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Abstract

Anopheles darlingi is the main vector of malaria in Brazil, characterized by a high level of

anthropophilia and endophagy. Imidacloprid, thiacloprid, and acetamiprid are the most wide-

spread insecticides of the neonicotinoid group. However, they produce adverse effects on

the non-target insects. Flupyradifurone has been marketed as an alternative to non-fluori-

nated neonicotinoids. Neonicotinoids containing trifluoroacethyl substituent reveal

increased insecticidal activity due to higher hydrophobicity and metabolic stability.

We synthesized novel neonicotinoid insecticides containing fluorinated acceptor groups

and their interactions were estimated with the nicotinic acetylcholine receptor (nAChR) bind-

ing site by molecular docking studies, to evaluate their larvicidal activity against A. darlingi,

and to assess their outdoor photodegradation behavior. New neonicotinoid analogues were

prepared and characterized by NMR and mass-spectrometry. The synthesized molecules

were modelled by time-dependent density functional theory and analyzed, their interaction

with nAChR was investigated by molecular docking. Their insecticide activity was tested on

Anopheles larvae collected in suburban area of Manaus, Brazil. Four new fluorinated neoni-

cotinoid analogs were prepared and tested against 3rd instars larvae of A. darlingi showing

high larvicidal activity. Docking studies reveal binding modes of the synthesized compounds

and suggest that their insecticidal potency is governed by specific interactions with the

receptor binding site and enhanced lipophilicity. 2-Chloro-5-(2-trifluoromethyl-pyrrolidin-1-

ylmethyl)pyridine 5 showed fast degradation in water maintaining high larvicidal activity. All

obtained substances possessed high larvicidal activity in low concentrations in 48 hours of

exposure, compared to commercial flupyradifurone. Such activity is connected to a unique

binding pattern of the synthesized compounds to insect’s nAChR and to their enhanced bio-

availability owing to introduction of fluorinated amino-moieties. Therefore, the compounds in

question have a high potential for application as control agents for insects transmitting tropi-

cal diseases, and they will be less persistent in the environment.
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Introduction

Malaria is a parasitic and endemic disease in several regions of the world with wide distribu-

tion mainly in tropical and subtropical areas. Currently, more than 3 billion people are at risk

of contracting the disease and about 148 to 304 million of new cases are recorded annually [1].

Anopheles darlingi Root 1926 is the main vector of malaria in Brazil. On one hand, the spe-

cies is characterized by a high level of anthropophily and endophagy in relation to other mos-

quito species of the Amazon region. On the other hand, A. darlingi is the malaria transmitting

species the most favored by environmental changes resulting from human activities such as

occupation of urban and peri-urban spaces in an uncontrolled manner; the construction of

hydroelectric power plants, irrigation projects, and fishponds; the exploitation of fossil fuels,

minerals, and natural gas; forest fires; deforestation; and road construction [2–5].

Mosquito vector control measures are the most commonly used approach to reduce the

number of malaria cases. In relation to entomological data, the above measures include such

traditional actions to combat vector-borne diseases as space spraying, indoor residual spray-

ing, long-lasting insecticidal nets, larval source management, biolarvicide application, active

search, and appropriate case treatment [6,7].

Management of larval breeding sites plays an important role in the control of malaria. Espe-

cially in those specific sites, where the vectors tend to reproduce, which may have characteris-

tics of permanent or semi-permanent breeding sites. The WHO suggests the use of larvicides

in those breeding sites located in urban areas, to protect the human population [5,8–10].

Larvicide control actions represent an effective tool for vector control, reducing the trans-

mission of malaria in specific areas. This procedure is particularly important in the Amazonian

region, where different breeding sites of malaria vectors are widely distributed [9].

According to the WHO recommendations, only the use of pyrethroid insecticides is indi-

cated for the actions on adult mosquitoes in current vector control program [8,9]. Recently,

resistance of the vector to these insecticides were reported in some areas, making research tar-

geted at new classes of insecticides highly relevant [8,11].

The above dependence on the only one class of insecticides can be potentially overcome by

implementation of neonicotinoids, a promising class of insecticides that exhibit excellent effi-

ciency and low risk to humans and the environment. They are extensively used throughout the

world for crop protection, particularly against sucking insect pests, accounting for one-fourth

of the total world insecticide market [12]. Imidacloprid, thiacloprid, and acetamiprid are the

most widespread insecticides of the neonicotinoid group. Toxicity of neonicotinoids to mam-

mals is usually much lower than for many insect species. One can find reports on adverse

effects of several widely adopted neonicotinoids on the non-target insects (especially honey-

bees) [13,14]. Prolonged periods of exposure of aquatic insects to neonicotinoids even though

at low levels, has given rise to serious risks, since those insects are as sensitive to that class of

insecticides, as the bees. Recently, imidacloprid toxic residues have been detected in water sur-

faces and are associated with the reduction of aquatic insect populations [15,16].

