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Abstract

In recent years, the number of vulnerabilities discovered and publicly disclosed has shown a

sharp upward trend. However, the value of exploitation of vulnerabilities varies for attackers,

considering that only a small fraction of vulnerabilities are exploited. Therefore, the realiza-

tion of quick exclusion of the non-exploitable vulnerabilities and optimal patch prioritization

on limited resources has become imperative for organizations. Recent works using machine

learning techniques predict exploited vulnerabilities by extracting features from open-source

intelligence (OSINT). However, in the face of explosive growth of vulnerability information,

there is room for improvement in the application of past methods to multiple threat intelli-

gence. A more general method is needed to deal with various threat intelligence sources.

Moreover, in previous methods, traditional text processing methods were used to deal with

vulnerability related descriptions, which only grasped the static statistical characteristics but

ignored the context and the meaning of the words of the text. To address these challenges,

we propose an exploit prediction model, which is based on a combination of fastText and

LightGBM algorithm and called fastEmbed. We replicate key portions of the state-of-the-art

work of exploit prediction and use them as benchmark models. Our model outperforms the

baseline model whether in terms of the generalization ability or the prediction ability without

temporal intermixing with an average overall improvement of 6.283% by learning the

embedding of vulnerability-related text on extremely imbalanced data sets. Besides, in

terms of predicting the exploits in the wild, our model also outperforms the baseline model

with an F1 measure of 0.586 on the minority class (33.577% improvement over the work

using features from darkweb/deepweb). The results demonstrate that the model can

improve the ability to describe the exploitability of vulnerabilities and predict exploits in the

wild effectively.

Introduction

Information security vulnerabilities pose a significant and increasing threat to national secu-

rity and economic well-being. A vulnerability is a weakness of a software product that can be
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exploited by an attacker to compromise the confidentiality, integrity, or availability of the sys-

tem hosting that product and cause harm [1] and may produce incalculable severe results. For

example, on May 12, 2017, a trojan malware named WannaCry exploits a known vulnerability

in the Windows operating system, infecting more than 230,000 computers in endless core

sectors across more than 150 countries [2]. As a large number of vulnerabilities especially

significant severe vulnerabilities [3] are disclosed by the National Institute of Standards and

Technology (NIST) every year on an upward trend [4], classifying and avoiding risks as much

as possible have become urgent problems for enterprises and security experts. For example,

when the vulnerabilities related to WannaCry is disclosed in NVD on March 16, 2017, if there

is a method that can analyze the relevant information mentioned online of the vulnerabilities

and judge the exploitability of the vulnerability, under the condition that the method is effec-

tive, the losses of enterprises and individuals will be greatly reduced after 57 days.

The relationship between risk and precaution is becoming extremely tense. On the one

hand, the number of vulnerabilities disclosed in National Vulnerability Database (NVD) is

increasing almost every year–NVD released 16,555 and 9,526 vulnerabilities in 2018 and the

first eight months of 2019 respectively, showing significant growth compared with previous

years such as 6,484 vulnerabilities in 2015. After a vulnerability is disclosed, the possibility of

its exploitation increases dramatically [5]. At the same time, the increasing number of vulnera-

bilities incites cyberattackers to disclose security exploits by taking advantage of the Internet’s

sharing capabilities [6], bringing more severe risks to the unpatched systems. On the other

hand, less than 3% of published vulnerabilities are found to be exploited in the wild [7–12].

The vast majority of vulnerabilities are never exploited by attackers while the proportion of

exploitation decreases over time [10, 12]. Furthermore, some existing methods such as Com-

mon Vulnerability Scoring System (CVSS) score [13, 14] are often biased against facts when

applied to patch prioritization [9].

The previous work used machine learning technology to describe the relationship between

vulnerabilities and Proof-of-Concept (PoC) exploits [8, 15, 16, 17] or to predict exploits in the

wild through vulnerabilities mentioned online [9, 18, 19], making some progress by using

diversified threat intelligence information including vulnerability database and darkweb/deep-

web and attracting the attention of industry [20]. However, some problems exist in the past

method. First, in terms of intelligence sources, Twitter [11] has proved to be not robust [15].

The data in darkweb/deepweb shows excellent prediction performance [21] but is narrow in

coverage. The vulnerability database is the most authoritative and comprehensive source of

vulnerability data. Nevertheless, the vulnerability database suffers performance losses caused

by the delay of the population of CVSS metrics and the rapid shortening of vulnerability

exploitation time [22]. Second, when dealing with text associated to vulnerabilities, traditional

text processing techniques represent statistical features of words, but fail to capture their con-

text and identify the meaning of rare words and subword such as the relation between “virus”

and “anti-virus”. The last but not the least, no matter whether the vulnerability data is labeled

with PoC exploits or exploits in the wild, the prediction model is facing the dilemma of a sharp

increase in data imbalance.

To address these challenges, we describe an integrated model, which uses a neural network

model [23, 24] to embed vulnerability-related text to derive the inherent meaning of the text.

Then the classification results derived by the text embedding model or text embedding are

combined with other features to predict the exploitation of vulnerabilities by applying

LightGBM algorithm [25] on unbalanced data. Specifically, databases such as SecurityFocus

that have more advantages in the efficiency of release time and vulnerability summary can

be adopted as supplements to NVD database. Then, we employ the above model to carry

out experiments on vulnerability data labeled with PoC exploits and exploits in the wild

FastEmbed: Exploit prediction based on ensemble machine learning
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respectively. Specially, we put emphasis on the data labeled with exploits due to the reason that

the majority of all the exploited vulnerabilities have available exploits within a week from the

time of disclosure [26, 27] and the ground truth of exploits in the wild is biased towards exist-

ing in software products from specific vendors such as Microsoft and Adobe [11].

The model we proposed is effective as it captures the semantics and morphology of words

and performs well on unbalanced data sets. We reproduced key portions of the representative

work and used them as a benchmark model. Evaluations show that our model outperforms the

baseline model whether in terms of the generalization ability or the prediction ability without

temporal intermixing. Specifically, the major contributions of our paper include:

• We propose an integrated model named fastEmbed to predict whether a vulnerability pub-

lished in vulnerability databases will have PoC exploits or be exploited in the wild. Evalua-

tions demonstrate that fastEmbed outperforms the baseline model with an average overall

improvement of 6.283% in predicting PoC exploits and an average overall improvement of

33.577% in terms of predicting exploits in the wild.

• FastEmbed can captures the semantics and morphology of words in the vulnerability-related

text, which is proved to be one of the most important features of the model in this paper.

• FastEmbed predicts the release of PoCs a median of 1 day ahead and detects exploited vul-

nerabilities in security blogs more effectively than previous models.

The remainder of this paper is organized as follows. We give a review of related work in the

field of predicting exploits using machine learning in Section 2. In Section 3 we describe our

selection of data sources and introduce the proposed integrated model fastEmbed in detail.

Section 4 describes our performance metrics, experimental setup, and comparative analysis of

the experiment results. Finally, the conclusions and prospect of exploits prediction are laid out

in Section 5.

