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Abstract

Background

As an essential component in reducing anthropogenic CO2 emissions to the atmosphere,

tree planting is the key to keeping carbon dioxide emissions under control. In 1992, the

United Nations agreed to take action at the Earth Summit to stabilize and reduce net zero

global anthropogenic CO2 emissions. Tree planting was identified as an effective method to

offset CO2 emissions. A high net photosynthetic rate (Pn) with fast-growing trees could effi-

ciently fulfill the goal of CO2 emission reduction. Net photosynthetic rate model can provide

refernece for plant’s stability of photosynthesis productivity.

Methods and results

Using leaf phenotype data to predict the Pn can help effectively guide tree planting policies

to offset CO2 release into the atmosphere. Tree planting has been proposed as one climate

change solution. One of the most popular trees to plant are poplars. This study used a Popu-

lus simonii (P. simonii) dataset collected from 23 artificial forests in northern China. The

samples represent almost the entire geographic distribution of P. simonii. The geographic

locations of these P. simonii trees cover most of the major provinces of northern China. The

northwestern point reaches (36˚30’N, 98˚09’E). The northeastern point reaches (40˚91’N,

115˚83’E). The southwestern point reaches (32˚31’N, 108˚90’E). The southeastern point

reaches (34˚39’N, 113˚74’E). The collected data on leaf phenotypic traits are sparse, noisy,

and highly correlated. The photosynthetic rate data are nonnormal and skewed. Many

machine learning algorithms can produce reasonably accurate predictions despite these

data issues. Influential outliers are removed to allow an accurate and precise prediction, and

cluster analysis is implemented as part of a data exploratory analysis to investigate further

details in the dataset. We select four regression methods, extreme gradient boosting
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(XGBoost), support vector machine (SVM), random forest (RF) and generalized additive

model (GAM), which are suitable to use on the dataset given in this study. Cross-validation

and regularization mechanisms are implemented in the XGBoost, SVM, RF, and GAM algo-

rithms to ensure the validity of the outputs.

Conclusions

The best-performing approach is XGBoost, which generates a net photosynthetic rate pre-

diction that has a 0.77 correlation with the actual rates. Moreover, the root mean square

error (RMSE) is 2.57, which is approximately 35 percent smaller than the standard devia-

tion of 3.97. The other metrics, i.e., the MAE, R2, and the min-max accuracy are 1.12, 0.60,

and 0.93, respectively. This study demonstrates the ability of machine learning models to

use noisy leaf phenotype data to predict the net photosynthetic rate with significant accu-

racy. Most net photosynthetic rate prediction studies are conducted on herbaceous plants.

The net photosynthetic rate prediction of P. simonii, a kind of woody plant, illustrates signif-

icant guidance for plant science or environmental science regarding the predictive relation-

ship between leaf phenotypic characteristics and the Pn for woody plants in northern

China.

Introduction

In 2018, the United Nations’ Intergovernmental Panel on Climate Change (IPCC) published a

special report called Global Warming of 1.5˚C to warn the world that countries must reduce

their greenhouse gas (GHG) emissions as quickly as possible to avoid adverse consequences

due to climate change [1]. Human activities influence the global mean surface temperature

(GMST). The estimated temperature impact by human activities is an approximate 1.0˚C

increase compared to the pre-industrial temperature. Maintaining or reducing the net zero

global anthropogenic carbon dioxide (CO2) emission could stop anthropogenic global warm-

ing in the future [1].

As an essential component in reducing anthropogenic CO2 emissions to the atmosphere,

tree planting is the key to keeping carbon dioxide emissions under control. In 1992, the United

Nations agreed to take action at the Earth Summit to stabilize and reduce the net zero global

anthropogenic CO2 emissions. Tree planting was defined as one of the more effective methods

to offset CO2 emissions [2]. A high net photosynthetic rate (Pn) with fast-growing trees could

efficiently fulfill the goal of CO2 emission reduction.

P. simonii is one of the fastest growing trees in the world and has the potential to get anthro-

pogenic CO2 emissions under control quickly and effectively. Net photosynthetic rate repre-

sents the level of plant photosynthesis. The research of P. simonii’s net photosynthetic rate

prediction is of practical significance in determining carbon fixation and promoting plant

growth and development [3]. The Pn is the most important index in evaluating CO2 emission

reduction, which is discussed in this paper. Accurate prediction of the Pn could be an authori-

tative reference for analyzing and evaluating carbon sequestration. However, measuring pho-

tosynthesis data is a challenge impacted by heterogenetic environmental parameters. For

example, light intensity, CO2 concentration, water availability, and temperature are the key

factors that affect the Pn. When any of these factors become a limiting factor, this limiting

factor masks the effects of the other parameters [4]. Due to the limiting factor effect and
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environmental variations, a researcher must bring many devices into a forest to measure envi-

ronmental variables such as the Pn, which is costly and logistically difficult. We hypothesize

that it is possible to use leaf phenotype data to accurately predict the Pn so that forest research-

ers can evaluate and analyze Pn exactly, effectively, and economically.

