g005
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OT[i] ( 1;
if i ≧ 3 and (OT[i − 2] + OT[i − 1]) ≧ 1 then
Over-trust is detected and TCC is presented to the user;

end if
end if
i ( i + 1;

end if
end while

Manipulation of Pauto
The parameter Pauto was manipulated to evaluate our method in an over-trust scenario. The

performance of the automatic pothole inspection was configured based on signal detection

theory(SDT) [36]. The SDT describes the detection of signals in noisy environments. The

noise and the signal are represented as two overlapping density distributions. The distance

between the two curves represents the sensitivity d0 of the system.

In this experiment, the underlying base rate of potholes was 0.3. Under good weather con-

ditions, Pauto and the corresponding sensitivity d0 were 90% and 1.8 respectively, indicating a

pretty good discriminating ability of the agent. Under bad weather conditions, Pauto dropped

to 50% and the corresponding sensitivity d0 became 0.1, meaning the reliability of the auto-

matic pothole inspection had greatly deteriorated. Fig 6 illustrates the manipulation of Pauto
and its relationship with Ptrust and Pman.

Participants were expected to reach at least the 15th CKP in this experiment.

Assumptions

The images of the potholes were carefully designed so that the average success rate of manual

inspection would be more than 75%. Although machine image recognition has been remark-

ably advanced with deep neural networks [37], Geirhos et al. [38] and Dodge et al. [39] demon-

strated that human object recognition outperforms the top-performing deep neural networks

under image degradation, such as Gaussian blur and additive Gaussian noise. These findings

could be applied to the estimation of the inequation of Pman and Pauto in the experiment

because the pothole inspection became an image recognition task with dark and foggy road

images when the weather conditions turned worse. Therefore, we assumed that Pauto would

Fig 6. Relationship between the three parameters under changing weather conditions.

https://doi.org/10.1371/journal.pone.0229132.g006
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fluctuate more widely than Pman under changing weather conditions. On the basis of this

assumption, we calculated the inequality relationship between Pauto and Pman in the experi-

ment; the inequality Pauto> Pman was true during the good weather period and false during

the bad one.

Procedure

Participants were randomly assigned to one of five groups with the corresponding TCCs:

NoTCC group (without TCCs), visual group (with the visual sign TCC), audio group (with the

audio TCC), verbal group (with the verbal TCC), and anthro. group (with the anthropomor-

phic TCC). The NoTCC group was the control group in this experiment.

The experiment was completed online in three phases. In the instruction phase, the par-

ticipants were given instructions stating the goal of the experiment was to inspect 22 CKPs

out of 30 CKPs on a test route within a time limit. The participants learned they could inspect

CKPs by checking the road image manually or by relying on the drone’s automatic pothole

inspection capability. They were told that the average success rate of manual pothole inspec-

tion was 75% so that they could adjust their initial self-confidence P̂man accordingly. They

also learned that the reliability of the automatic pothole inspection was very high, although it

could fluctuate depending on the conditions of the weather and sunshine. At the end of the

instructions, the participants were guided to adjust the sound volume level by listening to a

400 Hz beep sound. Next, in the training phase, the participants started to fly the simulated

drone in the training mode. They learned how to operate the drone and how to inspect the

CKPs with on-screen guides. When the first three CKPs were inspected, the training mode

was finished and the main phase was started. The reliability of the drone’s pothole inspection

Pauto was artificially manipulated by changing the conditions of the weather and sunshine in

the simulated environment. Initially, the weather was good, and Pauto was set to 90%. The

fine weather continued until the drone visited six CKPs in the main phase. This period of six

CKPs was intended for the participants to calibrate their trust toward the drone with a higher

reliability of automatic inspection under the good weather conditions. Immediately after the

6th CKP was inspected, sounds of a thunderstorm began. The visibility of the field also

became very low, and the Pauto was decreased from 90% to 50%, which changed the sign of

Pman − Pauto. During this period, the participants were expected to over-trust the drone due

to carry-over from the previous weather condition. The proposed framework was evaluated

in this period. When the participants clicked the “Auto” button for automatic inspection and

the framework detected the over-trust status using the over-trust detection algorithm

described above, the corresponding TCC was presented at the timing right after the button

was selected. The following information was available to the participants during the

experiment:

• Simulated weather information with visibility changes, brightness changes, and the sounds

of a thunderstorm.