Related work

Assessing and prioritizing the threats of cybersecurity have gained ever-increasing attention in

recent years [28–31]. Especially, several works have been devoted to measuring the risk of soft-

ware vulnerabilities and predicting the future threat caused by software vulnerabilities, thus

realizing vulnerability patching prioritization. Zhang et al. [32] attempted to predict the time

of the next vulnerability for a given software application by using Common Vulnerability Scor-

ing System (CVSS) and the Common Platform Enumeration (CPE) designed by the National

Institute of Standards and Technology (NIST) as features rather than the NVD description.

CVSS calculates the vulnerability risk index through different characteristics, which measures

the availability and exploitability of a vulnerability [13, 14]. However, this indicator is not

effective as it marks most vulnerabilities that do not have exploitation value for hackers as

exploitable [9], which is equivalent to randomly selecting vulnerabilities to patch [33].

Recent works extract features from publicly available online vulnerability information and

combine them with machine learning techniques to predict whether a given vulnerability will

be exploited or exploited in the wild, with CVSS as one of the features of training. Among

them, “exploited” means the availability of proof-of-concept exploit, and “exploited in the

wild” indicates actual exploits that were used by hacker in the wild. Bozorgi et al. [16] leveraged

the Open Source Vulnerability Database (OSVDB) and the NVD to train a support vector

machine (SVM) classifier [34] as to predict whether a corresponding PoC will be developed

for each vulnerability. They achieved excellent prediction results with an accuracy of 90%

using a resampled and balanced data set with most vulnerabilities are marked as exploited in
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OSVDB. Bozorgi et al. extracted sufficient features from the vulnerability databases and

achieved higher accuracy than CVSS vulnerability scoring system in vulnerability exploitation

classification by means of machine learning method. With the increasing number of vulnera-

bilities and the closure of OSVDB database, the PoCs that references to CVE-IDs in Exploit

Database (EDB) was used by Edkrantz and Said [8] to mark the exploitability of vulnerabilities

and 27% of vulnerabilities are labeled as exploited. Their work gets a prediction accuracy of

83% for binary classification and shows that the vulnerability descriptions, vendor products

and external references, are the most important features to consider. At the same time, they

proved that the quality of the data set largely determines the prediction effect of the model.

Due to the inefficiency of NVD in reporting vulnerabilities, some previous works leveraged

vulnerability-related contexts in social networks such as Twitter [11] and darkweb/deepweb

forums [35] to build an early prediction model. Based on the work of Bozorgi [16], Sabottke

et al. [11] use a linear SVM classifier to predict whether the tweets related to CVE vulnerabili-

ties on Twitter will bring about the exploitation of vulnerabilities. In addition to predicting

PoC exploits, they also predicted exploits that occurred in the real world based on Symantec’s

anti-virus attack signatures [36] and Intrusion Detection Systems’ (IDS) attack signatures [37].

Only 1.3% of the vulnerabilities in Sabottke’s dataset are exploited in the wild, and 6.2%

exploited, showing a sharp decline compared with previous work, which is consistent with our

work. Sabottke et al. realize the early exploit threat prediction using social media for the first

time and can predict exploits a median of 2 days ahead of existing data sets. Nazgol et al. [20]

address the challenge that the past methods in vulnerability exploit prediction only captured

the statistical features of words and ignored the context of words. They use a neural network

model that learned the similarity of related posts on exploited vulnerabilities in semanteme

and context by embedding posts from darkweb/deepweb into vector space to improve predic-

tions of exploits in the wild. By combining the embeddings of posts with other features of the

vulnerability such as CVSS score, their model predicted 1886 vulnerabilities with distinct

CVEs in darkweb/deepweb and reached F1-score of 0.74. However, the representations of

posts learned by their model ignore the morphology of words especially for rare words and

lost some internal information of words.

The work carried out by Bullough et al. [15] replicates representative experiments in the

past and points out that some unrealistic methods of past experiments have exaggerated the

predictive performance of the models. Bias on the predictive ability for future vulnerabilities

caused by balancing data sets and concept drift [38, 39] caused by temporal intermixing of

training and test sets are common in past experiments. In this paper, we will replicate previous

representative works and carry out empirical analysis on the real performance of our model.

Methodology

Our vulnerability prediction model consists of two components: feature merging and vulnera-

bility classification. In the feature merging part, the input features of the model are divided

into two categories, namely text features and other inherent features of vulnerabilities such as

CVSS. In terms of text features, through lemmatization, removal of stop words, embedding of

the neural language model, we get a more accurate embedded representation of vulnerability-

related text. Judging from the output results of the text feature training model, through the

training of neural network model, we can get the embedded representation of the vulnerabil-

ity-related text or the classification result of whether the vulnerability is exploited from the vul-

nerability-related text. In the final step of feature merging, the result of text feature model

classification or embedded representation of text features is combined with other robust fea-

tures as the last feature. Then we use a two-class machine learning model to predict the
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possibility of vulnerabilities being exploited by hackers and to prioritize vulnerabilities to be

remedied based on the above fusion of text features and inherent features of vulnerabilities, in

which positive samples indicate that the vulnerabilities are exploitable, while negative samples

indicate the opposite. Fig 1 gives an overview of the proposed exploit prediction approach.

Data collection

The features fed into fastEmbed are extracted from open source intelligence data such as

NVD. The label of the prediction model is determined by indicating whether there exists cor-

responding PoC or whether the exploitation of a vulnerability is detected. We chose the most

representative and effective data proved by previous work to carry out the experiments. In

order to reflect the timeliness of the model, we crawled the data sources from 2013 to 2018.

Details of the data set are as follows.

NVD. The National Vulnerability Database is a repository of standards-based vulnerabil-

ity management data. Vulnerabilities in the NVD database are indexed by the Common Vul-

nerabilities and Exposures Identifier (CVE-ID) [40]. Every year the NVD database provides

the vulnerability data feeds consist of CVE-IDs allocated for that year in JSON format. We

wrote python scripts to crawl the data from 2013 to 2018 from NVD and parse its fields. A

dataset comprised of 60,784 vulnerabilities is formed. Fig 2 shows the distribution of the num-

ber of disclosures of vulnerabilities over time. Each entry includes a descriptive text summary

for the vulnerability, CVSS scores and related indicators, information about affected products

and vendors, the category of vulnerability based on the Common Weakness Enumeration

(CWE) system, and reference URLs.

SecurityFocus. The SecurityFocus is one of the most prominent and well-respected vul-

nerability databases [41]. For security researchers, the NVD database provided the most com-

plete and authoritative vulnerabilities in the world. Why do we choose the second largest

database to carry out model verification [6, 41]? We crawled vulnerabilities on SecurityFocus

and NVD from 2013 to 2018. After analyzing the data, we confirmed that SecurityFocus covers

54% of vulnerabilities on NVD and only 2.86% of the vulnerabilities with CVE references in

SecurityFocus lag behind the NVD database in publishing time. Fig 3 shows a histogram of the

difference in days between vulnerability disclosure in the NVD database and SecurityFocus.

Moreover, eight graduate students in our laboratory conducted a manual review of some

crawled vulnerabilities mainly in terms of standardization and semantic clarity of vulnerability

description. Through our manual inspection of the vulnerabilities on NVD and SecurityFocus,

Fig 1. Overview of fastEmbed.

https://doi.org/10.1371/journal.pone.0228439.g001
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vulnerability description of SecurityFocus has more reference significance for the prediction

task in many cases. The two summaries below illustrate these differences.