Early photosynthesis predictive models tended to be simple and straightforward. Long and

Incoll (1975) introduced a leaf photosynthetic rate model that used a variant of the 14CO2

method to predict the photosynthetic rate of Spartina townsendii (S. townsendii) based on

their 2-gas system for photosynthetic rate measurement and sampling strategy [5]. In 1991,

Ögren published a paper using a multiple regression model to study the photoinhibition of

photosynthesis for willow (Salix sp.) leaves with the ratio of variables to the maximal chloro-

phyll fluorescence [6]. This research did address the problem that Long and Incoll experienced

in 1975: there were multiple independent variables with changing environmental conditions

that strongly impacted the photosynthesis prediction results.

Later investigations regarding photosynthesis were conducted in controlled environments

with limited environmental and geographical influences and implemented more sophisticated

approaches to create more robust and reliable predictions. Machine learning was one of the

most popular methods for analyzing photosynthesis data and making predictions. Lü et al.

(2017) used hyperspectral data of wheat flag leaves to predict the Pn with three machine learn-

ing models: 1) quadratic polynomial stepwise regression (QPSR), 2) partial least squares

regression (PLSR), and 3) a backpropagation neural network (BPNN). These methods were

able to generate root mean square error (RMSE) values of 0.71, 0.86, and 0.78 with residual

predictive deviation (RPD) values of 2.9, 2.4, and 2.6, respectively [7]. Zhang et al. (2019) also

used hyperspectral data to predict winter wheat leaves’ max net photosynthetic rate (Amax)

using partial least squares (PLS), a support vector machine (SVM), multivariate linear regres-

sion (MLR) and an artificial neural network (ANN) [8]. Since then, the machine learning and

neural networks for hyperspectral data are the contemporary approaches dominating in Pn

prediction with relatively reasonable R2 and RMSE values.

Leaf shape characteristics are associated with Pn predictions. Ci et al. (2015) published a

paper concluding that twenty-six leaf-shape-related methylation markers are significantly

associated with photosynthetic characteristics [9]. In March 2019, Zhang et al. invented an

iteration-stopping criterion for gradient boosting machine (GBM) models to reduce the

impact of overfitting as a preliminary study for Pn prediction and used 235 P. simonii leaf phe-

notype and photosynthesis data points [10]. Since most of the photosynthesis studies in this

domain are focused on herbaceous plants, Pn prediction using P. simonii leaf phenotype data

can be a particularly useful reference for woody plant studies in northern China.

Materials

Experimental design and data acquisition conditions

To obtain the maximum Pn data without being impacted by environmental and geographical

variations, 519 P. simonii root cuttings were brought to grow in a clonal arboretum located in

Guan County, Shandong Province, China (36˚23’N, 115˚47’E), in a controlled environment.

The samples represent almost the entire geographic distribution of P. simonii (9 provinces, 17

cities and counties: Chicheng County and Zhangjiakou City from Hebei, Fu County, Linyou

County, Langao County, Luochuan County and Gaoling County from Shaanxi, Huzhu

County, Xinghai County, Dulan County and Menyuan County from Qinghai, Song County

and Yichuan County from Henan, Zhongning County from Ningxia, Baotou City from Inner

Mongolia, Ningwu County from Shanxi, Taoranting Park in Beijing). We have obtained the

work permit of the experimental base of P. simonii euphratica germplasm resources from
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Guan County Governmet. The data collection time was set between 9:00 AM and 11:00 AM.

During this period, the Pn peaks during a day. The whole experiment was finished by the

National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Tech-

nology, Beijing Forestry University.

When collecting leaf phenotype and photosynthetic data, the portable laser leaf area meter

(CI-202) and the portable photosynthesis system (LI-6400XT) measured the top four to six

leaves three times from the stem top and then took the average as each individual tree’s leaf

shape data. The photosynthetic data collection parameters needed to meet the following condi-

tions: 1) the photosynthetic photon flux density (PPFD) was set to 1600 μmol �m−2s−1, 2) the

CO2 concentration was set to 400 μmol−1, and 3) the Pn stability level was reached at ±0.1.

These leaf phenotypic and photosynthetic data collection conditions ensured the robustness,

reliability, and stability of the collected data (refer to Supplementary Data of doi.org/10.1093/

jxb/erv485 at Journal of Experimental Botany (online) https://academic.oup.com/jxb).