By that reason, the imidacloprid, thiamethoxam, and clothianidin were banned for use on

flowering crops in the EU for the two-year term in 2013 [17,18]. After thorough risk assess-

ment, the three pesticides were completely banned in the EU for outdoor use on crops since

2018 [19–21]. At the same time, it was established that several neonicotinoids (e.g. acetami-

prid) represent low risk to honeybees [22,23], thus any further restrictions of those substances

is neither scientifically nor legally appropriate [24]. Negative effects were mostly caused by

improper and excessive use of the insecticides, or laboratory-based experiments that employed

greater concentrations of the neonicotinoids than those found in nectar and pollen of the

treated plants [17].
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Flupyradifurone (FPF, Fig 1) is a new butenolide insecticide chemically similar to neonico-

tinoids, despite it has been marketed as an alternative to them for commercial reasons [25].

Both FPF and neonicotinoids have the same mode of action being a nicotinic acetylcholine

receptor (nAChR) antagonists. The FPF possess low toxicity to non-target insects and mam-

mals, and has recently been registered for use in Canada and the United States [26]. Like neo-

nicotinoids, the FPF is highly water soluble and persistent in the environment [27]. However,

it is practically non-toxic to young adult bees when in acute contact [28].

Agricultural and public health (vector control) importance of neonicotinoids have raised

the need of their further development, taking into a consideration their mechanism of action.

The nAChR is a biochemical target for neonicotinoids, it plays a central role in the mediation

of fast excitatory synaptic transmission in the insect central nervous system [12]. Structural

differences of nAChRs receptor subunits between vertebrate and in the invertebrate species

[29] provides relatively low risk of neonicotinoids to mammals [29]. Interactions of the active

compound with the nAChR may be efficiently investigated using the whole gamut of in silico
methods, from inexpensive quantitative structure-activity relationships (QSAR) to computer

docking and hybrid quantum and molecular mechanics (QM/MM) approaches [18,30–32].

In this study, we perform modeling of nAChR-ligand interactions via molecular docking.

By analyzing various binding conformations and quick estimation of binding affinity for each

of them, molecular docking allows finding of the best binding mode for virtually any potential

ligand. This way we can rank compounds according to the strength of their interaction with

the receptor and find specific intermolecular interactions that are important for the activity of

a potential insecticide [33].

Trifluoromethyl and perfluoroalkyl groups can dramatically affect functional properties of

organic molecules, thereby increasing a possibility of their application as agrochemicals, medi-

cines or building blocks to create new organic materials [34–36].

Rationale for the introduction of fluorine atoms is based on the following reasons:

• Metabolic stability is one of the key factors in determining the bioavailability of a compound.

A frequently employed strategy to circumvent this problem is to block the reactive site by a

fluorine atom introduction. There are many examples illustrating an increase of a molecule

metabolic stability by replacement of an oxidizable C-H group with a C-F one [37–40].

Fig 1. Flupyradifurone.

https://doi.org/10.1371/journal.pone.0227811.g001
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• Fluorine can change basicity of a compound. Presence of highly basic groups may limit bio-

availability of a molecule. Introduction of the fluorine atom or fluorinated group in the

vicinity of the basic moiety reduces the basicity. Thus, better membrane permeation and

improved bioavailability may be expected for the fluorinated compound [41].

• Moreover, fluorine substituents are introduced to increase receptor-binding affinity of a

compound. For example, most of the neurokinin1 receptor antagonist drugs contain a 3,5-di

(trifluoromethyl)phenyl group to increase the binding affinity [42].

Earlier, it was shown that neonicotinoids containing trifluoroacethyl substituent reveal

increased insecticidal activity due to higher hydrophobicity and metabolic stability [43–45].

Besides that, the presence of an acceptor substituent (such as a nitro- or a cyano-group) in a

terminal moiety is one of the most important factors determining the insecticide activity [29].

Some pesticides have an obvious drawback, because of their possible persistence in the envi-

ronment. In addition to being environmental contaminants, persistent insecticides develop a

resistance to them much more frequently than non-persistent ones. Sunlight photodegrada-

tion is one of the most destructive pathways for pesticides after their release into the environ-

ment [46]. However, the biocidal activity should be preserved before the photodegradation

occurs [47]. Several studies have been devoted to the investigation of the photolysis of the neo-

nicotinoids [48–50]. Half-life of the FPF in water under sunlight was estimated to be as high as

2.5 days [51]. Therefore, reduced photostability becomes an important requirement in the

design of new neonicotinoid insecticides.