• “Mirion Technologies multiple Telemetry enabled devices are prone to multiple security-

bypass vulnerabilities. Successfully exploiting these issues may allow an attacker to bypass

certain security restrictions and perform unauthorized actions. This may aid in further

attacks.”

• “A Use of Hard-Coded Cryptographic Key issue was discovered in Mirion Technologies

DMC 3000 Transmitter Module, iPam Transmitter f/DMC 2000, RDS-31 iTX and variants

(including RSD31-AM Package), DRM-1/2 and variants (including Solar PWR Package). . .”

The first summary comes from SecurityFocus (BID: 100001) and the second from NVD

(CVE-ID: CVE-2017-9649). Given the words in the two summaries, the first summary seems

to describe the impact and exploitability of the vulnerability more specifically. Based on the

above facts, we use data on SecurityFocus and NVD to carry out experiments respectively for

comparison. 29,867 vulnerabilities containing 34,164 CVE-IDs were included within the given

time.

Exploits. Previous work used Symantec’s anti-virus attack signatures and Intrusion

Detection Systems’ (IDS) attack signatures as class labels. The ground truth means that a vul-

nerability has been exploited in the wild and can represent the most real performance of the

prediction model. It has been proved that Symantec’s signatures are the best available indicator

for the vulnerabilities targeted in exploits kits available on the black market [10][12]. However,

Fig 2. Vulnerability disclosures added to the National Vulnerability Database (NVD) by year.

https://doi.org/10.1371/journal.pone.0228439.g002
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this ground truth cannot cover all the exploits in the wild due to the limitation of the actual

scope of business of Symantec. Meanwhile, this ground truth is found to be biased towards

reporting exploits targeting specific vulnerabilities in software products from certain vendors

(e.g., Microsoft, Adobe) [11]. In this paper, we use the traditional exploit databases as a crite-

rion to judge whether a vulnerability has been exploited or not while use Symantec antivirus

attack signatures and Intrusion Detection Systems (IDS) attack signatures to judge whether a

vulnerability has been exploited in the wild or not. Two data sources are used to indicate

whether a vulnerability is exploited, namely exploits on Exploit-DB (EDB) and SecurityFocus.

The Exploit Database is a CVE compliant archive of public exploits and corresponding vulner-

able software maintained by Offensive Security. SecurityFocus maintains an exploit page

including exploits collected from various blogs and security reports and determined by secu-

rity experts, which indicates whether a vulnerability has a corresponding exploit. We did not

collect data sources such as exploit kits, studied by Allodi et al. [9], considering that the process

of data collection is very cumbersome and resulting models would not have been comparable

with previous research. Reckoning for the narrow coverage of Symantec signatures, we use it

as supplementary data to conduct a separate experiment to compare with previous work.

Metasploit is the world’s most used open source penetration testing framework, which can be

used to conduct effective penetration tests on remote computer systems [42]. Metasploit main-

tains a highly exploitable database of exploits [43], implying that the possibility of a vulnerabil-

ity being exploited in the wild increases.

We used the presence of a sentence–“Currently the SecurityFocus staff are not aware of any

exploits for this issue.”–in the SecurityFocus exploit page to choose whether to label a vulnera-

bility as exploited or not. Then, we exclude invalid data with candidate number that was not

Fig 3. Distribution of the difference in days between vulnerability disclosure of NVD and SecurityFocus.

https://doi.org/10.1371/journal.pone.0228439.g003
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associated with any vulnerability within a given time from NVD and regard whether there

exists related PoC in EDB as ground truth label for vulnerabilities indexed by CVE-ID on

NVD. MITRE maintains a reference map [44] for EXPLOIT-DB to associated CVE entries or

candidates. However, the reference map has been proved to be incomplete [15]. We use a web

scraper to determine whether there is an external CVE reference for each exploit on EDB.

Finally, the number of vulnerabilities and the proportion of vulnerabilities exploited are

shown in Table 1. Besides, for 10,847 CVEs appearing on both SecurityFocus and NVD, 1,281

vulnerabilities on NVD have PoC exploits, and the exploited vulnerability on SecurityFocus

includes 1,280 of them.

Features description

In this section, representative and meaningful features are combined, including numerical,

categorical, and binary features (see Table 2). These features are described in detail below.

CVSS. The correlation vector of CVSS is determined by NVD security experts, capturing

the characteristics of a vulnerability that are constant with time and across user environments,

which can be used to evaluate the severity of vulnerabilities and help determine the urgency

and importance of the required response. We use version 2.0 CVSS base score as a feature for

Table 1. Number of vulnerabilities, number of exploited vulnerabilities, the fraction of exploited vulnerabilities

that appeared in each source.

SecurityFocus NVD

Number of vulnerabilities 29,388 56,681

Number of exploited vulnerabilities 10,876 3,784

Percentage of exploited vulnerabilities 37.008% 6.676%

https://doi.org/10.1371/journal.pone.0228439.t001

Table 2. Summary of data features, types and modelling method.

Feature Source Raw data Category Modelled Method

Open Source Vulnerability Data CVSS Access Vector Categorical One-hot Encoding

Access Complexity Categorical One-hot Encoding

Authentication Categorical One-hot Encoding

Confidentiality Impact Categorical One-hot Encoding

Integrity Impact Categorical One-hot Encoding

Availability Impact Categorical One-hot Encoding

Base Score Numeric Scaled to N(0,1)

Exploitability Score Numeric Scaled to N(0,1)

ImpactScore Numeric Scaled to N(0,1)

CPE Application Binary Binary Vector

Hardware Binary Binary Vector

OS Binary Binary Vector

No Product Binary Binary Vector

List Text fastText

CWE CWE-ID Numeric One-hot Encoding

Product Count Numeric Scaled to N(0,1)

OVAL Binary Binary Vector

Description Text fastText

Exploit Label CVE-ID 1, CVE-ID in PoC DB

Exploit in the Wild Label CVE-ID 1, CVE-ID in Attack Signatures

https://doi.org/10.1371/journal.pone.0228439.t002
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our classifier. This set of features includes the vulnerability assessment scores ranges from 0 to

10 and the correlation vectors that determine the scores. The assessment scores include CVSS

base score, exploitability subscore and impact subscore. Exploitability subscore is calculated

from the values assigned to the feature’s Access Vector, Access Complexity, Authentication

while impact subscore from Confidentiality Impact, Integrity Impact, and Availability Impact.

The base score is calculated from the values of all feature vectors mentioned above. The

measures in the vector are predetermined from fixed values and can accurately describe a

vulnerability from various aspects. Access Vector reflects how the vulnerability is exploited

and can take on the values “requires local access”, “adjacent network accessible” or “network

accessible”. Access Complexity indicates the complexity of the attack required to exploit the

vulnerability once an attacker has gained access to the target system and can be rated “high”,

“medium” or “low”. Authentication measures the number of times an attacker must authenti-

cate to a target in order to exploit a vulnerability and can take on the values “requires multiple

instances of authentication”, “requires single instance of authentication” or “requires no

authentication”. Confidentiality Impact, Integrity Impact, and Availability Impact indicate

the impact to system or product of a successfully exploited vulnerability and can be scored as

“none”, “partial” or “complete”.