• A reliability indicator to continuously show the reliability of the automatic inspection.

• An enlarged photo images of each CKP.

• The result of the drone’s automatic inspection when AUTO was chosen.

• A TCC when the proposed framework detected over-trust.

The experiment ended if the 22nd CKP was inspected or the time limit was reached. We

established a time limit of 8.5 minutes (510 seconds) based on pre-trials with this test route,
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and we expected a single automatic inspection to take 10 seconds, one manual inspection to

take 15 seconds, and reaching the next CKP to take 10 seconds.

Dependent measures

The dependent variables of interest in this experiment were a TCC presentation rate(hereinaf-

ter, called TCC rate), a manual choice rate(hereinafter, called manual rate), sensitivity d0, and

accuracy of the task results. TCC rates mean how often the proposed framework detected

over-trust. Changes in manual choice rates indicate how the participants changed their behav-

iors as a result of trust calibration. Both sensitivity d0 and accuracy indicate the performance of

the human-AI collaboration.

All keyboard inputs and mouse clicks were recorded and used to calculate these variables.

Results

One hundred sixteen participants successfully inspected 15 CKPs or more within the time

limit. Seventy eight participants unintentionally moved the drone far from the area where the

CKPs were located, and they failed to complete the tasks within the time limit. As for the suc-

cessful participants, their ages ranged from 20 to 69 years old (M = 43.25, SD = 14.01), 66 par-

ticipants were male and 50 were females. 28 were in the NoTCC group, 18 in the visual group,

22 in the audio group, 29 in the verbal group, and 19 in the anthro. group. They inspected the

total of 1,740 CKPs from the 1st CKP to the 15th CKP, and the results of 1,282 inspections

were correct, making the correct answer rate 0.74. Automatic inspection was selected 1,236

times (the choice rate = 0.71). The participants did the manual inspection 504 times (the

choice rate = 0.29). Table 1 shows the TCC rates at each CKP. Note that TCCs were not pre-

sented in the period from the 7th CKP to the 9th CKP, since the sliding window of three CKPs

was used in the detection algorithm. Means and standard errors of the other dependent mea-

sures can be found in Table 2. Hereinafter, we call the period from the 1st visited CKP to 6th

Table 1. Means of TCC rates at each CKP.

group CKP9 CKP10 CKP11 CKP12 CKP13 CKP14 CKP15

Visual TCC 0.78 (0.10) 0.67 (0.11) 0.56 (0.12) 0.67 (0.11) 0.67 (0.11) 0.50 (0.12) 0.56 (0.12)

Audio TCC 0.55 (0.11) 0.64 (0.10) 0.45 (0.11) 0.50 (0.11) 0.50 (0.11) 0.50 (0.11) 0.50 (0.11)

Verbal TCC 0.48 (0.09) 0.45 (0.09) 0.28 (0.08) 0.31 (0.09) 0.34 (0.09) 0.38 (0.09) 0.07 (0.05)

Anthro TCC 0.53 (0.11) 0.47 (0.11) 0.37 (0.11) 0.53 (0.11) 0.47 (0.11) 0.74 (0.10) 0.63 (0.11)

Standard errors in parentheses.

https://doi.org/10.1371/journal.pone.0229132.t001

Table 2. Means of the other dependent measures.