During last few years we have developed synthetic approaches to generate novel low-molec-

ular weight fluorinated amines and investigated their properties [52–54]. Substances of that

kind have never been used as neonicotinoid building blocks. Therefore, the aim of this work

was to synthesize new neonicotinoid insecticides containing fluorinated acceptor groups to

estimate the interactions of the synthesized compounds with the nAChR binding site by

molecular docking studies, to evaluate their larvicidal activity against A. darlingi, and to assess

their outdoor photodegradation behavior.

Materials and methods

3-trifluoromethylaniline was purchased from Acros Organics, all other reagents were pur-

chased from Sigma-Aldrich and used as supplied. The solvents (Aldrich) were purified by stan-

dard procedures used in synthetic organic chemistry.

Spectroscopy
1H NMR spectra were recorded on a Varian VXR-300 and Mercury 300 spectrometers, 19F

NMR spectra were obtained on Gemini 200 Varian instrument at 188 MHz. UV- spectra were

recorded on an UV-Vis Evolution 220 spectrophotometer (Thermo Fischer Scientific) in the

range of 200–500 nm at a bandwidth of 2nm and integration time of 1s.

General synthetic procedures

a) synthesis of fluorosubstituted anilines. 3,5- Bis-trifluoromethylaniline was obtained

following the two-step procedure with a total yield of 56% [55,56]. First, the 5-nitroisophthalic

acid was fluorinated with SF4 taken in a 1:5 molar ratio at 80–901C for 16 hours in a presence

of 10% of HF as a catalyst. The 3,5-bis(trifluoromethyl)nitrobenzene obtained was then

reduced with hydrogen in a methanol solution over 10% Pd/C catalyst. The product was sepa-

rated by distillation and identified spectroscopically. The spectra correspond to those

described in [56].
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4-(pentafluoroethoxy)aniline. 4-(pentafluoroethoxy)nitrobenzene was obtained according

to the previously described procedure [57]. The fluorination product was then reduced with

hydrogen in a methanol solution over 10% Pd/C catalyst, separated by distillation, and identi-

fied spectroscopically. The spectra correspond to those described in [58]. The total yield after

two steps is 71%.

2-(trifluoromethyl)pyrrolidine was obtained according to our previously described proce-

dure [52].

b) synthesis of neonicotinoids. New neonicotinoids were synthesized as shown in the Fig

2 according to the protocol http://dx.doi.org/10.17504/protocols.io.9h5h386.

A mixture of 2-chloro-5-(chloromethyl)pyridine 1 (0.324 g, 1.9 mmol), the corresponding

substituted aniline 2a-c or 4 (2.0 mmol), and anhydrous potassium carbonate (0.828 g, 6.0

mmol) in 5 ml of anhydrous acetonitrile was vigorously stirred under reflux (Fig 2). Progress

of the reaction was monitored by thin layer chromatography (TLC). After the conversion was

complete, the reaction mixture was separated from insoluble inorganic salts. The latter were

thoroughly washed with dichloromethane. The combined organic solutions were evaporated

under reduced pressure and the residue was purified by preparative thin layer chromatography

(TLC) on SiO2 (EtOAc/hexane 1:2).

Fig 2. Synthesis of new neonicotinoids containing fluorinated acceptor groups.

https://doi.org/10.1371/journal.pone.0227811.g002
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N-[(6-chloropyridin-3-yl)methyl]-4-(pentafluoroethoxy)aniline (3a). Yield 68%. Light-yel-

low viscous oil.1H NMR (300 MHz, CDCl3, TMS), δ: 3.93 (br. s, 1H, NH); 4.26 (s, 2H, CH2);

6.49 (d, 2H, C3’H, C5’H); 6.79 (d, 2H, C2’H, C6’H); 7.23 (d, 1H, C3H); 7.58 (m, 1H, C2H); 8.31

(s, 1H, C5H). 19F NMR (188 MHz, CDCl3, CCl3F), δ: -86.46 (s, 3F, CF3); -88.41 (s, 2F, CF2).

ME (EI) m/z 353 (M+1, 100%).

N-[(6-chloropyridin-3-yl)methyl]-3-(trifluoromethyl)aniline (3b). Yield 61%. Light-yellow

viscous oil.1H NMR (300 MHz, CDCl3, TMS), δ: 4.15 (br. s, 1H, NH); 4.29 (s, 2H, CH2); 6.64

(d, 1H, C6’H); 6.74 (s, 1H, C5’H); 6.89 (d, 1H, C4H); 7.16 (d, 1H, C2H); 7.22 (d, 1H, C3H); 7.57

(m, 1H, C2H); 8.23 (s, 1H, C5H). 19F NMR (188 MHz, CDCl3, CCl3F), δ: -62.09 (s). ME (EI)

m/z 287 (M+1, 100%).