CWE&CPE. Common Platform Enumeration (CPE) is a standardized method of describ-

ing and identifying classes of applications, operating systems, and hardware devices present

among an enterprise’s computing assets. Based on CPE URI, we extract the corresponding

affected platforms and products from the vulnerabilities released by NVD. CWE is a commu-

nity-developed list of common software security weaknesses. CWE can help fine-tune the

determination of the categories of flaws that can be unintentionally made during software

development and can exist in software architecture, design, or code.

OVAL. Open Vulnerability and Assessment Language (OVAL) definitions define exactly

what should be done to verify a vulnerability or a missing patch. We chose the existence of an

OVAL definition as a feature.

Text feature

When a vulnerability appears online, there is always relevant text description about the vulner-

ability, which summarizes the defective system/software and even gives method on how to uti-

lize the vulnerability. Based on the reiterative analysis of the experiments in the past literature,

we found that the most important feature that affects the prediction results is vulnerability

summary, which will be given a detailed description in Section 4. Therefore, we have focused

our work on this feature.

In the past work, the TF-IDF model [45] was used to vectorize the text. TF-IDF creates a

vocabulary of all the words in the description. The importance of a word increases in propor-

tion to the number of times it appears in the document, but decreases in inverse proportion to

the frequency of its occurrence in the corpus. This eliminates common words from being

important features. However, this method may fail for rare words or spliced words as it mis-

takenly regards these words as features of description. For example, in the vulnerabilities dis-

closed in NVD from 2013 to 2018, “privilege-escalation” appeared only once while “privilege

escalation” appeared 340 times. Besides, traditional text processing techniques represent statis-

tical features of words, but fail to capture the semantic similarity between words.

We select fastText proposed by Joulin et al. [23, 24] to train a neural language model, and

its classification results or the sum of word representations will be combined with other fea-

tures as input to the final prediction model. For short texts related to vulnerabilities, using fas-

tText classification model can often achieve good results. For long vulnerability-related texts

FastEmbed: Exploit prediction based on ensemble machine learning
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such as security blogs, using fastText word embedding model to embed text into segment vec-

tors may achieve better results. For fastText word embedding model, fastText follows the inspi-

ration of word2vec [46] to learn to embed words with similar semantics into similar vector

space effectively. Besides, fastText combines bag of words and bag of character n-grams to rep-

resent a sentence. By considering the character n-grams, better word embeddings are gener-

ated for rare words. We use CBOW model with Negative Sampling to represent words in the

paper. For fastText classification model, its model architecture is shown in Fig 4. W(1) to W(n)

in Fig 4 represent the word embedding representation of each word in the document. Then

vulnerability-related documents can be represented by the average of all word embeddings,

which is shown in the following formula.

hdoc ¼
1

n

Xn

i¼1

wi ð1Þ

The fastText classification model is similar in structure to the CBOW model in word2vec.

The difference is that fastText classification model is supervised learning model, and its goal is

to average all the word embeddings in the document and get the class label from the hidden

layer through a non-linear transformation. FastText improves the performance of basic linear

classifiers with fast loss approximation and the key features of rank constraint. The word n-

gram feature can deal with the problem of missing word order in fastText model to some

Fig 4. Model architecture of fastText classification model.

https://doi.org/10.1371/journal.pone.0228439.g004
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extent. Therefore, word n-gram embeddings are also regarded as word embeddings and are

added to the hidden layer to be averaged with other word embeddings.

The optimization objective of the fastText classification model is to minimize the negative

log-likelihood function as follows:

�
1

N

XN

n¼1

yn log f BAxnð Þð Þ ð2Þ

Among them, xn is the normalized BoW of the n-th vulnerability description, yn the predic-

tion label. Matrix A is a word-based look-up table, which is the word embedding vector. Axn
means to look up the representations of all the words in document and average them. Then

the representation of the document is fed into the linear classifier, which corresponds to

matrix B in the above formula. Finally, the probability distribution over pre-defined classes is

obtained by using the softmax function f. The softmax function is shown below, which nor-

malizes the value of the output layer of the fastText model to a range of 0-1.

softmax zj
� �

¼
ezj

PK
k¼1

ezk
for j ¼ 1; . . . ;K ð3Þ

Among them, K is the number of categories output by the fastText model. In our case, K
equals 2. zj equals BAxn, which is the output of the linear classifier mentioned above. So the

output values of the softmax function are interrelated, and the sum of their probabilities is

always 1.

FastText is much faster and can achieve performance equivalent to the methods based on

deep learning. In particular, the descriptions of different vulnerabilities are variable-length,

while fastText is more suitable for such data sets than some traditional machine learning meth-

ods or deep learning methods such as TextCNN [47].

In this work, we concatenate all texts with the data type Text in Table 2 together into one

longer entry and implement lemmatization and removal of stop words on the text at first, and

then we use fastText to classify the text or learning the embeddings of the text. The result of

fastText’s classification or the embedding representation is one of the features of the final pre-

diction model.

Data labeling and classifier

The exploited vulnerabilities are labeled with related PoCs in exploit database while the vulner-

abilities exploited in the wild labeled with authoritative attack signatures.

Random Forest (RF) is one of the most commonly used algorithms for classification and

other tasks. However, the main limitation of random forests is that the use of a large number

of trees will slow down the speed, resulting in a lack of real-time prediction capability. We

choose the LightGBM algorithm [25] as the exploit predictor, which is a fast, distributed, high-

performance gradient boosting algorithm [48] based on decision tree and performs well on

unbalanced data sets. LightGBM fastens the training procedure and achieves higher accuracy

by using a histogram-based algorithm and generating more complex trees by following leaf-

wise split approach [25]. The idea of histogram algorithm is to convert continuous floating-

point eigenvalues into discrete values (k) and construct a histogram with a width of k. Then

the model traverses the training data and counts the cumulative statistics of each discrete value

in the histogram. In feature selection, the best segmentation point can be found by traversing

the discrete values of the histogram. LightGBM eliminates the level-wise decision tree growth

strategy currently used by most GBDT and uses the leaf-wise strategy with depth limitations.
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The leaf-wise strategy is to find the leaf with the highest splitting gain from all the current

leaves and then split each time. Therefore, compared with the level-wise strategy, the leaf-wise

strategy can reduce more overhead and errors and obtain better accuracy under the same split-

ting times. Considering the over-fitting caused by leaf-wise strategy, LightGBM added a factor

named maximum depth limit to the model. This parameter can prevent over-fitting and

ensure high efficiency.

Grid search [49] across 10-fold cross-validation on the training set is used to determine the

optimal hyper-parameters. Grid search sets a list of values for different hyper-parameters, and

then traverses each hyper-parameter combination for performance evaluation to select the

hyper-parameter combination with the best performance.

Experimental evaluation

To evaluate our model, we conducted a series of experiments. All parameters of the methods

are optimized to achieve the best performance. We performed the experiments using a server

with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 16G RAM, and NVIDIA GeForce GTX

1060 6GB. The scikit-learn Python package [50] was used.