Group Manual rate Sensitivity d’ Accuracy

Good weather Bad weather Good weather Bad weather Good weather Bad weather

NoTCC 0.15 (0.04) 0.22 (0.06) 1.36 (0.09) 0.38 (0.14) 0.86 (0.04) 0.60 (0.04)

Visual 0.11 (0.06) 0.37 (0.09) 1.35 (0.13) 0.52 (0.15) 0.87 (0.05) 0.62 (0.04)

Audio 0.20 (0.06) 0.42 (0.08) 1.62 (0.10) 0.61 (0.15) 0.94 (0.03) 0.65 (0.04)

Verbal 0.17 (0.05) 0.63 (0.04) 1.39 (0.10) 0.92 (0.14) 0.87 (0.04) 0.72 (0.04)

Anthro. 0.20 (0.06) 0.37 (0.07) 1.40 (0.15) 0.54 (0.15) 0.88 (0.05) 0.62 (0.04)

Standard errors in parentheses.

“Good weather” means the good weather period and “Bad weather” means the bad weather period.

https://doi.org/10.1371/journal.pone.0229132.t002
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CKP “the good weather period” and the period with possible TCC presentations from the 10th

CKP to 15th CKP “the bad weather period”.

TCC rates

TCC rates in the verbal TCC group were higher in the early part of the period and gradually

decreased. This indicates that over-trust decreased during this period. The visual and audio

TCC groups also showed a similar trend, while TCC rates in the anthro. TCC group did not

follow the decreasing trend.

Manual rates

TCCs were presented multiple times per participant in most cases. The effects of presenting

TCCs might be accumulated and did not always appear immediately after presentation. In the

current study, we evaluated the TCC effects by comparing the six-CKP mean values of the

manual rates both for the good and bad weather periods, so that we could also capture the

accumulated effects in each period. We conducted a two factor mixed ANOVA with the TCC

groups (NoTCC, visual, audio, verbal, and anthro.) as between subjects and CKP periods (the

good weather period and the bad weather period) as within subjects. The analysis revealed a

significant main effect for the CKP periods [F(1, 111) = 51.69, p< 0.01, Z2
p ¼ 0:32]. The partic-

ipants changed their choice behavior as the weather conditions deteriorated. A significant

interaction was found between the two factors [F(4, 111) = 4.86, p< 0.01, Z2
p ¼ 0:15].

In the good weather period, there was no simple effect for the TCC groups, meaning that

the manual rates of each TCC group were not significantly different from each other

[Fð4; 111Þ ¼ 0:47; p ¼ 0:76; Z2
p ¼ 0:02]. The NoTCC group did not show a simple effect for

the CKP periods [Fð1; 27Þ ¼ 1:23; p ¼ 0:28; Z2
p ¼ 0:04] indicating the manual rates of the

NoTCC group were not significantly different between the two CKP periods. In contrast with

this, all of the groups with TCCs showed significantly higher manual rates in the bad weather

period than in the good weather period [Visual TCC, F(1, 17) = 9.20, p< 0.01, Z2
p ¼ 0:35;

Audio TCC, F(1, 21) = 5.54, p = 0.03, Z2
p ¼ 0:21; Verbal TCC, F(1, 28) = 62.9, p< 0.001,

Z2
p ¼ 0:69; Anthro TCC, F(1, 18) = 8.55, p< 0.01, Z2

p ¼ 0:32]. Fig 7 shows how the manual

rates changed over two CKP periods.

Holm–Bonferroni-adjusted post hoc comparisons were also conducted to investigate the

effects of TCCs. For the bad weather period, the verbal group showed a significantly higher

manual rate than both the NoTCC group (t(111) = 4.77, adj.p< 0.01) and the anthro. group

(t(111) = 2.74, adj.p = 0.04). No other differences between the groups were found to be signifi-

cant. Although the effectiveness among TCCs differ, these results support H0.

Performance: Sensitivity d0 and accuracy

The same ANOVA with the TCC groups and the CKP periods revealed that the sensitivity

d0 in the bad weather period was significantly lower than in the good weather period

[Fð1; 111Þ ¼ 107:22; p < 0:01; Z2
p ¼ 0:49]. In the bad weather period, post-hoc comparisons

indicated that the sensitivity d0 of the verbal group, which was the highest (0.92 (SE 0.14)

among all the groups, was significantly higher than the sensitivity d0 of the NoTCC group

[t(111) = 2.97, adj.p = 0.04, Cohen’s d = 0.75]. In terms of sensitivity d0, hypothesis H1 is

supported.