N-[(6-chloropyridin-3-yl)methyl]-3,5-bis(trifluoromethyl)aniline (3c). Yield 73%. Yellow-

ish viscous oil. 1H NMR (300 MHz, CDCl3, TMS), δ: 3.59 (br. s, 1H, NH); 4.34 (s, 2H, CH2);

6.89 (s, 2H, C2’H, C5’H); 7.13 (s, 1H, C4H); 7.26 (d, 1H, C3H); 7.58 (m, 1H, C2H); 8.32 (s, 1H,

C5H). 19F NMR (188 MHz, CDCl3, CCl3F), δ, m. d.: -62.55 (s). ME (EI) m/z 355 (M+1, 100%).

2-Chloro-5-(2-trifluoromethyl-pyrrolidin-1-ylmethyl)pyridine (5). Yield 83%. Light-yellow

viscous oil. 1H NMR (300 MHz, CDCl3, TMS), δ: 1.82 (m, 2H, CH2CH2CH2 pyrrolidine), 2.01

(m, 2H, CH2CHCF3), 2.36 (m, 1H, CHCF3), 2.93 (m, 1H, CHHN pyrrolidine), 3.28 (m, 1H,

CHHN pyrrolidine), 3.88 (ABX, 2JHH = 153.4 Hz, 4JHH = 13.6 Hz, 2H, ArCH2N), 7.29 (d, 1H,

H-5 pyridine), 7.69 (dd, 1H, H-4 pyridine), 8.29 (d, 1H, H-3 pyridine). 19F NMR (188 MHz,

CDCl3, CCl3F), -77.03 (s broad, 6F, CF3); ME (EI) m/z 265 (M+1, 100%).

Calculation details

Electronic population analysis was conducted within the Gaussian-09 set of programs [59]

using BP-86/TZVP approximation [60–62]. Multiwfn program was used for electrostatic

potential (ESP) surfaces generation [63,64]. The TD-DFT calculations were carried out at the

BP86/6-311G�� approximation level using the Gaussian-03 program package. Molecular dock-

ing was carried out using AutoDock Vina package [65] and analyzed in AutoDockTools4

[66,67], VMD [68], and BIOVIA Discovery Studio 4.5 [69] programs were used for ESP sur-

faces and docking results visualization.

Ethical considerations

The larvae used in this study were collected in suburban areas of the city of Manaus, Amazo-

nas, Brazil. We declare that no permission was required for these locations. In addition, the

collecting of anopheline larvae did not involve endangered or protected species.

Test organism

Anopheles larvae were collected in suburban areas of the city of Manaus, Amazonas, Brazil and

transported to insectary of the Laboratory of Malaria and Dengue at the National Institute of

Amazonian Research (INPA). The mosquito larvae were reared according to the protocols

described in [70]. Species of the larvae were identified after the realization of the bioassays.

All 7’920 larvae used in the bioassays were identified at the species level according to their

morphological characteristics following the taxonomic keys of [71–73]. The specimens were

placed in Petri dishes containing a few drops of larval fixative prepared according to the proto-

col adopted at the Laboratory of Malaria and Dengue of the INPA (http://dx.doi.org/10.17504/

protocols.io.9qrh5v6) and observed under an optical microscope with magnifications of 100×
to 400×. The identification of species was made based on the external morphological aspects,

such as spiracular apparatus, head, antenna, apex, abdominal segments, palmate hairs, set of

prothoracic hairs, thorax, dorsal view, and ventral integument appearance.
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The colony was maintained at a temperature of 26 ± 2˚C, a relative humidity around 70–

80%, a photoperiod of 12:12 hours [70], and fed with a Tetramin1 fish food.

Larvicidal activity

The larvicidal activity tests for new substances were performed on the 3rd instar Anopheles lar-

vae according to a methodology recommended by the WHO [74,75] https://dx.doi.org/10.

17504/protocols.io.9kch4sw. All the experiments were carried out at the temperature of 26

±2˚C, the relative humidity of 70–80% and the photoperiod of 12:12 hours light/dark. For each

substance, a stock solution in dimethylsufoxide (DMSO) was prepared with a concentration of

2000 μg/mL followed by a serial dilution to obtain 3.0, 5.0, 10.0, 20.0, and 30.0 μg/mL for 3a;

2.5, 4.5, 9.5, 14.0, and 19.0 μg/mL for 3b; 2.5, 4.5, 9.0, 14.0, and 18.0 μg/mL for 3c; 6.0, 8.0,

10.0, 12.0, and 14.0 μg/mL for 5; and 2.0, 3.0, 4.0, 5.0, and 6.0 μg/mL for FPF.

