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Abstract

Low crop yields in Sub-Saharan Africa are associated with low fertilizer use. To better under-

stand patterns of, and opportunities for, fertilizer use, location specific fertilizer price data

may be relevant. We compiled local market price data for urea fertilizer, a source of inor-

ganic nitrogen, in 1729 locations in eighteen countries in two regions (West and East Africa)

from 2010–2018 to understand patterns in the spatial variation in fertilizer prices. The aver-

age national price was lowest in Ghana (0.80 USD kg-1), Kenya (0.97 USD kg-1), and Nigeria

(0.99 USD kg-1). Urea was most expensive in three landlocked countries (Burundi: 1.51,

Uganda: 1.49, and Burkina Faso: 1.49 USD kg-1). Our study uncovers considerable spatial

variation in fertilizer prices within African countries. We show that in many countries this vari-

ation can be predicted for unsampled locations by fitting models of prices as a function of

longitude, latitude, and additional predictor variables that capture aspects of market access,

demand and environmental conditions. Predicted within-country urea price variation (as a

fraction of the median price) was particularly high in Kenya (0.77–1.12), Nigeria (0.83–1.34),

Senegal (0.73–1.40), Tanzania (0.90–1.29) and Uganda (0.93–1.30), but much lower in

Burkina Faso (0.96–1.04), Burundi (0.95–1.05), and Togo (0.94–1.05). The correlation coef-

ficient of the country level models was between 0.17 to 0.83 (mean 0.52) and the RMSE var-

ies from 0.005 to 0.188 (mean 0.095). In 10 countries, predictions were at least 25% better

than a null-model that assumes no spatial variation. Our work indicates new opportunities

for incorporating spatial variation in prices into efforts to understand the profitability of agri-

cultural technologies across rural areas in Sub-Saharan Africa.

Introduction

Crop yields in Sub-Saharan Africa (SSA) are generally very low [1, 2]. For example, the average

cereal yield in SSA is 1266 kg ha-1 while the global average is 3745 kg ha-1 [3]. There are several

factors contributing to this, but low soil fertility stands out and the increased use of inorganic

fertilizers could strongly increase crop yields [4, 5, 6, 7]. The average application rate of inor-

ganic fertilizer on arable land in Sub-Saharan Africa is 14 kg ha-1, much lower than the 141 kg
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ha-1 in South Asia, 154 kg ha-1 in the European Union, 175 kg ha-1 in South America, and 302

kg ha-1 in East Asia [3].

A number of hypotheses have been proposed to explain the low usage of inorganic fertilizer

in SSA: (a) on many African soils, crops do not respond well to fertilizer, perhaps because of a

low soil organic matter content or soil degradation [8, 9, 10, 11, 12]; (b) farmers are not aware

of, or do not believe in the utility of inorganic fertilizer [13, 14, 15]; (c) farmers have a cash-

flow problem, and need better access to credit to buy fertilizers [13, 16, 17]; (d) variability in

rainfall makes it too risky to invest in fertilizers, and insurance programs may be needed to

support fertilizer use [5, 18]; and (e) after accounting for agronomic responses to fertilizer;

local input and output prices are such that fertilizer investments are insufficiently profitable

for many farmers [18, 19, 20, 21].

It is challenging to evaluate these hypotheses, because each one of them may be true in

some location or under certain conditions, and because the location specific data needed for

analysis is not readily available. For example, to evaluate the economic returns to fertilizer in a

particular location, we need to understand crop responses to fertilizer under local conditions,

as well as the effective price of fertilizer, and the price that a farmer could get for the crop

products.

In this paper we focus on one particular data gap: the spatial variation in the price of fertil-

izer. While national level fertilizer prices may be available, we need to consider the extent to

which prices vary within countries, reflecting transportation costs and other factors [22, 23, 24,

25]. In the absence of such data, simplifying assumptions are made that may not be valid. For

example, evaluations of the returns to production technologies in developing country settings

have often assumed spatially invariant input and output prices (e.g., [26, 27]) or modeled spa-

tial variation in prices based on assumptions about price variation as a function of distance to

markets (e.g. [24, 28, 29]).