Dataset

The 519P. simonii samples originally came from 23 forests in northern China. These poplar

trees represent the majority of the characteristics of the artificial poplar forests planted in

northern China. The dataset collected using CI-202 and LI-6400XT systems includes the area,

length, width, perimeter, ratio, factor, and Pn. There are six predictors in this study: the area,

length, width, perimeter, ratio, and factor. Area stands for the leaf area and measures how

large a leaf is. Length stands for leaf length and measures the maximum length of a leaf. Width

stands for leaf width and measures the maximum width of a leaf. Perimeter stands for leaf

perimeter and measures the distance around a leaf. The ratio represents the aspect ratio. The

aspect ratio is calculated using the leaf length divided by the leaf width. The factor represents

the shape factor. The shape factor is calculated as 4p area
perimeter2. The last variable is the Pn, which

is the response variable in this study. The Pn is the net photosynthetic rate and is the difference

between the CO2 update and CO2 release. The Pn is a crucial index to measure precisely how

much the photosynthesis process absorbs CO2.

Methods

Exploratory analysis of the data

The net photosynthetic rate (Pn) reflects the important ability of storing energy and organics

for various plants. The purpose of this paper is to study the relationships between net photo-

synthetic rate and leaf phenotypic characteristics. Therefore we focus on how we could use a

machine learning model to predict Pn when the collected data is noisy, skewed and highly cor-

related with influential outliers. We note that such patterns reflect the characteristics of data-

sets in the big data era. The 3Vs (volume, variety, and velocity) always break assumptions in

the white-box modeling process that cause the unreliability of many statistical models. How-

ever, black-box modeling is capable of coping with noisy, skewed, and highly correlated data-

sets because most black-box modeling algorithms do not make distribution assumptions. The

following listed patterns of the dataset in this study (Fig 1 and Tables 1–3).

According to Fig 1 and Tables 1–3, the dataset follows neither a multivariate nor a univari-

ate normal distribution. Therefore, the variables in the dataset are either left or right skewed

and highly correlated. Thus, appropriate data preprocessing mechanisms are needed. Then,

based on the results after data preprocessing, the appropriate predictive methods should be

selected to make valid and accurate Pn predictions.
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Data preprocessing. To conduct appropriate data preprocessing, we should first identify

outliers. By conducting Cook’s Distance, the DFBETAs, and the DFFITS, we can observe a few

outliers. There are a few extreme values show in the bar plot of Cook’s distance. For example,

the 78th, 308th, and 355th rows are apparent outliers that deviate significantly from the mean

(refer to Fig 2A). In addition, for each variable, multiple outliers could significantly impact the

overall analysis. For the length variable, the 37th, 163rd, 266th, and 314th rows are influential

Fig 1. Dataset correlation. The correlation patterns of Pn and six predictors with area, length, width, perimeter, ratio, factor (R package

PerformanceAnalytics).

https://doi.org/10.1371/journal.pone.0228645.g001

Table 1. Multivariate normality tests (R package MVN).

Test Statistic p-value Result

Mardia’s Skewness 32276.54 0.00 NO

Mardia’s Kurtosis 432.27 0.00 NO

MVN NA NA NO

https://doi.org/10.1371/journal.pone.0228645.t001

Table 2. Univariate normality tests (R package MVN).

Test Variable Statistic p-value Normality

Shapiro-Wilk Pn 0.98 <0.001 NO

Shapiro-Wilk area 0.78 <0.001 NO

Shapiro-Wilk length 0.89 <0.001 NO

Shapiro-Wilk width 0.91 <0.001 NO

Shapiro-Wilk perimeter 0.91 <0.001 NO

Shapiro-Wilk ratio 0.92 <0.001 NO

Shapiro-Wilk factor 0.50 <0.001 NO

https://doi.org/10.1371/journal.pone.0228645.t002
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data points that could affect the analysis results (refer to Fig 2B). Moreover, for the perimeter

variable, the 28th, 144th, 262nd, and 308th rows are influential outliers that could impact the

perimeter analysis (refer to Fig 2C).

To achieve accurate and precise predictions, the influential outliers are removed because

extreme values may mislead the analysis results. Cook’s distance is chosen in this study to

remove outliers due to its reliability for multivariate data. The outlier identification threshold

is set to three times the mean, which is a typical threshold for targetting outliers.

Based on Cook’s distance, the influential outliers were removed from the dataset (refer to

Fig 3A and 3B). According to the Studentized residuals plot before and after outlier removal,

no other outliers were identified after the initial outliers were removed.