The experiment was performed in five replicates of each dosage and two controls: one of

them containing 1.0% aqueous solution of DMSO (negative control) and the other one con-

taining flupyradifurone (Sigma Aldrich1) as a positive control. Twenty larvae of the 3rd instar

were transferred into each dish of replicas and controls containing 50 mL of distilled water,

food, and an aliquot of the stock solution in an appropriate amount for different concentra-

tions. The larval mortalities were observed and registered at 48 hour intervals of exposure.

Mortality rate of 10% and a confidence interval of 95% were set as the limits. The tests were

repeated 3 times. The larvae were considered dead, when they were immobile and unable to

reach the water surface.

Statistical analysis

In order to obtain LC50, the mortality data were treated by a statistical software Polo plus [76],

with 95% confidence interval and values of p< 0.05 were considered statistically significant.

In the case of�10% mortality in the control group, the larval mortality was corrected using

Abbott’s formula [77].

Photodegradation test

40 mg/L solution of 5 was prepared using a deionized milli-Q water. The experiment was per-

formed in Manaus (AM, Brazil; -3.096240ºS, -59.986194˚W; under an average daily solar irra-

diation of 4.92 kWh/m2, http://www.cresesb.cepel.br/index.php#data). The test solution was

placed into a quartz cuvette and tightly stopped there. The cuvette was places under a direct

sunlight, maintaining the temperature at 35˚C. Quantity of the compound 5 in the solution

was monitored by UV-spectrophotometry, using Thermo Scientific Evolution 220- UV-vis

spectrophotometer; Software INSIGHT: 1.3.10; Firmware 3.0.0.109; Scan Speed 120,00 nm/

min; data Interval 1,00 nm; Integration Time 0,500 sec; Bandwidth 2 nm, following the absorp-

tion maximum at 268 nm. The spectra were recorded at different time intervals of 1h - 4h, and

1–4 days from 09:00 until 16:00 (i.e. 7 h each day) and analyzed according to [78].

Results

New fluorinated neonicotinoids 3a-c and 5 (Fig 3) were synthesized from 2-chloro-(5-chloro-

methyl)pyridine 1 and the corresponding fluorinated aromatic or alicyclic amines as shown in

the Fig 2. The starting amines 2a-c or 4 were refluxed with chloropyridine 1 in acetonitrile in

the presence of potassium carbonate. Light-yellow viscous oils of the final compounds were

obtained after their purification by preparative TLC.
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In order to estimate structure-properties relationship for the substances in question, we

performed DFT calculations of the molecules and generated their electrostatic potential sur-

faces (ESP) (Fig 4).

The ESP maps visualize electrostatic potential energy, i.e. energy of interaction between the

molecule and an imaginary positively charged (+1) ion. Color scale in the right side of the fig-

ure shows a correspondence between the surface color and the interaction energy. Positive val-

ues (red) indicate higher interaction energy and therefore electron-poor positively charged

part of the molecule. Negative values (blue) display opposite characteristics. Prevalence of the

red and blue colors in the ESP maps evidence a polar character of the molecule, and appropri-

ately colored regions point at regions of the structure that will more likely interact with posi-

tively (blue parts of the map) or negatively (red parts) charged groups of the receptor active

site. Intermediate values of interaction energy (green) indicate weakly polar hydrophobic parts

of the molecule.

Possible binding models of the synthesized neonicotinoids with nAChR were examined by

docking studies with AutoDock Vina [65] and shown in the Fig 5. Since it is known that

amino acids forming binding pockets are conserved in an AChBPs (acetylcholine binding pro-

teins), a crystal structure of a Lymnaea stagnalis AChBP co-crystallized with imidacloprid

(PDB ID: 2zju) [79] was used as the receptor template.

The calculations also enabled to estimate the protein-ligand binding affinities and partition

coefficients P shown in the Table 1.

Fig 3. New neonicotinoids containing fluorinated acceptor groups.

https://doi.org/10.1371/journal.pone.0227811.g003

Fig 4. ESP surfaces for Flupyradifurone and new neonicotinoids 3a-c and 5.

https://doi.org/10.1371/journal.pone.0227811.g004
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Approximately 7’920 Anopheles larvae were collected in suburban areas of the city of

Manaus (AM), Brazil. After the tests were performed successfully, all larvae were identified to

verify the percentage of the species present. A. darlingi was the predominant species represent-

ing 77.38% of the larvae used in the tests. The remaining percentage was distributed among

Fig 5. Binding modes of compounds 3a-c and 5 to L. stagnalis AChBP.

https://doi.org/10.1371/journal.pone.0227811.g005

Table 1. Estimated binding affinities and calculated logP values for the compounds 3a-c, 5, and FPF.