Performance evaluation

The problem of exploit prediction is essentially a two-class problem, that is, whether a vulnera-

bility will be exploited or not. So the performance evaluation is done by using statistical mea-

sures of binary classification. They are computed as shown in Table 3 and details are described

as follows:

Accuracy of exploit prediction is the correct classification of True Positive (TP) and True

Negative (TN), where TP is the number of exploited vulnerabilities that are correctly identi-

fied, FN is the number of exploited vulnerabilities that are mistakenly classified as vulnerabili-

ties that will not be exploited. Precision indicates the fraction of vulnerabilities that were

exploited from all vulnerabilities predicted to be exploited by our model. It highlights the effect

of misclassified non-exploited vulnerabilities. Recall indicates the fraction of correctly pre-

dicted exploited vulnerabilities from the total number of actually exploited vulnerabilities. It

highlights the effect of misclassified exploited vulnerabilities and is the most critical indicator

for our exploit prediction model. The higher the recall is, the smaller the loss caused by

exploited vulnerabilities will be. F1-score is the harmonic mean of precision and recall and

represents the result of a trade-off between precision and recall. Precision-recall curves

can graphically show the results of this trade-off as recall changes. The Receiver Operating

Characteristics (ROC) curve visualizes the performance of the classifier by plotting the true

positive rate and false positive rate on various thresholds of the confidence score output by the

Table 3. Classification performance metrics.

Metric Formula

Accuracy Accuracy ¼ TPþTN
TPþTNþFPþFN

Precision Precision ¼ TP
TPþFP

TPR (recall in case of binary classification) Recall ¼ TP
TPþFN

F1 F1 ¼ 2 Precision � Recall
Precision þ Recall

FPR FPR ¼ FP
FPþTN

P-true positives, FP-false positives, FN-false negatives, TN-true negatives.

https://doi.org/10.1371/journal.pone.0228439.t003
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classifier. The Area Under Curve (AUC) is defined as the area enclosed by the coordinate axis

under the ROC curve. Classifiers with larger AUC have better performance.

Base model vs. fastEmbed

The work of this paper is inspired by Bullough et al. [15], who uses TF-IDF with a maximum

of 2000 terms to quantify text features and a support vector machine (SVM) with linear kernel

as the classifier. Due to the difference in experimental data sets–newer vulnerability data is

used in our work–we reproduced Bullough’s work. We got almost identical results on the

same data set, which enabled the following experiments to be carried out. The same method

was adopted as a basis for replication. Then the obtained model was used as the base model for

all subsequent experiments. The features input to the models in all experiments are shown in

Table 2 and are all used for comparison. In order to demonstrate the effectiveness of the model

in real production environment, we did not adopt the method of balancing classes reported by

Edkrantz [8] and Bozorgi [16].

In the experiment, we evaluated the performance of the proposed approach using 10-fold

stratified cross-validation. In 10-fold stratified cross-validation, the dataset is divided into ten

equal size subsets while ensuring that the proportion of all kinds of samples in the training set

and test set is the same as that in the original data set. Nine subsets are retained as training data,

and the remaining one subset is used as the validation data for testing the model. The cross-vali-

dation process was repeated ten times, and the final result was obtained from the average value

of the results. In particular, for the fastEmbed model we proposed, we split the original data set

at a ratio of 3:7, of which 30% is used for supervised learning to train a text classifier, and the

remaining 70% is input into the LightGBM model for cross-validation in combination with the

prediction results of fastText. In other words, we did 10-fold stratified cross-validation on the

remaining 70% data. This method eliminates the risk that the fastText model is over-fitted to

the training set and the training label is indirectly introduced into the training set, which is

caused by directly carrying out 10-fold cross validation on the entire data set.

First of all, how to make the model capture the details of vulnerability description to the

greatest extent and learn continuous segmentation embedding to make up for the lack of seg-

mentation and word order is vitally important. We choose different n-gram size to optimize

the model by 10-fold stratified cross-validation. Fig 5 presents the F1 measure of the model

with varying lengths of word n-grams. The results show that 2-gram makes the model achieve

the best effect when considering the performance on SecurityFocus and NVD databases at the

same time.

Then we optimized the parameters including loss function, the dimension of the embed-

ding, the minimal number of word occurrences, learning rate and the size of the context win-

dow by grid search [49]. We adopt hierarchical softmax as the loss function, which is linear to

logtime and improves the computational complexity of the softmax function. The higher

dimension space can help to understand the vulnerability description; at the same time, it

needs more space and brings the problem of sparse representations. The size of the context

window is a quantitative indicator corresponding to the context a word contains. The larger

the size of the context window, the more time the model will spend on training and the more

accurate the context it can capture. The minimal number of word occurrences can filter the

word frequency of the word list to avoid the word list being too large. Learning rate is a hyper-

parameter that guides how to adjust the weight of neural network through the gradient of loss

function. The lower the learning rate, the slower the change speed of the loss function and the

more time it takes to train the model. Based on the above knowledge, the resulting parameters

and ranges for the grid search can be seen in Table 4.
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Finally, we evaluated the base model of the combination of TF-IDF and SVM and fas-

tEmbed with 2-gram. In order to prove the effectiveness of the text classifier used in the fas-

tEmbed model, we replaced the text classifier in the fastEmbed model with a deep learning

method called TextCNN [47] and conducted a comparative experiment with the fastEmbed

model. TextCNN algorithm is one of the classic and effective methods in the field of text classi-

fication. We use word2vec [46] method to embed the words of vulnerability-related text into

vector space of 65 dimensions, and then feed all the word vectors in vulnerability-related text

into textCNN model for training and testing. Besides, the combination of paragraph vectors

[21] and LightGBM has also been tested. Similarly, in order to prove the effectiveness of the

exploit predictor, we chose LightGBM algorithm, SVM algorithm, random forest algorithm

[51] and logistic regression algorithm [52] as classifiers to conduct cross-validation experi-

ments respectively. Without the features of Table 2, we used the text classifier fastText alone to

carry out cross-validation experiments to prove the effectiveness of the remaining features.

The results of Precision, Recall, and F1 score derived from the models are shown in Table 5.

Table 5 shows that the performance of the fastEmbed model is better than the baseline

model. At the same time, it can be seen from Table 5 that the fastEmbed model is more accu-

rate in identifying vulnerability-related texts under the condition that the exploit predictor is

not changed. Under the condition of keeping the text classifier unchanged, fastEmbed model

is more effective in exploit prediction. From the results in Table 5, it can also be inferred that

Fig 5. Evaluation by using different length of word N-gram.

https://doi.org/10.1371/journal.pone.0228439.g005

Table 4. Parameters used for our fastEmbed algorithm, and the range for hyper-parameter tuning using grid search.

Embedding size Occurrences Learning rate Window size

Parameter value 65 1 0.06 20

Range for tuning [30, 160] by 5 [1, 10] by 1 [0.01,1] by 0.05 [5, 50] by 5

Embedding size-the size of word embedding, Occurrences-the minimal number of word occurrences, Learning rate-the learning rate of neural network model, Window

size-the size of the context window.

https://doi.org/10.1371/journal.pone.0228439.t004
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the text classifier fastText contributes more to the proposed method. The reason why this hap-

pens is that text feature is the most important feature affects the final vulnerability exploit pre-

diction results, which will be proved in the subsection of Feature Importance. Judging from F1

value, fastEmbed model outperforms other models above in overall performance. To demon-

strate the prediction performance of our proposed method, a receiver operating characteristic

(ROC) curve calculated by the fastEmbed model and base model is plotted as shown in Fig 6.

Table 5. Evaluating results.