Fig 2. Influence diagnostics. (A) Cook’s distance bar plot with threshold 0.008, (B) DFBETAs panels for intercept, area, length and width

with threshold 0.09, (C) DFBETAs panels for perimeter, ratio and factor with threshold 0.09, (D) DFFITS plot for Pn with threshold 0.23

(R package olsrr).

https://doi.org/10.1371/journal.pone.0228645.g002

Table 3. Descriptives with n = 519 (R package MVN).

Mean Median Min Max 25th P 75th P Skewness Kurtosis

Pn 14.57 15.20 1.32 23.59 11.66 17.76 −0.52 −0.05

area 35.83 24.33 3.91 177.95 18.76 43.02 1.87 3.63

length 8.58 7.76 3.88 21.96 6.41 9.96 1.28 1.59

width 6.02 5.41 2.44 12.66 4.52 6.98 1.03 0.32

perimeter 41.36 34.38 12.41 154.02 23.51 56.88 0.92 0.75

ratio 1.47 1.42 0.88 3.09 1.23 1.63 1.19 2.00

factor 0.42 0.41 0.00 7.90 0.14 0.63 10.95 193.68

https://doi.org/10.1371/journal.pone.0228645.t003
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Cluster analysis. Due to different geographical location and growth environment,

P. simonii may have different characteristics so that they can be divided into different subpop-

ulations. In our research, we utilize partitioning around medoids (PAM) clustering to classify

these P. simonii individuals to study the relationship between geographical distribution and

P. simonii’s leaf phenotypic traits and photosynthetic characteristics.

A cluster analysis was implemented as part of the data exploration step to investigate addi-

tional details in the dataset. The first step was to define the optimal number of clusters.

Gower’s distance was used to measure the distance between different data points. Then, parti-

tioning around medoids (PAM) was implemented to define medoids in the center of each clus-

ter. The goal of PAM is to minimize the distance within a cluster and maximize the distance

between different clusters [11]. After that, the silhouette width from the PAM algorithm

reveals the optimal number of clusters for the given dataset and how strong the clustering

structure is.

Based on the silhouette width diagram (refer to Fig 4A), 3 is the optimal number of clusters

with a silhouette width score of 0.47, which means that a clustering structure does exist, but

further analysis is required to ensure that the cluster number is valid and optimized.

Fig 3. Studentized residuals plots. (A) Before outlier removal with threshold abs(3), (B) After outlier removal with threshold abs(3) (R

package olsrr).

https://doi.org/10.1371/journal.pone.0228645.g003

Fig 4. PAM results. (A) Silhouette width diagram, (B) Frequency among all indices with optimal number of clusters k = 3 (R packages

graphics and NbClust).

https://doi.org/10.1371/journal.pone.0228645.g004
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Thus, we implemented k-means clustering by means of the Euclidean distance with a com-

parison of a dozen of indices: KL, CH, Hartigan, CCC, Scott, Marriot, TrCovW, TraceW,

Friedman, Rubin, Cindex, and many others. A cluster number of 3 was identified as optimal

when compared to other potential numbers of clustered and was proposed 11 times among all

the indices (refer to Fig 4B).

Based on the calculated optimal number of clusters using the k-means method, the pheno-

type data can be plotted into three clusters (refer to Fig 5A).

We can observe a few patterns of the leaf phenotype data based on the clustering data

within the normalized range from 0 to 1. The smaller the perimeter is, the higher the Pn. The

lower the leaf shape ratio is, the more elevated the Pn. Regarding the leaf shape factor, the

higher the leaf shape factor is, the higher the Pn. Therefore, the leaf area, length, and width do

not have apparent patterns associated with Pn. However, there are some observable patterns

between area, length, width, and perimeter. Cluster 1’s area, length, and width are much

smaller than those of cluster 3, but cluster 1’s perimeter is the highest among the 3 clusters on

average. Cluster 3’s area, length, and width are the highest among the 3 clusters, but the perim-

eter is much smaller than that of cluster 2. This finding can be interpreted as cluster 2’s leaves

always having a smaller area, length, and width, but its leaf margin is still the most complicated

among the 3 clusters. A typical leaf margin in cluster 2 may be much more lobed, wavy, spiny,

or toothed than leaves in the other 2 clusters. The leaf margins of cluster 1 and cluster 3 are rel-

atively smooth and straightforward (refer to Fig 5B).

The purpose of the cluster analysis is to decide if multiple predictive models are needed or

not. As a result, we do not have enough evidence to suggest statistically that different leaf phe-

notypic patterns yield different levels of Pn. Furthermore, the leaf phenotypic clustering char-

acteristics’ influence on the Pn is minimal according to a random forest variable importance

analysis (refer to Fig 6), which means that the clusters have a limited contribution to Pn pre-

diction. We also conducted both analysis of variance (ANOVA) and Tukey’s honest significant

differences (TukeyHSDs) to investigate whether different clusters generate different Pn levels.