Compound Predicted binding affinity, kJ/mol logP

3a -33.472 4.42

3b -35.146 3.65

3c -34.727 4.53

5 -30.125 2.94

FPF -29.288 1.84

P = partition coefficient

https://doi.org/10.1371/journal.pone.0227811.t001
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the following species: A. nuneztovari (16.36%), A. triannulatus (5.08%), A. albitarsis (0.80%),

A. oswaldoi (0.20%), A. evansae (0.11%), A. matogrossensis (0.03%), and A. nimbus (0.01%).

The larvicidal activity of all synthesized compounds were evaluated, showing high mortality

of the 3rd instar larvae of A. darlingi (Table 2). The highest larvae mortality rates; i.e. the lowest

LC50 values were observed for 3a, 3c and 3b with the LC50 values of 0.57, 0.90 and 0.97 μg/mL

respectively, which are lower than that of the commercially available FPF standard (LC50 =

1.18 μg/mL). Within the series under investigation, the highest LC50 value of 4.93 μg/mL was

found for the compound 5. No mortality was observed in the negative control.

The dose-response graphs (Fig 6) show scatter plots of the experimental data on percentage

of mortality of A. darlingi larvae vs concentration and the trendlines for each of the com-

pounds under investigation and the FPF. The coefficients of determination R2 show perfect fit

of the data points by the regression trendlines. According to the graph, all tested compounds

showed stable very high larvae mortality rates (more than 70%) starting from the lowest con-

scentrations applied. Thus, the data show high efficiency of the new substances against larvae

of the main vector of malaria in the Amazonian region. The sample of commercial FPF insec-

ticide was responsible for the highest larvae mortality. This implies that FPF was the com-

pound showing the highest stability of action in the 48-hour interval, because it maintains its

high larvicidal efficacy in the first doses tested (Fig 6). The compound 5 revealed a similar

behavior, being the most efficient compound within the series under investigation. The com-

pound 5 achieved 100% mortality rates at doses nearly 2 times lower than the compounds 3a-

c. By that reason, it was chosen for a photodegradation test under real outdoor conditions in

the city of Manaus (AM, Brazil).

The photodegradation was monitored by UV spectra. The UV spectra of 5 in aqueous solu-

tion showed absorption band maxima of 210 nm and 267 nm, which correspond well to the

values predicted by TD-DFT calculations (Fig 7A). The outdoor photodegradation results are

shown in the Fig 7B. As observed in the Fig 7, the compound starts to degrade shortly after 2

hours of exposure. The half-life of the compounds 5 was assessed from 0 h to 4 days of direct

exposure to sunlight. The photodegradation half-life time for 5 (DT50 = 11.9 h) was derived

based on UV/VIS spectral data according to the US Environmental Protection Agency stan-

dard operating procedure [78]. Comparison of residual deviances of the first- and second-

order kinetic models shows that a single first-order rate model can be considered appropriate.

Discussion

Various habitat forms, favorable environmental conditions for the development of mosqui-

toes, and their distribution in the environment, are the main factors that favor the diversity of

species of the genus Anopheles in the Amazon region. The anophelines collected in the study

region include A. darlingi, A. nuneztovari, A. triannulatus, A. albitarsis, A. oswaldoi, A. evan-
sae, A. matogrossensis, and A. nimbus; all had previously been reported in the literature [2,3].

Table 2. LC50 of new substances and FPF tested against 3rd instars larvae of A. darlingi at the interval of 48 hours.

Substances LC50 μg/mL Regression equation χ2 DF

3a 0.57 y = (0.26+5) + 1.10�log x 0.02 3

3b 0.97 y = (0.01+5) + 1.50�log x 4.70 3

3c 0.90 y = (0.06+5) + 1.35�log x 2.83 3

5 4.93 y = (7.33+5) - 5.08�log x 1.46 3

FPF 1.18 y = (3.02+5) - 0.22�log x 3.30 3

LC50: Median Lethal Concentration, χ2: Neill’s lack-of-fit test, DF: degrees of freedom

https://doi.org/10.1371/journal.pone.0227811.t002
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However, this diversity may vary according to the hydrological cycle, a phenomenon that

influences the seasonality of species; also, a variety of different breeding sites, the intensifica-

tion of human/vector contact, and the recorded cases of malaria have to be taken into account

[5,80]. The dominance of certain anopheline species has also been related to their major ability

to adapt to various environmental transformations, especially in the ecosystems altered by

anthropic actions and environmental changes, such as increased exposure to sunlight and

absence of frequently growing aquatic plants. The above factors affect the development of the

mosquito larvae and cause a direct impact on the presence of different species of the same

genus [80,81]. This study showed that A. darlingi was the dominant species in the collection

area. It is considered the main malaria vector in the region, being more susceptible to infection

by Plasmodium spp. parasites [80,81].