An obstacle to using empirical data on sub-national variation in fertilizer prices is the scar-

city of such data. A few studies have utilized price variation obtained from averaging price sur-

vey data over arbitrary sub-national boundaries, such as districts or regions (e.g. [18, 30, 31]),

but, to our knowledge, there has not been an attempt to systematically describe the variability

of fertilizer prices within countries and our ability to estimate the price at unsampled

locations.

To address this gap, we compiled local fertilizer price data from eighteen countries in SSA.

The main goal of this paper was to describe price variation within and between countries and

to use spatial interpolation models to predict local prices of urea, a commonly used source of

inorganic nitrogen. In addition to the main goal of investigating whether we can interpolate

price data, we analyzed the relationship between urea and other fertilizer type and between

subsidized and non-subsidized fertilizer prices.

Our models enable us to predict prices at locations for which there are no empirical

data available. The amount of sub-national price variation, and the performance of our

interpolation models, differs strongly across countries in our sample. In countries where

there is consistent regional price variation, we show that interpolation methods can be

used to estimating unobserved local prices. The spatial price predictions–“price maps”–

that are generated by our approach can be used to improve empirical research on technol-

ogy use (by more accurately approximating local input and output prices faced by farm-

ers), as well as incorporated into targeting and planning frameworks for agricultural

investments (e.g. by targeting promoting efforts to areas where technologies are most

profitable).

Fertilizer prices in Sub-Saharan Africa
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Materials and methods

Price data

We compiled fertilizer price data for eighteen countries in West and East Africa from two data

sources: (1) Africa Fertilizer [32] and (2) the Living Standards Measurement Study-Integrated

Surveys on Agriculture (henceforth LSMS) [33].

Africa Fertilizer reports prices over time for major towns in different countries. Prices are

for 25 kg or 50 kg bags and expressed in the national currency. We compiled 7823 observations

for 878 locations in seventeen countries: Benin, Burundi, Burkina Faso, Côte d’Ivoire, Ghana,

Kenya, Mali, Malawi, Mozambique, Niger, Nigeria, Rwanda, Senegal, Togo, Tanzania,

Uganda, and Zambia from 2010–2018. We used the town name to assign geographic coordi-

nates to each location. Africa Fertilizer reported non-subsidized and subsidized prices for sev-

eral countries.

LSMS-ISA (hereinafter “LSMS”) is a nationally representative multi-topic household survey

implemented in eight countries in SSA: Burkina Faso, Ethiopia, Malawi, Mali, Niger, Nigeria,

Tanzania, Uganda [33]. For Ethiopia, Mali, and Malawi, prices were reported as the total

amount paid for a quantity of fertilizer purchased expressed in the national currency. We used

that information to calculate the price of fertilizer per kg. For Nigeria and Tanzania, the ques-

tions about the purchased fertilizer (i.e. type, source, and amount used) were at the plot level,

while the reported price is for the total quantity of purchased fertilizer. To compute the fertil-

izer price, we assumed that the amount of fertilizer used on all plots was equal to the total

amount purchased by the farmers. We did not use the LSMS data for Burkina Faso and

Uganda, as the type of inorganic fertilizer purchased was not specified. We did not use the

data for Niger as the locations of the households were not provided, and there were only 13

households that reported a price for urea, which is our main focus in this paper.

Different types of fertilizer are reported by LSMS and Africa Fertilizer depending on the

country, e.g. urea, calcium ammonium nitrate, diammonium phosphate, and ‘NPK’ (in the

case of LSMS without specifying the N, P or K content). For this study, we focus on urea price

because it is the product with most observations across all the countries studied and because it

is an unambiguous product (unlike, for example, fertilizers labeled as “NPK” which may vary

widely in composition percentages). Urea [CO(NH2)2] is the world’s most widely used form of

inorganic nitrogen fertilizer. It contains 46% N, and no other plant nutrients. We compared

the price of urea with that of “NPK” by including all the ‘NPK’ formulations reported by Africa

Fertilizer, with CAN (calcium ammonium nitrate) and DAP (diammonium phosphate). CAN

is also known as nitro-limestone. The chemical formula is variable (e.g. [NH4NO3 + CaCO3
�

MgCO3]) but in general it contains 8% of Ca and 21–27% of N as [NO3
-] and [NH4

+]. DAP

[(NH4)2HPO4] is the world’s most widely used phosphorous fertilizer and is also a source of

N. It contains 18% N and 20% P.

Data manipulation

To allow for comparison of prices between years and countries, we converted prices from

national currency to inflation-adjusted purchasing power parity United States dollars (USD)

by dividing them by the consumer price index (CPI) times the purchasing power parity (PPP)

dollar value for each year according to the World Bank [3]. The CPI is defined as the changes

in the cost to the average consumer of acquiring a basket of goods and services that may be

fixed or changed between years. Our base year was 2010 (CPI = 1). A weakness of the CPI is

that it may not be a very accurate measure of price changes in more rural areas. The PPP con-

version factor represents how much of a country’s currency (expressed in USD using the
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international exchange rate) is required to buy the same amounts of goods and services in the

domestic market as one USD would buy in the United States.

To improve the quality of the data, we removed gross outliers that were clearly implausible.

Outliers were defined as values that were more than 1.5 times the distance between the lower

and upper quartiles away from the lower and upper quartile.

Comparison of fertilizer prices

Although we focus on the price for urea, we provide some comparison with the price for other

fertilizers. For the Africa Fertilizer data set, we fitted: (a) a liner regression model with no

intercept between the prices for urea and the other fertilizer types, for locations where both the

urea price and that of another type were reported; (b) the same linear regression models for

each country separately; and (c) a liner regression model with no intercept between subsidized

and non-subsidized urea prices, for each country separately. We use no intercept because that

gives a simple number that can be readily interpreted (the price of y is a�x). Also, the implicit

(0, 0) intercept should be correct for prices.

Spatial prediction

To study spatial variation in prices, we first removed temporal variation by calculating a spatial

price index computed as the price in a location divided by the national median price for that

year. For spatial predictions we focused on the non-subsidized urea prices for 2014 to 2018.

We build predictive models of the spatial price index using location (longitude and latitude)

and additional predictor variables that capture aspects of market access (travel time to market

and distance to port), demand for product (population density and cropland) and one of the

environmental factors that influence crop responses to fertilizer (precipitation). All predictor

variables were organized as spatial raster data sets with a 5 arc-minute (about 9 × 9 km) spatial

resolution.

Specific market access variables used were travel time in hours to (1) the nearest port, (2)

the nearest town with over 50,000 inhabitants, (3) the nearest town with over 100,000 inhabi-

tants and (4) over 250,000 inhabitants [34]. Population and rural population density estimates

were measured in persons per km2 [35]. Cropland was computed by aggregating a 30 m spatial

resolution crop mask data [36] so that the values represent the fraction of land that is used for

crop production and smoothed by computing a (5x5 cells) focal average. We used annual pre-

cipitation (mm) from WorldClim version 2 [37]. The spatial data was handled with the “raster”

package [38]. For the regional models we also used median country level price as a predictor

variable.

For each country and region (West and East Africa), Random Forest Regression and Thin

Spline Plate algorithms were used to fit models. Random Forest has the benefit of flexibility for

fitting potentially irregular surfaces resulting from complex interactions [39]. We used the

Random Forest algorithm as implemented in the R-package ‘randomForest’ [40]. The tuneRF

function was used to find the optimal number of variables available for splitting at each tree

node (the ‘mtry’ parameter). Random Forest models tend to predict very well within the range

of the observed values, but the predictions may show sudden breaks, and can be poor in

extrapolating. Therefore, we also used Thin Plate Splines (TPS) to create smooth surfaces. TPS

is a flexible local regression method that lends itself to interpolating noisy data with high levels

of uncertainty [41]. The model is fit by minimizing the residual sum of squares subject to a

constraint that the function has a certain level of smoothness (to avoid overfitting). The

required level of smoothness is set by the roughness parameter which is determined through

cross-validation. This, while producing smooth surfaces, TPS will not necessarily return the

Fertilizer prices in Sub-Saharan Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0227764 January 14, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0227764


observed value for a sampled point. This helps guard against over-fitting especially for noisy

datasets where the observations themselves are estimates based on small samples [42]. The

TPS model was implemented using the ‘Tps’ function in the R-package ‘fields’ [43] with only

longitude and latitude as predictor variables. We combined the Random Forest and TPS mod-

els into a single ensemble model using the weighted average of the inverse Root Mean Square

Error (RMSE) of each model. We predicted the spatial price index and derived absolute prices

from that by multiplying it with the current average price.