The results show that the ANOVA F-test for different leaf clusters is significant with a p-value

equal to 0.0064. This finding means, in general, that different leaf clusters yield different Pn

levels. However, according to TukeyHSD pairwise group comparisons, the only significant Pn

generation difference exists between cluster 1 and cluster 2. Pn generation between cluster 1

and cluster 2 is not significantly different. Therefore, Pn generation between cluster 2 and clus-

ter 3 is also not significantly different. Consequently, there is no need to develop multiple

Fig 5. Clustering of the leaf phenotypic traits. (A) Cluster plot where colors red, green and blue correspond to cluster 1, 2 and 3,

respectively, (B) Box plot for Pn, area, length, width, perimeter, ratio and factor (R packages factoextra and ggplot2).

https://doi.org/10.1371/journal.pone.0228645.g005
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predictive models for each individual cluster. A well-trained predictive model should be suffi-

cient to make Pn predictions in this case.

Evaluation metrics

We implemented a few measures to evaluate the performance of the predictive models

between the actual Pn and predicted Pn. The criteria used in this paper are the correlation

(COR), root mean square error (RMSE), mean absolute error (MAE), coefficient of determi-

nation (R2), and the min-max accuracy. Correlation means the mutual relationship between

the actual Pn and predicted Pn. The range of correlation is between -1 and 1. A positive corre-

lation means that if the actual Pn increases, then the predicted Pn also increases, and vice

versa. A negative correlation implies that if the actual Pn increases, then the predicted Pn

decreases, and vice versa. A correlation of 0 indicates that there is no relationship between the

actual Pn and the predicted Pn. The RMSE measures the errors between actual Pn and pre-

dicted Pn. The lower the RMSE is, the better the model. The RMSE is particularly powerful

when working with large error outliers and might be highly useful for the dataset used in this

research. The MAE is similar to the RMSE. However, the MAE works effectively with evenly

distributed errors. R2 measures the proportion of the variance between the actual Pn and the

predicted Pn. It reveals how much the predicted Pn is proportionally associated with the actual

Pn. The min-max accuracy takes the mean values of the minimum and maximum values

between the actual Pn and the predicted Pn to measure how close the predicted values are to

the actual Pn values. The min-max accuracy ranges from 0 to 1. A min-max accuracy score of

1 means a perfect fit between the actual and predicted Pn values. The higher the min-max

accuracy score is, the better the prediction. In addition, the RMSE is compared with the stan-

dard deviation (SD) to judge whether the predictive model performs better than using the

mean for prediction.

Fig 6. Results for random forest model. The left plot is variable importance plot with horizontal axis as %IncMSE, and the right

one is variable importance plot with horizontal axis as IncNodePurity (R package graphics).

https://doi.org/10.1371/journal.pone.0228645.g006
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Formula of the min-max accuracy

Min‐Max Accuracy ¼ mean
minðy; xÞ
maxðy; xÞ

� �

ð5Þ

In the above formulas, x represents the predicted Pn, and y represents the actual Pn. The

evaluation metrics provide useful information to decide whether the model is a good fit, espe-

cially since the given dataset in this paper is skewed and small sized.

Results and discussion

Predictive analytics

We selected four regression methods that are suitable to work with the dataset given in this

study. The first method implemented in this study is the eXtreme Gradient Boosting

(XGBoost) model, which was proposed by Tianqi Chen as an implementation of gradient

boosting machines [12]. XGBoost is insensitive to descriptive features that are highly corre-

lated with response variables and is extremely flexible to work with in almost any regression or

classification problems. The support vector machine (SVM) algorithm is a supervised machine

learning algorithm implemented in this study as a regression solution [13]. The SVM algo-

rithm’s ability to address highly correlated variables for regression makes this approach suit-

able for this study. Random forest (RF), invented by Leo Breiman, is a machine learning

algorithm for both classification and regression tasks [14]. RF’s ability to deal with overfitting,

ability to measure easily the importance of features, and insensitivity to correlated variables

makes it another suitable algorithm for this study. The final selected algorithm, the generalized

additive model (GAM), proposed by Trevor Hastie, is a hybrid algorithm to address effectively

both linear and nonlinear regression problems [15]. GAM is a typical statistical model repre-

senting contemporary linear and nonlinear modeling algorithms. GAM is used as a bench-

mark regression model to predict the Pn as a comparison to XGBoost, SVM, and RF.

Additionally, the cross-validation and regularization mechanisms were implemented in
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XGBoost, SVM, RF, and GAM to ensure the validity of the outputs. Tables 4–7 lists the results

generated from XGBoost, SVM, RF, and GAM.