Accuracy, the rate of the correct inspection, also significantly declined in the bad weather

period[Fð1; 111Þ ¼ 87:58; p < 0:01; Z2
p ¼ 0:46], but there was no significant difference

Adaptive trust calibration for human-AI collaboration

PLOS ONE | https://doi.org/10.1371/journal.pone.0229132 February 21, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0229132


among the five groups[Fð4; 111Þ ¼ 1:62; p ¼ 0:18; Z2
p ¼ 0:06]. Hypothesis H1 is not sup-

ported regarding accuracy; however, the verbal group showed the highest mean value (0.72

(SE 0.04)), and other groups with TCCs also had better accuracy values (0.6 (SE 0.04)) than the

NoTCC group.

Regarding the accuracy of the manual inspections which corresponds to Pman, Table 3

shows the 3-CKP mean values of Pman. Although the mean values of Pman slightly increased, a

Welch’s t-test indicated that there was no significant difference between Pman in the good

weather period and in the bad one [t(114) = −1.08, p = 0.28, Cohen’s d = 0.16]. This result indi-

cates that Pman did not degrade under the change in weather conditions. One-sample t-tests

showed that Pman in the good weather period was significantly smaller than Pauto = 0.90

[Mean = 0.81, t(71) = −2.17, p = 0.03, Cohen’s d = 0.26] and that Pman in the bad weather

period was significantly larger than Pauto = 0.50 [Mean = 0.86, t(200) = 17.79, p< 0.01, Cohen’s
d = 1.25].

Discussion

The overall results demonstrated that adaptively presenting TCCs strongly affected whether

the choice behavior of the participants would change, while continuously presenting the reli-

ability information did not help the participants change their bias to rely on the automation.

Fig 7. Manual rates over time.

https://doi.org/10.1371/journal.pone.0229132.g007

Table 3. 3-CKP mean values of Pman.

CKPs Good weather period Bad weather period

1 to 3 4 to 6 7 to 9 10 to 12 13 to 15

Pman 0.81 (0.05) 0.80 (0.06) 0.85 (0.04) 0.86 (0.03) 0.90 (0.03)

Standard errors in parentheses.

https://doi.org/10.1371/journal.pone.0229132.t003

Adaptive trust calibration for human-AI collaboration

PLOS ONE | https://doi.org/10.1371/journal.pone.0229132 February 21, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0229132.g007
https://doi.org/10.1371/journal.pone.0229132.t003
https://doi.org/10.1371/journal.pone.0229132


The better task performances were also achieved with the behavior changes triggered by TCCs,

whose presentation timing was decided by the proposed framework.

Effects of TCCs to change the participants’ behavior

The groups with visual, verbal, and anthro. TCCs showed significantly higher manual rates for

the bad weather period than for the good weather period (Fig 7). The audio TCC that used an

audio ASE that decreased in frequency seemed promising, as it could convey the low level of

confidence in the system [28]. The result, however, showed that its manual choice rate was not

significantly larger than the one of NoTCc group. One possible reason is that other sounds

were also being played in the simulated environment, such as the drone flying and the thun-

derstorm, which may have reduced the effect of this audio TCC. The effect of the anthro. TCC

was not as large as we originally expected; it was significantly smaller than the effect of the ver-

bal TCC (Fig 8). The manual choice rate of the visual TCC were also smaller than other TCCs.

It was obvious that the participants recognized these visually impressive TCCs; however, the

results suggested that just being salient on the screen was not enough for some of the partici-

pants to change their choice behavior [31, 40]. The verbal group had the highest manual rate

(Fig 8). Only the verbal TCC referred to the purpose by using the word “choice,” while the

other TCCs were implemented just as a caution or warning. Reading this word might have

helped the participants proceed more easily to the latter stages of the trust calibration process.