Model Accuracy Precision Recall F1-score

SecurityFocus TF-IDF+SVM 0.846 0.797 0.775 0.781

TF-IDF+LightGBM 0.859 0.819 0.779 0.793

fastEmbed 0.872 0.872 0.822 0.846

fastText 0.836 0.819 0.798 0.801

paragraph vector+LightGBM 0.813 0.776 0.704 0.730

CNN+LightGBM 0.865 0.872 0.802 0.802

fastText+random forests 0.871 0.856 0.807 0.832

fastText+SVM 0.871 0.869 0.822 0.845

fastText+logistic regression 0.871 0.868 0.8215 0.844

NVD TF-IDF+SVM 0.924 0.328 0.115 0.161

TF-IDF+LightGBM 0.927 0.351 0.109 0.153

fastEmbed 0.933 0.621 0.251 0.356

fastText 0.921 0.411 0.205 0.257

paragraph vector+LightGBM 0.926 0.391 0.034 0.055

CNN+LightGBM 0.929 0.567 0.173 0.264

fastText+random forests 0.920 0.430 0.251 0.311

fastText+SVM 0.931 0.589 0.196 0.293

fastText+logistic regression 0.929 0.554 0.187 0.279

https://doi.org/10.1371/journal.pone.0228439.t005

Fig 6. ROC curve of baseline model and fastEmbed.

https://doi.org/10.1371/journal.pone.0228439.g006

FastEmbed: Exploit prediction based on ensemble machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228439 February 6, 2020 15 / 28

https://doi.org/10.1371/journal.pone.0228439.t005
https://doi.org/10.1371/journal.pone.0228439.g006
https://doi.org/10.1371/journal.pone.0228439


We earned a better ROC curve with the area under curve (AUC) value of 0.91. Since the data

are unbalanced, we continue to evaluate the models using Precision-Recall curves. The Preci-

sion-Recall curves of the models are shown in Fig 7. The result shows that performance was

improved by applying our model. Besides, in order to prove that the result improvements

from the base model and fastEmbed model are statistically significant, we conducted a t-test

significance test [53] on the experimental results of 10-fold cross-validation. It is assumed that

null hypothesis has no significant difference between the two groups of data, while alternative

hypothesis has significant difference. The p-value calculated on the SecurityFocus and NVD

data sets are 0.0058 and 0.0050 respectively. When the value of the significance level is 0.05, we

reject null hypothesis and accept alternative hypothesis, which means that the improvement of

fastEmbed model results is statistically significant.

When we use fastEmbed to evaluate the data from 2009 to 2015 on NVD, the average

F1-score of the model can reach 0.6839. The fastEmbed model still outperformed the base

model, which reached 0.647 in F1-score. When the model is applied to the data from 2013 to

2018, the performance of the model on SecurityFocus does not show large fluctuations. How-

ever, the effect of the model on NVD data shows an apparent decline. The reason for this

result may be attributed to the following points. From the perspective of data labeling, we label

NVD data with exploits from Exploit Database. However, the class labeling of NVD dataset is

not sufficient, which means that some vulnerabilities existing related PoCs have not been

labeled. Besides, the enthusiasm of security researchers for submitting exploits to Exploit-DB

decreases. 16.78% of the vulnerabilities were exploited from 2009 to 2015, while only 6.68%

from 2013 to 2018. On the other hand, although the first eight days is enough to make predic-

tive models for exploitation [17], there may be some exploited vulnerabilities has no related

exploit. Further, the data in Exploit-DB exists a certain tendency to publish CVE-related PoCs

despite its relative high coverage rate of vendors, which will be proved in the subsection of

Online Mode. When our model is applied to specific vendors in NVD and other class labeling

sources are added, the performance of the model is further improved. From the perspective

Fig 7. Precision-Recall curve of baseline model and fastEmbed.

https://doi.org/10.1371/journal.pone.0228439.g007
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of vulnerability data, the explosive growth in the number of vulnerabilities has resulted in

extreme imbalance in vulnerability categories and interfered with the judgment ability of the

model. Besides, we will prove that vulnerability-related texts make most contributions to the

performance of the model in the subsection of Feature Importance. However, many vulnera-

bility descriptions on NVD are uploaded by individuals, and there may be ambiguity in the

language description of NVD vulnerabilities.

No temporal intermixing

For the prediction model, the method of dividing the training set and the test set randomly

can be used as a benchmark to measure the generalization ability of the model. However, due

to the concept drift phenomenon [38, 39], we need to prevent future information from leaking

into the current working model as much as possible. This means that we arrange the data sets

in chronological order, taking a certain time point as the boundary, using the data before the

time point as the training data of the model and the data after the time point as the test data.

The prediction model will predict future exploits based on past experience, thus avoiding

future information leakage. For example, when a new attack mode appears, the past model

may not understand the name or even the description details of this new attack mode. There-

fore, the method of dividing the training set and the test set based on time series can reflect the

most real predictive performance of the model. Different from the data partitioning method

used in the experiment in the previous section, we use the method of training both fastText

and LightGBM model on the training set to make the fastText model learn more about vulner-

ability description. At the same time, we divided the training set and test set in a specific pro-

portion to compare with the previous work, of which the test set accounted for 18%.

Compared with the data released between 2009 and 2015, the imbalance of the data set used

in this experiment has increased dramatically. Only 6.68% of the total number of vulnerabili-

ties on NVD is exploited, while only 1.29% in the test set is exploited if the vulnerability data of

NVD is divided temporally. Fig 8 shows the distribution of the number of exploits decreases

Fig 8. Exploit disclosures added to the Exploit Database (EDB) by month.

https://doi.org/10.1371/journal.pone.0228439.g008
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over each month. We sort all the vulnerabilities by time and evaluate the models. Also, we veri-

fied the excellence of our model for the data from 2013 to 2018 and 2013 to 2017 respectively

due to the particularity of temporal distribution of 2018. The results of Precision, Recall, and

F1-score derived from the two models are shown in Table 6. Likewise, we draw the ROC

curves and Precision-Recall curves corresponding to the model results, as shown in Figs 9 and

10 respectively. The evaluation results show that our model outperforms the basic model by

3.6% on average in overall performance and achieves better prediction ability with AUC of

87.7% on SecurityFocus.

The performance on time of fastEmbed model on SecurityFocus is also verified. We col-

lected PoCs from 12 mainstream exploit databases such as Metasploit, 0day.today [54] to

determine the earliest release time of PoC since SecurityFocus does not provide time indicator

of PoC. For “future” vulnerabilities divided according to time sequence, our model predicted

1957 vulnerabilities correctly out of 2710 exploited vulnerabilities when the ratio of training

set to test set is 1:1, among which we determined 261 vulnerabilities with PoC release time. Fig

11 shows a histogram of the difference in days between vulnerability disclosure in the Security-

Focus database and exploit publication. 195 of 261 correctly predicted vulnerabilities are of

Table 6. Performance comparison of baseline model and fastEmbed of splitting training and test sets temporally.