The four selected predictive models can be classified into two categories: tree-based and

non-tree-based models. The tree-based predictive models include XGBoost, SVM, and RF.

Therefore, GAM belongs to the non-tree-based category. Nonparametric tree-based models

are naturally immune from the multicollinearity issue. Therefore, the GAM algorithm, like

other non-tree-based predictive models, can be impacted by the multicollinearity issue. The

purpose of these models is to use leaf shape data to predict the Pn with a high accuracy.

Extreme gradient boosting

We implemented a 10-fold cross-validation mechanism with a grid search data frame in the

extreme gradient boosting (XGBoost) model. This grid search data frame is then embedded

and fine-tuned in the train function from the R caret package. The key parameters include the

number of trees (nrounds), maximum tree depth (max_depth), learning rate (eta), regulariza-

tion (gamma), column sampling (colsample_bytree), minimum leaf weight (min_child_-

weight), and row sampling (subsample), which are fine-tuned through the grid search with the

10-fold cross-validation design. The final fine-tuned parameters nrounds, max_depth, eta,

gamma, colsample_bytree, min_child_weight, and subsample are set to 100, 10, 0.2, 0, 0.3, 1

and 0.9, respectively.

The Pn predicted by fine-tuned XGBoost model has a correlation of 0.77, RMSE of 2.57,

MAE of 1.12, R2 of 0.60, and min-max accuracy of 0.93 with the actual Pn in testing. Moreover,

the correlation, RMSE, MAE, R2, SD, and min-max accuracy in training are 0.99, 0.02, 0.02,

0.99, and 0.99, respectively, between predicted Pn and actual Pn (refer to Table 4).

Table 4. Evaluation metrics—XGBoost.

Method COR RMSE MAE R2 Min-Max ACC SD

XGBoost—Testing 0.77 2.57 1.12 0.60 0.93 3.97

XGBoost—Training 0.99 0.02 0.02 0.99 0.99 3.97

https://doi.org/10.1371/journal.pone.0228645.t004

Table 7. Evaluation metrics—GAM.

Method COR RMSE MAE R2 Min-Max ACC SD

GAM—Testing 0.33 3.96 2.94 0.11 0.82 3.97

GAM—Training 0.76 2.59 1.95 0.57 0.87 3.97

https://doi.org/10.1371/journal.pone.0228645.t007

Table 5. Evaluation metrics—SVM.

Method COR RMSE MAE R2 Min-Max ACC SD

SVM—Testing 0.73 2.77 1.31 0.53 0.92 3.97

SVM—Training 0.99 0.20 0.19 0.99 0.99 3.97

https://doi.org/10.1371/journal.pone.0228645.t005

Table 6. Evaluation metrics—RF.

Method COR RMSE MAE R2 Min-Max ACC SD

RF—Testing 0.69 2.99 2.13 0.47 0.87 3.97

RF—Training 0.97 1.33 0.96 0.94 0.93 3.97

https://doi.org/10.1371/journal.pone.0228645.t006
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By comparing the RMSE scores of the XGBoost testing and training predictions, we can

observe that there are some overfit models (refer to Fig 7A and 7B). However, the XGBoost

model performed the best among all the models overall. The correlation between the actual Pn

and the predicted Pn is 0.77 in testing, which is a considerably high number. This finding

means that the XGBoost-generated predictions are highly correlated with the observed Pn val-

ues. In addition, the min-max accuracy between actual Pn and predicted Pn is an extremely

high number: 0.93 in testing. The perfect min-max accuracy score is 1, which means that the

predicted Pn values are incredibly close to the ideal predictions.

To further verify the goodness of fit of the XGBoost model in testing, we created a residual

plot to visualize how the errors are distributed above and under the 0-residual line (refer to Fig

7C). The XGBoost residual plot shows that the residuals fall in a symmetrical pattern towards

the middle of the plot. This finding means that the XGBoost model reasonably fits the data to

predict the Pn values with high correlation, low RMSE, low MAE, moderate R2, and a very

high min-max accuracy score. Using the RMSE vs. SD approach, when a model’s RMSE is

smaller the than SD, then that model generates better predictions that by using the mean. In

this study, the XGBoost model’s RMSE score of 2.57 is much lower than the SD of 3.97, which

means that the XGBoost model’s predictions are much more accurate than the mean of the

actual Pn values to represent the Pn. Those findings demonstrate that the XGBoost model is a

good fit and capable of making accurate predictions when the predicted results are strongly

and closely associated with the actual Pn values.