Based on these results, our tentative guideline for designing TCCs is that TCCs should be

reasonably noticeable in the task environment and should contain connotations that can link

the user to the next possible actions in the collaborative task.

If the participants wanted to complete the scan tasks quickly, they could have used the auto-

matic inspection, which was faster. However, the participants promptly increased the manual

choices after recognizing TCCs despite the longer completion time. This result indicates that

the possible automation bias caused by the difference in the task completion times did not crit-

ically impact the decision-making of the participants in the experiment.

Fig 8. Manual rates for each TCC during the bad weather period.

https://doi.org/10.1371/journal.pone.0229132.g008
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These results indicated that adaptively presenting TCCs strongly affected the choice behav-

ior of the participants who otherwise failed to find opportunities to change their tendency to

rely on the automation.

Performance

The results of the manual accuracy were consistent with our assumption to estimate

Pman − Pauto in this experiment.

While the mean values of sensitivity d0 in each group were dropped in the bad weather

period, the verbal group showed a significantly higher sensitivity d0 than the NoTCC group,

and three other groups with TCCs also had better values than the NoTCC group. The results

showed that all the groups with TCCs showed higher discriminating performance in the bad

weather period than the NoTCC group. Though there was no statistical difference in accuracy

among the groups, all the groups with TCCs also showed better accuracy than the NoTCC

group.

These results indicated that adaptively presenting TCCs promoted appropriate trust cali-

bration leading to the better performance in the bad weather period.

Adaptive method vs. continuous method

The manual rate of the NoTCC group did not significantly change over the two periods. When

the participants were exposed to the bad weather, the weather change was made very notice-

able with the screen visibility and the sound effects. The reliability indicator showed a big per-

formance degradation of the system due to the poor visibility. Nevertheless, the participants of

the NoTCC group continued to rely on the drone’s automatic pothole inspection, which had

less reliability than the actual manual success rate. Thus, the participants over-trusted the auto-

matic inspection despite the system information indicating the reliability becoming worse.

This result is not in line with the previous studies [6, 7, 15] that emphasized the effectiveness of

the continuous trust calibration with system transparency. A possible explanation for the result

could be made by discussing models for the trust process [1, 27, 41]. Miring et al.[42] defined a

model with four stages: perception, understanding, prediction, and adaption. Although the

reliability indicator continuously displayed the deterioration of the reliability, the participants

in the NoTCC group might not fully acquire the knowledge to move beyond the perception

stage. They would have behave differently if the experiment had continued longer enough for

them to understand the relationship between the indicator change and the performance of the

system. In contrast to this, the participants in other groups with TCCs could successfully

reached the adaptation stage and change their behaviors in this experiment. We believe that

the results demonstrated the effectiveness of the adaptive method. TCCs were given right after

the behavior only if the participants were judged to over-trust, so that it would be easier for the

participants to understand the implication of the cues and to move forward in the trust calibra-

tion process.

Applicability in real-world situations

Although providing a model to estimate the second inequalities of Pman and Pauto in the pro-

posed framework is beyond the scope of this paper, we believe that they could be estimated as

follows. Pauto, which represents the reliability of an AI agent, could be calculated with the sen-

sor models and algorithms used to implement the AI agent. Pman, which is a human capability

index, could be estimated by using the parameters of a target task and environmental condi-

tions. The results of the previous studies [38, 39] are such examples that provide a basis for esti-

mating the second inequalities. If an appropriate estimation model for Pman is not available,
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trial operations can be performed to collect the necessary data to estimate Pman empirically. In

practical situations, it is quite common for users of a system to practice how to operate the sys-

tem in advance. The second inequalities could be estimated even in a real-time situation. The

first inequalities in the proposed framework could be estimated by observing users’ choice

behaviors, without measuring Ptrust and P̂man directly. Although a pop-up dialogue was used to

observe the behaviors in the current experiment, continuous measurements of the behaviors

could also be used with the proposed framework. For example, a driver’s intention to use auto-

matic driving could be inferred with a touch sensor on a steering wheel to check if the driver’s

hands are on the wheel. Similarly, a switch button to turn automation on and off at any time

could provide necessary information on humans’ reliance on the automation. The first

inequality in the framework could be calculated with the information from these continuous

methods that could work well with real-time tasks. Therefore, we believe that our proposed

framework can be applied to real-time applications that require human-agent collaboration.