In the present study, we synthesized a series of new fluorinated neonicotinoid analogs start-

ing from some novel amines containing -CF3 and -OC2F5 groups. Introduction of fluorine

into a biologically active molecule increases its biological activity by affecting several

Fig 6. Mortality of A.darlingi larvae (%) vs concentration of the compounds 3a, 3b, 3c, 5, and flupyradifurone in the intervals of 48 hours. Trendlines are shown as

the corresponding dash lines, R2 values are reported near each line.

https://doi.org/10.1371/journal.pone.0227811.g006
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parameters, e.g. binding to a target receptor. We suppose the presence of fluorinated amino-

moieties will improve hydrophobic interactions with the receptor site.

Introduction of fluorine into a biologically active molecule increases its biological activity

by affecting several parameters, e.g. binding to a target receptor. Thus, we synthesized a series

of new fluorinated neonicotinoid analogs starting from some novel amines containing -CF3

and -OC2F5 groups. We suppose the presence of fluorinated amino-moieties will improve

hydrophobic interactions with the receptor site.

Fig 7. UV spectra. (a) spectra of the compound 5 and FPF. (b) Dependence of the absorption (at λmax = 268 nm) from the duration of irradiation.

https://doi.org/10.1371/journal.pone.0227811.g007
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In order to find structural features that may contribute to activity of the synthesized com-

pounds compared to the FPF, the calculations of the electrostatic potential surfaces and molec-

ular docking were carried out. Comparison of the molecular surface maps (Fig 4) shows a wide

diversity of configurations for the compounds under investigation. The molecules of 3a-b are

bulkier than that of the FPF, a commercially available insecticide. Earlier, it was shown that

bulky neonicotinoid analogs often have insecticidal potencies comparable to or even higher

than popular commercial insecticides [31,43,82–84]. Such bulky substances can engage more

regions of the ligand-binding domain of the nAChRs than conventional ones, or even dock to

entirely different locations of those receptors [85,86].

Comparison of the ESP maps for the compounds 3a-c and 5 with that of FPF (Fig 4) reveals

two main distinctive features of the synthesized neonicotinoid analogues. First, the electronic

density distribution and shape of the molecular surfaces vary substantially within the series

and considerably differ from those of the FPF. Second, all the substances 3a-c and 5 have

enlarged weakly polar (green) lipophilic areas, capable to hydrophobic interactions with the

receptor active site.

Binding modes of the synthesized neonicotinoids 3a-c and 5 to nAChR are shown in the

Fig 5. General feature of fluoroalkyl-phenyl substituted compounds 3a-c is represented by ori-

entation of the fluorinated groups and phenyl moiety to the hydrophobic region of the recep-

tor binding pocket consisting of five aromatic amino acid residues–TRP53, TRP143, TYR164,

TYR185 and TYR192. They contribute to the π-stacking interactions with phenyl rings at the

distances of ca. 3.6 Å (that is within a usual range for parallel displaced π-stacking mode) [87]

and to hydrophobic interactions with fluorinated groups. The stacking seems to have a large

contribution to binding affinities, since the molecule of pyrrolydine derivative 5 is turned

over, when compared to 3a-c ones. Thus, the pyridine moiety can participate in stacking inter-

action with TYR185 phenyl ring. Three out of four compounds under discussion also take part

in S-π interactions with MET114 sulfur atom at a distance of ca. 3.5 Å. The compound 3a falls

out of the row, evidently, because of the large volume of the -OC2F5 group. However, it is ori-

ented similarly to the 3b and 3c allowing the hydrophobic interactions between the fluorine

atoms of the neonicotinoid and aromatic amino acid residues.

Besides the non-covalent interactions described above, a hydrogen bonding between the

NH-moiety of the neonicotinoid and a hydroxyl group of the TYR192 is present for 3c and 3b

compounds. That bonding enhances stability of the receptor-ligand complex that is immedi-

ately seen in the results of molecular docking (compounds 3a,b have the highest affinities).

Measured larvicidal activities confirm the docking results, both compounds have low LC50

values.

According to the docking calculation results, the best predicted binding affinities do not

vary significantly, being in the range of -30� -35 kJ/mol (Table 1). The LC50 values deter-

mined generally decrease along with a growing interaction strength. Fluorine substitution

greatly enhances the lipophilicity of the amines employed for the synthesis. A common mea-

sure of lipophilicity of a compound is the partition coefficient P, i.e. ratio of its equilibrium

concentrations in two immiscible liquids, usually octanol and water. Calculated logP values for

the compounds under investigation and the FPF are shown in the Table 1. Comparison of the

logP values for the compound 3b having one CF3-group and the 3c one with two CF3-groups

shows that fluorine substitution has a substantial influence on the lipophilicity of the com-

pound. Lethal concentrations of the substances 3a-c, 5 decrease with the increase of the calcu-

lated logP. The above results lead to an additional explanation of high larvicidal activity of the

neonicotinoids in question. In addition to the binding strength to the insect’s nAChR, the

enhanced activity of compounds 3a-c, and 5 could also result from their high bioavailability

due to facile blood-brain barrier crossing [29].
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Position of the compound 5 at the receptor binding site is also very similar to that of flupyr-

adifurone (Fig 8), which indicates similar receptor-ligand interactions of these compounds.