Fig 7. Prediction results of XGBoost model. (A) XGBoost testing plot with Min-Max Accuracy 0.93, RMSE 2.57 and SD 3.97, (B)

XGBoost training plot with Min-Max Accuracy 0.99, RMSE 0.02 and SD 3.97, (C) XGBoost test residual plot with Min-Max Accuracy

0.93, RMSE 2.57 and SD 3.97 (R package ggplot2).

https://doi.org/10.1371/journal.pone.0228645.g007
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Support vector machine

We fine-tuned the support vector machine (SVM) model using the R e1071 package with a

10-fold cross-validation design. The model parameters include gamma, cost and epsilon,

which were fine-tuned using the tune.svm function. The best tuned parameters are 30, 5, and

0.05 for gamma, cost, and epsilon, respectively, with a cross-validation design of 10. The SVM

model was then trained with the radial kernel.

The SVM model predicted that the Pn has a correlation of 0.73, RMSE of 2.77, MAE of

1.31, R2 of 0.53, and min-max accuracy of 0.92 to the actual Pn in testing. Moreover, the corre-

lation, RMSE, MAE, R2, SD, and mi- max accuracy in training are 0.99, 0.20, 0.19, 0.99, and

0.99, respectively, between the predicted Pn and actual Pn (refer to Table 5).

We can observe that the SVM model, during testing, 1) the predicted Pn value a correlation

of 0.73 with the actual Pn values, 2) the RMSE of 2.77 is much smaller than the SD of 3.97, 3)

has a small MAE (1.31), 4) yields a moderate R2 between the actual and predicted Pn values,

and 5) has a high min-max accuracy score of 0.92 (refer to Table 5, Fig 8A and 8B). This find-

ing means that the trained SVM is capable of making Pn predictions with reasonably high

accuracy.

Furthermore, the SVM residual plot illustrates that the residual plot does follow a symmet-

rical pattern above and below the 0-residual line towards the middle of the plot (refer to Fig

8C). Based on the evaluation metrics and the residual plot, the SVM model is a good fit to pre-

dict the Pn value with a high accuracy and low error using the noisy and skewed data of this

study.

Fig 8. Prediction results of SVM model. (A) SVM testing plot with Min-Max Accuracy 0.92, RMSE 2.77 and SD 3.97, (B) SVM training

plot with Min-Max Accuracy 0.99, RMSE 0.2 and SD 3.97, (C) SVM test residual plot with Min-Max Accuracy 0.92, RMSE 2.77 and SD

3.97 (R package ggplot2).

https://doi.org/10.1371/journal.pone.0228645.g008
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Random forest

The random forest (RF) model was fine-tuned in two steps. The first step was to generate the

optimal number of trees. A grid search data frame was created to contain the different num-

bers of trees ranging from 50 trees to 4800 trees. Then, the tree grid search design was tuned

using the train function from the R caret package. The fine-tuned result for the optimal num-

ber of trees is 300. The second step was to fine-tune the mtry parameter. The mtry parameter

stands for the number of variables to split at each tree node, which is another very important

tunable parameter in an RF model. The tuneRF function from the R randomForest package

was used, and the best mtry value was calculated as 4.

The RF model-predicted Pn has a correlation of 0.69, RMSE of 2.99, MAE of 2.13, R2 of

0.47, and min-max accuracy of 0.87 to the actual Pn in testing. Moreover, the correlation,

RMSE, MAE, R2, SD, and min-max accuracy in training are 0.97, 1.33, 0.96, 0.94, and 0.93,

respectively, between predicted Pn and actual Pn (refer to Table 6). The first impression of this

model is that the RMSE is smaller than the SD in testing. This finding means that the RF

model is capable of predicting some moderately accurate Pn results. In addition, the min-max

accuracy is 0.87, which is a relatively high score, which means that the average distance of pre-

dicted Pn values is somewhat close to the actual Pn values.

The next step is to verify how good the RF model fits the actual Pn data. According to Fig

9A and 9B, we can observe that both the predicted Pn values from testing and training follow

the 45-degree line of best fit. However, from the residual plot from testing (refer to Fig 9C), the

beginning quarter and the ending quarter of the plot are not distributed symmetrically. The

Fig 9. Prediction results of RF model. (A) RF testing plot with Min-Max Accuracy 0.87, RMSE 3.02 and SD 3.97, (B) RF training plot

with Min-Max Accuracy 0.93, RMSE 1.32 and SD 3.97, (C) RF test residual plot with Min-Max Accuracy 0.87, RMSE 3.02 and SD 3.97

(R package ggplot2).

https://doi.org/10.1371/journal.pone.0228645.g009
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middle half of the residual plot follows the symmetrical pattern. Overall, the RF model could

yield a moderately accurate prediction with a reasonably good fit.