We evaluated the models with five-fold cross-validation. We computed Pearson’s correla-

tion coefficient and Root Mean Square Errors (RMSE) as test statistics. We compared the

RMSE of the interpolation (EI) with that of a Null-model (E0), in which we assumed no spatial

price variation, by computing relative RMSE as ER = 1-(EI / E0). ER expresses how much better

the interpolated predictions are relative to the using a single national price. We build separate

models for the Africa Fertilizer and LSMS data. For Tanzania, we also fitted a third model by

combining Africa Fertilizer and LSMS data, used a sample from LSMS with the sample size

equal to number of observations in the Africa Fertilizer data for Tanzania. For the regional

model, there were many more samples in the countries for which we had LSMS data. To avoid

an imbalance in the model evaluation, we used a sub-sample of the test data for these coun-

tries, with the sample size equal to the mean number of observations for the non-LSMS coun-

tries in the region.

Variable importance was assessed for the Random Forest model using the percentage

increase in Mean Squared Error, that is, the increase in MSE if the variable had no

information.

Transportation costs

For Ethiopia, Nigeria, and Tanzania, LSMS reported where the farmers purchased the fertilizer

(i.e. within or near the village, within or near the nearest urban center, outside the district or

region). In addition, for Nigeria and Malawi LSMS reported transportation used by farmers to

get to the market and transportation cost. We calculate the proportion of different transporta-

tion type used by farmers and computed average transportation cost of each transportation

type. We fitted a linear regression model with no intercept between transportation cost and

travel time (in hours) to market.

Results

Data quality

We retrieved 12659 observations of farmer-reported urea prices from LSMS and retained

10528 observations. The LSMS data for Mali and Nigeria had many more outliers (25% and

24%) than Ethiopia (13%), Tanzania (10%), and Malawi (1.6%) (Table 1). Most outliers were

extreme prices: below 0.1 USD kg-1 or above 5 USD kg-1. In Nigeria, 48% of the outliers were

associated with small quantities (10 kg or less) and 35% were associated with quantities below

4 kg. Even though prices could be expected to be higher per unit weight for low quantities pur-

chased, they remained excessive. In some cases, there appeared to have been a mix up in the

units between kg and several reports of purchases of 0.5, 1, 2, 3 or 4 kg of fertilizer, probably

referred to the number of 50 kg bags instead. For example, a purchase of 2 kg of urea for 79

USD is unlikely, whereas dividing that price by 100 kg (for two bags of 50 kg) yields a plausible

price of 0.79 USD kg-1. However, many observations associated with these amounts cannot be

fixed by multiplying with 50, because even after changing the units to number of bags, the

prices remained too high. In addition, there were other cases where low amounts of fertilizer

were associated with low prices (less than 0.1 USD kg-1).

Fertilizer prices in Sub-Saharan Africa
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For Ethiopia, 37% of the outliers were associated with fertilizer purchases in quantities of 4

kg or less and very low prices (< 0.1 USD kg-1). Other low prices (14%) were often associated

with large quantities (> 2000 kg) of purchased fertilizer that would seem unlikely for most

farmers. The outliers were not clustered in a specific region of the country.

The data from Africa Fertilizer corresponding to non-subsidized urea did not have many

outliers, except for Burundi and Zambia (24%); we retained 1433 records of this data source

(Table 1).

Country level prices

Urea price. We had most observations on non-subsidized prices for Ethiopia (2045),

Nigeria (1135), Malawi (1142), Tanzania (515), and Mali (386) due to the large sample of fertil-

izer users in the LSMS data for these countries (in addition to the Africa Fertilizer data avail-

able for two of these countries). For most other countries, we had between 60 and 137

observations. The lowest number of observations was for Benin (41), Niger (27), and Togo

(26) (Table 2). The non-subsidized mean urea price was lower in West Africa than in East

Africa (1.07 ± 0.29 vs. 1.24 ± 0.35 USD kg-1; t-test P<0.05). Ghana, Kenya, and Nigeria had the

lowest national mean prices (0.80, 0.97, 0.99 USD kg-1). The three countries with the most

expensive urea are landlocked (Burundi: 1.51, Uganda: 1.49 and Burkina Faso: 1.49 USD kg-1)

(Table 2).