CF3-group in 5 is a substitution of electronegative lactone pharmacophore of the FPF, while

conformational mobility of 5 allows it to achieve simultaneous hydrogen bonding, aromatic

interactions, and halogen bond.

Very high larvicidal activity of the new substances was confirmed in the test using A. dar-
lingi larvae. The compound 3a showed the best larvicidal potential (LC50 = 0.57 μg/mL)

among the compounds under investigation, considering higher mortality of the larvae during

the 48 h interval, even when compared to the FPF positive control LC50 = 1.18 μg/mL.

Since the compounds under investigation promoted a high mortality in contact with the

larvae, they may be considered as potential larvicides. However, more specific tests are neces-

sary to evaluate the mechanism of action and to classify them as possible insecticides to control

the vectors of malaria in the Amazonian region.

Larvae of Anopheles mosquitos prefer to live in clean, unpolluted water. Despite a high

insecticidal potential of neonicotinoids for vector control applications outdoors, quite a little is

known about direct sunlight photodegradation in water of neonicotinoid insecticides contain-

ing fluorinated acceptor groups.

Since the habitat of Anopheles larvae is water, the eventual use of the compounds under real

outdoor conditions may be modelled in an aqueous solution under intense natural sunlight

and elevated environmental temperature, typical for the region. In this work we studied exper-

imentally a photodegradation of 5 under real outdoor conditions (sunlight, environment, tem-

perature) (Fig 7B) and compared those data to similar data for the FPF [25,88]. A reported

DT50 value for the FPF (13.8 h) [88] is slightly higher than for the compound 5 (11.9 h).

Hence, the 2-chloro-5-(2-trifluoromethyl-pyrrolidin-1-ylmethyl)pyridine would be less persis-

tent in the environment.

Rather often, continuous and indiscriminate use of persistent in the environment insecti-

cides in inadequate concentrations has led to the development of insect resistance to agents

Fig 8. Comparison of the binding modes of FPF (green) and 5 (pink).

https://doi.org/10.1371/journal.pone.0227811.g008
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currently used in vector control. In the areas of Amazon region with high incidence of malaria,

the application of insecticides is restricted to round the house places and some mosquito

breeding site places. The former method is not very effective, since the houses are scattered in

rural areas, and thus, the impact is minimal and should be monitored regularly. The latter is

only permitted on a non-continuous base, when malaria outbreak happens and it is not possi-

ble to permanently eliminate the breeding site [9,89]. In such a way, environmental contami-

nation may be avoided.

The fluorinated neonicotinoids under investigation showed high efficiency and rapid

photodegradation; hence, they may be regarded as a viable option for insect vector control in

places, where the resistance was observed. Another important safety factor is related to higher

selectivity of neonicotinoids to the mosquito nAChRs [12,29] with respect to the mammalian

ones.

The above would require further testing of the proposed compounds for their action on

non-target organisms and persistence in the environment to ensure a more selective spectrum

of action.

Conclusion

Our results showed that the A. darlingi larvae were highly susceptible to new neonicotinoid

analogs 3a-c and 5 containing fluorinated acceptor groups. The substances 3a-c revealed

higher larvicidal activity at low concentrations in 48 hours of exposure, when compared to flu-

pyradifurone. The reason of such activity may be connected to the unique binding pattern of

the synthesized compounds to insect’s nAChR and to their enhanced bioavailability owing to

introduction of fluorinated amino-moieties. The larvicidal activity tests showed the LC50 val-

ues that are in a good agreement with the theoretically predicted binding of the active com-

pound to the nAChR. The photodegradation of 5 was studied under real outdoor conditions

(sunlight, environment, temperature) and compared to the FPF data. The compound 5

degrades rapidly in water under direct sunlight, the DT50 value found was slightly lower than

that of the FPF. Thus, in view of all the data reported in this study, the compound 5 has a

lower persistence time in water without reducing its efficacy as a larvicide. However, further

testing is required to evaluate those and other factors in real field conditions.
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Amazônia brasileira. In: Ferreira EJG, Santos GM, Leão ELM, Oliveira LA, editors. Bases Cientı́ficas

para Estratégias Preserv e Desenvolv da Amaz. Secretaria de Ciência e Tecnologia, Instituto Nacional

de Pesquisas da Amazônia; 1993. p. 167–96.
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