Generalized additive model

The GAM is impacted by highly correlated variables. To avoid the impact of multicollinearity,

a redundant variable removal algorithm was implemented by evaluating the correlation of the

descriptive features with a cutoff value of 0.70. After the remove of redundant variables, the

remaining descriptive features are ratio and factor. To add predictive power of the model, the

cluster variable is added in the GAM as a uncorrelated descriptive feature. A grid search mech-

anism is implemented in the GAM fine-tuning process with parameter knots for ration and

factor, sp, and gamma.

The GAM-predicted Pn has a correlation of 0.33, RMSE of 3.96, MAE of 2.94, R2 of 0.11,

and min-max accuracy of 0.82 to the actual Pn in testing. Moreover, the correlation, RMSE,

MAE, R2, SD, and min-max accuracy in training are 0.76, 2.59, 1.95, 0.57, and 0.87, respec-

tively, between predicted Pn and actual Pn (refer to Table 7).

We observed that the RMSE of 3.96 is smaller than the SD of 3.97 in testing (refer to Fig

10A and 10B), which means that the GAM’s prediction is slightly better than using the mean

Pn to represent the Pn predictions. There is no overfitting in this model. However, the correla-

tion of 0.33 and R2 of 0.11 are relatively small. This means that the association between the

actual and predicted Pn values is relatively weak. Moreover, the MAE is 2.94, which can be

Fig 10. Prediction results of GAM model. (A) GAM testing plot with Min-Max Accuracy 0.82, RMSE 3.96 and SD 3.97, (B) GAM

training plot with-Min Max Accuracy 0.87, RMSE 2.59 and SD 3.97, (C) GAM test residual plot with Min-Max Accuracy 0.82, RMSE

3.96 and SD 3.97 (R package ggplot2).

https://doi.org/10.1371/journal.pone.0228645.g010
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considered low. Overall, from the evaluation metrics, the GAM is capable of making reason-

able, but weak, Pn predictions using the given small, noisy and skewed leaf phenotype data.

In addition to the GAM, the first quarter and the last quarter did not follow a symmetrical

pattern. The middle half of the residual plot did follow a symmetrical pattern (refer to Fig

10C). The good fit of GAM is somewhat acceptable.

Conclusions

According to our evaluation metrics (refer to Table 8), the XGBoost model performed the

best. The correlation, R2, and min-max accuracy are the highest among the four proposed pre-

diction methods. The RMSE and MAE are also the lowest. Additionally, according to the resid-

ual plot, the residuals of the XGBoost-predicted Pn values followed a random pattern towards

the middle of the plot, and the random pattern above and below the 0-residual line made the

XGBoost a good fitting model.

As a result, we recommend XGBoost to make accurate and reliable Pn predictions using

small, noisy, and skewed leaf phenotype data. This study verified that it is possible to use leaf

phenotype data to predict the Pn exactly, effectively, and economically. Precise and economic

algorithms to predict the Pn can provide strong evidence to manage and monitor the photo-

synthesis process and CO2 emissions efficiently and effectively worldwide.

Future works

Four future works can be implemented in this study to enhance the Pn prediction power. The

following are some ideas that could benefit future works:

1. More leaf phenotype and photosynthesis data can be collected in the future to provide

more insights regarding the association between leaf phenotype traits and the Pn to build a

more robust predictive model.

2. A deep learning regression model can be implemented in predicting the Pn when a large

dataset is available for such studies because the deep learning algorithms have been proven

to be superior to many other prediction algorithms in many different industries.

3. More predictors can be introduced into the Pn predictive model to enhance the prediction

reliability. These new predictors, such as leaf color and leaf hyperspectral data, should not

have a strong impact on the environmental and geographical conditions.

4. More tree species data are recommended to be implemented in the Pn prediction model to

improve the model’s generalizability to other trees or plants.

The big data era is here. Massive amounts of data are being generated and stored by compa-

nies, organizations, and research institutes. The same is happening in the forestry and ecology

industries every day. We shall utilize our predictive and analytical skills as data scientists to

make more robust and precise predictions to protect our earth.

Table 8. Evaluation metrics—XGBoost, SVM, RF, and GAM.

Evaluation metrics—XGBoost, SVM, RF, and GAM

Method COR RMSE MAE R2 Min-Max ACC SD Decision

XGBoost—Testing 0.77 2.57 1.12 0.6 0.93 3.97 Yes

SVM—Testing 0.73 2.77 1.31 0.53 0.92 3.97 No

RF—Testing 0.69 2.99 2.13 0.47 0.87 3.97 No

GAM—Testing 0.33 3.96 2.94 0.11 0.82 3.97 No

https://doi.org/10.1371/journal.pone.0228645.t008
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