Limitations and future research

The several limitations of our study suggest the need for further experiments and future

research.

The current framework focuses on performance-related factors to detect over-trust and

under-trust. The capabilities of humans and agents are compared to identify the possible choice

behavior that might lead to a better performance. However, automation could be beneficial

beyond a better performance, such as for faster task completion, lighter workloads, fewer risks,

etc. [3] Therefore, trust as the observable and rational choice behavior can be a product of believ-

ing that these benefits will outweigh the costs [5]. For example, Naujoks et.al [43] discussed the

desire to engage the non-driving-related tasks during autonomous driving, which requires the

workload of the driving task to be lighter and makes the driver select the autonomous mode.

Our framework could be integrated with such factors by adjusting the effect of the term Pman

with a coefficient γ, which represents a degree of human intention to do the main task manually.

P0man ¼ g � Pman ð3Þ

For example, if human would not do a task manually because they want to continue a sec-

ondary task, a value of γ< 1 indicates a negative bias toward the manual choice. Similarly, a

value of γ> 1 represents a positive bias in doing a task manually. γ can be decided in a practical

manner by experimenting with several levels of pre-defined factors that influence auto-manual

choice decisions. Dual-task paradigm [44] could be applied to determine the values of γ.

The feedback information given for each inspection was very important for the participants

to make decisions. The pothole inspection task in the experiment is a remote sensing task, and

it would be quite difficult for the system to know the correct answer (ground truth) at the time

of each inspection in practical situations because the only information available is the image

data and the results of automatic recognition. Therefore the correct answer for each inspection

was not presented to the participants in the experiment. The result of the automatic inspection

was shown to the participants when they selected automatic inspection, not when they did the

inspections manually. Although this was to simplify the conditions and focus on evaluating the

effect of presenting TCCs, further study should consider possible combinations of feedback

information and evaluate their effects.

In this experiment, we focused on evaluating an over-trust case, which often has more seri-

ous adverse effects in actual situations [45, 46]. Experiments are currently being prepared with

bi-directional trust change scenarios to evaluate cases of over-trust and under-trust. The
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proposed method deals with users’ behaviors to choose Auto or Manual and does not guaran-

tee the convergence of the behaviors, which is the result of trust calibration by users. Future

research could investigate a better way to develop the algorithm in light of control theory,

where the trust status would be represented as a non-binary variable, and TCCs could also be

presented in a different way.

We used a pothole inspection task in the experiment, which is often categorized as a recon-

naissance task in the trust research literature [13]. Future research should explore different

types of tasks, such as autonomous driving, decision aids, and interactive games.

Further experiments should be to evaluate our approach with the different types of TCCs to

investigate the requirements of effective cues. The current study mainly dealt with dynamic

learned trust [11]. Future studies should investigate other factors of trust such as dispositional

trust [1] and situational trust to gain a deeper understanding of trust calibration.

Conclusion

To our knowledge, this is the first study to show how to adaptively prompt the users to cali-

brate their trust toward an automated agent based on their trust calibration status. Previous

studies emphasized the importance of the system transparency for proper trust calibration.

Our results indicated that they are not always sufficient to recover from over-trust, and our

method of adaptive trust calibration significantly helped the participants change their behavior

and recover from the over-trust. Despite several limitations, this study has demonstrated the

effectiveness of presenting cognitive cues at the time of over-trust. We strongly believe that the

findings of this study will contribute to better user interface designs for collaborative systems

with autonomous AI agents.
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