SecurityFocus NVD

Model TF-IDF+SVM fastEmbed TF-IDF+SVM fastEmbed

Accuracy 0.824 (0.811) 0.857 (0.807) 0.984 (0.950) 0.973 (0.946)

Precision 0.535 (0.569) 0.622 (0.555) 0.030 (0.194) 0.054 (0.213)

Recall 0.710 (0.612) 0.674 (0.652) 0.008 (0.120) 0.068 (0.182)

F1 0.610 (0.590) 0.647 (0.599) 0.012 (0.148) 0.060 (0.196)

The data in brackets are the evaluation results from 2013 to 2017, while the data outside brackets are from 2013 to 2018.

https://doi.org/10.1371/journal.pone.0228439.t006

Fig 9. ROC curve of baseline model and fastEmbed without temporal intermixing.

https://doi.org/10.1371/journal.pone.0228439.g009
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Fig 10. Precision-Recall curve of baseline model and fastEmbed without temporal intermixing.

https://doi.org/10.1371/journal.pone.0228439.g010

Fig 11. Distribution of the difference in days between vulnerability disclosure and exploit publication.

https://doi.org/10.1371/journal.pone.0228439.g011
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practical significance, which means fastEmbed can predict the development of PoC in

advance. Overall, our model can predict the release of PoC a median of 1 day ahead for these

261 vulnerabilities.

Error analysis

We analyzed the prediction results of the fastEmbed model and base model on SecurityFocus

in the experiment of No Temporal Intermixing subsection. The specific composition of the

prediction results is shown in the Table 7. The results show that fastEmbed is slightly lower

than the base model in the coverage rate of correctly predicted results, but it will reduce more

unnecessary vulnerability repair investment. Furthermore, the fastEmbed model and the base

model are 89.448% identical in prediction results. For different results predicted by the two

models, the base model predicted 198 vulnerabilities correctly, while the fastEmbed model

predicted 360 vulnerabilities correctly. After analyzing the wrong output results of the two

models, we found that it is easier for the base model to statistically classify the vulnerability

description containing phrases such as “code execution” and “bypass” as exploited. For

example, 97 vulnerability descriptions incorrectly predicted by the basic model contain “code

execution”, which is 25 in the fastEmbed model. At the same time, the base model is easier to

predict incorrectly for some vulnerabilities with greater harm. For example, the description

text related to the vulnerability numbered CVE-2017-8628 is “Microsoft Windows is prone to

a security vulnerability that may allow attackers to conduct spoofing attacks. An attacker can

exploit this issue to conduct spoofing attacks and perform unauthorized actions; other attacks

are also possible.”. This vulnerability has certain harmfulness because of the widespread use of

windows operating systems. The base model predicted incorrectly, but the fastEmbed model

predicted correctly.

The real outputs of the fastEmbed model are also investigated, and the sampling results are

shown in Table 8. For vulnerability with Bugtraq ID of 104595, its harmfulness is great due to

the high coverage of products affected by the vulnerability. However, the exploitation value of

the Denial of Service vulnerability with Bugtraq ID of 106031 may be relatively low. The fas-

tEmbed model correctly predicts that these two vulnerabilities are exploited and non-exploited

respectively. For the wrong outputs of the fastEmbed model, part of the reason is due to the

wrong classifications or imperfect features of the fastEmbed model, and the other part of the

reason includes incomplete labeling of the data set. For example, fastEmbed determines that

Table 7. Data composition of the test set and prediction results of the models.

fastEmbed TF-IDF+SVM

Negative sample Positive sample Negative sample Positive sample

Test data set 4263 1025 4263 1025

The prediction results 4125 1163 3926 1362

Correctly predicted results 3807 707 3629 728

https://doi.org/10.1371/journal.pone.0228439.t007

Table 8. Sampling prediction results of fastEmbed model.

Bugtraq ID The prediction results Class labels in data sets

104595 1 1

106031 0 0

103117 1 0

106095 1 0

https://doi.org/10.1371/journal.pone.0228439.t008
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the Microsoft Windows kernel information disclosure vulnerability with Bugtraq ID 106095

is exploited according to the semantics of the context related to the vulnerability. In fact,

although the vulnerability has the value of exploitation, it may be difficult to exploit. Besides,

the fastEmbed model incorrectly predicts the vulnerability with Bugtraq ID 103117, which has

a high-risk impact on Drupal. Since Drupal is widely used to build websites around the world,

there are already exploit codes for it online. However, the vulnerability is not exploited in our

data set, although the fastEmbed model predicts it is exploited.

Online mode

We attribute the unsatisfactory performance of the model on NVD to the extreme imbalance

of data categories and the rapid change of data distribution over time as shown in Fig 8, so we

adopt the method of online prediction with class balancing on training data. The online mode

method means that inputting the data of the previous year to the model for training, evaluating

the data of the following year, and then adding the test data to the training data to continue

training the model to evaluate the data of the following year. Much research has been done in

the field of solving class imbalance [55]. Different sampling methods will achieve different

results for different data sets and high-quality external threat intelligence sources. For vulnera-

bility exploit data sets, Smote sampling algorithm performs better than oversampling for

minority classes and undersampling for majority classes. So we use borderline Synthetic mind

over sampling technique (Smote) [56] to balance the proportion of categories in the training

set while the original ratio on the test set remains unchanged to ensure that the results reflect

the effectiveness of the model in the real environment. This method focuses on some minority

class samples of exploited vulnerabilities at the boundary of the optimal decision function and

then generates samples in the opposite direction of the nearest neighbor class. In other words,

Smote algorithm calculates the k neighbors of each minority sample, randomly selects n sam-

ples from the k neighbors for random linear interpolation, constructs a new minority sample,

and combines the new sample with the original data to generate a new training set. We

adjusted the sampling rate of the data in each year to make the sample ratio of the training set

remain at 1:1. In particular, we set the ratio of positive samples to negative samples as 1:4 for

the prediction of 2018 due to the extreme imbalance of data in time distribution as mentioned

above. The same settings for rebalancing the data are used for both fastEmbed and base model.

Table 9 reports the prediction results of different years using models based on the knowledge

of the past few years. Based on the comparison of the evaluation results of each year above, it is

further demonstrated that our model is slightly inferior to the basic model in the measure of

recall but superior to the basic model in overall performance (F1-score) by 6.283%. The pro-

portion of exploited vulnerabilities has decreased year by year, reaching only 3.700% in 2018.

With the explosive growth of NVD vulnerability data and the increase of low coverage rate of

exploit database, the performance of the model decreases year by year. There is an urgent need

Table 9. Performance metrics for prediction by year using online mode.

SVM+TF-IDF fastEmbed

Year Precision Recall F1 Precision Recall F1

2014 0.311 0.626 0.416 0.372 0.625 0.466

2015 0.256 0.535 0.346 0.306 0.444 0.362

2016 0.149 0.406 0.217 0.177 0.294 0.221

2017 0.108 0.338 0.164 0.144 0.255 0.184

2018 0.087 0.313 0.137 0.105 0.227 0.143

https://doi.org/10.1371/journal.pone.0228439.t009
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for high coverage of exploit data sets. When exploits in SecurityFocus are added as a label of

whether the vulnerability is exploited, the performance of our proposed model is improved

with F1 measure of 0.26, precision 0.18 and recall 0.42. When exploits from the 12 exploit data-

bases mentioned above are added, the performance of fastEmbed is further improved with F1

measure of 0.38, precision 0.28 and recall 0.61.

We investigate the exploited vulnerabilities each year, and the result shows that the data in

Exploit-DB exists a certain tendency to publish CVE-related PoCs despite its relative high cov-

erage rate of vendors. For example, Microsoft, IBM, Apple and Adobe are the four vendors

that keep relatively stable in the number of PoCs published each year. In 2018, 40.72% of PoCs

related to them were released, and the remaining vendors’ products accounted for less than 2%

of PoC releases. We conducted separate experiments on vulnerabilities related to each vendor

according to the above methods, taking the vulnerabilities in 2018 as test sets. The results of

the experiment are shown in the Table 10, which proves the imbalance of PoC distribution

among different vendors and shows that the performance of fastEmbed is obviously improved

by predicting exploits of different vendors respectively and further improved by adding

exploits from SecurityFocus, especially for Adobe.

Feature importance

In order to better explain the validity of the features used in the model and the effect of the fea-

tures on the decision-making of the model, several features that make the greatest contribution

to the model are reported. The LightGBM classifier constructs some decision trees connected

in sequence according to actual data. Similar to the Mutual Information (MI) [57] mentioned

in [33], the total gain of splits which use the feature is calculated for each feature and describes

the inherent relationship between adding features and how much the model performance will

changes. All features used in our model are arranged in order of feature importance as shown

in Figs 12 and 13. Unsurprisingly, the classification results and prediction probability values of

vulnerability-related texts based on fastText have made most contributions to the performance

of the model.

Real-world exploits prediction

The data from Symantec anti-virus attack signatures and Intrusion Detection Systems(IDS)

attack signatures are tested as exploits in the wild in order to corroborate the generalization

ability of the model performance and provide a much-needed prediction capability.

First of all, we extracted data from the crawled signatures between 2015 and 2016, among

them 124 IDS attack signatures have been reported without and 358 anti-virus attack signa-

tures with their discovery date. In [11][33], experiments were conducted on vulnerabilities in

Microsoft and Adobe products because Symantec did not have attack signatures for all plat-

forms but provided the best coverage for vulnerabilities in Microsoft and Adobe products [11].

The same method is adopted. Therefore, 2,031 vulnerabilities targeting Microsoft and Adobe

products were left, 358 of which were exploited in the wild regardless of their publishment

time. For comparison, we evaluated the model on NVD. Based on the features shown in

Table 10. Performance metrics for prediction of different vendors by year using sliding window.

Vendor Microsoft Apple IBM Adobe

F1 0.287 0.260 0.269 0.400

F1 (Adding exploits from SecurityFocus) 0.302 0.290 0.419 0.619

https://doi.org/10.1371/journal.pone.0228439.t010
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Table 2, whether there exists a PoC in Exploit Database or Metasploit Exploit Database is

added as a binary feature and whether there exists a Symantec signature as a class label.

Next, we divide vulnerabilities according to a ratio of 3:7 as in the preliminaries section.

Three-tenths of the data provides a training corpus for the fastText model while preventing the

model from over-fitting data to other parts of data. Then 10-fold stratified cross-validation was

performed on seven-tenths of the vulnerabilities.

Fig 12. Feature importance ranking when performing fastEmbed model on SecurityFocus.

https://doi.org/10.1371/journal.pone.0228439.g012

Fig 13. Feature importance ranking when performing fastEmbed model on NVD.

https://doi.org/10.1371/journal.pone.0228439.g013
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The prediction result of the model is promising, with F1-score reaching 0.586, recall 0.550

and precision 0.639. These measures are better than the results with F1-score of 0.44 achieved

by [33]. The reported precision-recall curve is depicted in Fig 14 for comparison since the F1

measure is not reported in [11]. Also, the model was tested on data in 2018 and reached F1

measure of 0.601, recall of 0.560 and precision of 0.670. In short, our model achieves better

performance without introducing features from social networks or darkweb/deepweb.

Security blogs

There exists a gap in the ground truth of exploits in the wild [21]. In order to achieve higher

coverage of ground truth, we crawled 7,956 blogs from 36 well-known security experts or secu-

rity vendors from 2014 to 2018. Through regular expression matching CVE-IDs in posts, 536

blogs were left, 287 of which mentioned vulnerabilities exploited in the wild.

Since the aim is to identify blogs that describe exploited vulnerabilities, we use the fas-

tEmbed model to implement 5-fold cross-validation on limited data. The fastEmbed model

learns the embeddings of character n-grams and represents every word as a sum of the n-gram

vectors [24]. Then we average all the word vectors in a blog as the feature of LightGBM classi-

fier. For comparison with the past work, the SVM classifier on TF-IDF vectors and paragraph

vectors [21] as feature respectively are also introduced. In this experiment, TF-IDF model uses

a maximum of 3000 terms to construct vectors while Paragraph Vector model uses an embed-

ding of size 150 since more feature dimensions do not bring more benefits. In order to prove

the effectiveness of fastText embedding model on security blogs, we have introduced other

embedding models word2vec, GloVe [58] and BERT [59] for comparison. The embedding

dimensions of word2vec and GloVe are consistent with fastText at 150, and the pre-trained

BERT model is used to embed the document. Also, CVSS score is used as a feature other than

the document embedding vector. Table 11 shows the comparison of the performance of the

models. The result shows that fastEmbed has better generalization ability and the potential to

be applied to predict various threat intelligence-related contexts.

Fig 14. Precision-recall curve for Microsoft-Adobe vulnerabilities based on fastEmbed.

https://doi.org/10.1371/journal.pone.0228439.g014
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Conclusion

In this paper, we propose a model to predict the exploitability and exploitation in the wild of

vulnerabilities on extremely unbalanced data sets by grasping the key features of the vulnera-

bility-related text, which is confirmed to be the most important feature of the model. Through

our empirical research on vulnerability exploitability, the results show that with the explosive

growth of vulnerabilities, PoCs existing in Exploit-DB shows obvious tendentiousness and

incompleteness, resulting in a decline in overall performance on NVD–except for some ven-

dors. On the contrary, some vulnerability intelligence with high coverage and performance

advantages over time, such as SecurityFocus, perform well even under real environment.

Besides, our experiments on exploits in the wild show that our model is promising on limited

ground truth. Based on these insights, our model outperforms the existing methods and can

predict the exploitability and exploitation in the wild of a vulnerability on SecurityFocus a

median of 5 days ahead of existing data sets while ensuring high coverage of vulnerability data

and robustness against adversaries. Moreover, our model predicts the release of PoCs a median

of 1 day ahead from the perspective of the prediction results of the model and can be applied

to various threat intelligence such as security blogs.

Further research is needed to improve the accuracy and quality of exploits labeling of

exploit database and the proof of exploits in the wild. More data sources with high coverage

and time efficiency should be investigated because of the promising results produced on Secur-

ityFocus in this paper. Another direction is to apply this method to the posts of community

groups that are more attractive and meaningful to hackers and provides early warnings for vul-

nerability exploitation such as darkweb/deepweb.
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Table 11. Classification results on different methods.
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fastText+SVM 0.828 0.840 0.859 0.847

DarkEmbed 0.789 0.806 0.815 0.810

fastEmbed 0.830 0.841 0.819 0.852

word2vec+LightGBM 0.816 0.838 0.841 0.837

BERT+LightGBM 0.770 0.781 0.819 0.797

GloVe+LightGBM 0.793 0.809 0.830 0.819
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