The countries with the highest urea price in West Africa were Burkina Faso, Togo, Senegal,

Mali, and Niger. Except for Senegal, these countries are neighbors and use a common currency

Table 1. Number of observations collected for urea prices, number of observations of non-subsidized urea, number of observations after removing outliers (n) and

number of observations after aggregating by household (values between parenthesis), and the percent of outliers detected (%) for each data source.

Country Observations Non-subsidized n Outliers (%) Data source

Benin 53 43 41 5 Africa Fertilizer

Burkina Faso 132 90 90 0 Africa Fertilizer

Burundi 137 87 66 24 Africa Fertilizer

Côte d’Ivoire 80 80 80 0 Africa Fertilizer

Ethiopia 7768 7768 6788 (2045) 13 LSMS

Ghana 150 85 83 2 Africa Fertilizer

Kenya 123 123 122 1 Africa Fertilizer

Malawi 142 119 113 5 Africa Fertilizer

Malawi 1071 1071 1054 (1047) 1.6 LSMS

Mali 122 77 77 0 Africa Fertilizer

Mali 800 800 604 (309) 25 LSMS

Mozambique 103 103 96 7 Africa Fertilizer

Niger 27 27 27 0 Africa Fertilizer

Nigeria 115 109 109 0 Africa Fertilizer

Nigeria 1864 1864 1418 (1135) 24 LSMS

Rwanda 223 88 88 0 Africa Fertilizer

Senegal 97 81 74 9 Africa Fertilizer

Tanzania 157 143 137 4 Africa Fertilizer

Tanzania 1156 736 664 (515) 10 LSMS

Togo 45 26 26 0 Africa Fertilizer

Uganda 121 121 121 0 Africa Fertilizer

Zambia 194 109 83 24 Africa Fertilizer

Total 14680 13750 6484

https://doi.org/10.1371/journal.pone.0227764.t001
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(West African CFA franc). Ghana is also a neighbor of three of these countries, but it had the

lowest urea prices in West Africa. In East Africa, the countries with the highest prices were

Burundi and Uganda while Kenya had the lowest average price in East Africa.

The coefficient of variation (CV) in prices was above 25% for Ghana, Kenya, Malawi, Nige-

ria, Senegal, Tanzania, Uganda, and Zambia. The CV was relatively low in Burkina Faso, Côte

d’Ivoire, Ethiopia, Mali, Niger, and Rwanda (Table 2).

From 2010 to 2018, countries in which Africa Fertilizer reported subsidized prices were:

Benin, Burkina Faso, Burundi, Ghana, Malawi, Mali, Nigeria, Rwanda, Senegal, Tanzania,

Togo, and Zambia (Table 2). Subsidized prices were much lower than non-subsidized prices in

Malawi (9%) and Zambia (18% of the non-subsidized price). In contrast, they were 70% in

Ghana and Mali, 71% in Benin, and 84% in Rwanda.

We had 159 cases from twelve countries from Africa Fertilizer data where we had subsi-

dized and non-subsidized fertilizer prices from the same town. In all the towns, subsidized

prices were lower than non-subsidized prices. The slope of the regression models between sub-

sidized and non-subsidized prices varied from 0.18 to 0.78 USD kg-1 with a mean of

0.61 ± 0.19 USD kg-1 (Fig 1).

Urea price relative to other types of fertilizer. Ghana and Nigeria had the lowest median

NPK prices (0.85 and 1.02 USD kg-1). The countries with the most expensive NPK were Bur-

kina Faso, Burundi, Malawi, Mali, Mozambique, and Uganda (between 1.57 to 1.63 USD kg-1)

(S1 Table). Except for Mozambique, these countries are landlocked. The lowest median DAP

prices were in East African countries (Malawi and Kenya) and the highest median prices were

in landlocked West African countries (Burkina Faso and Mali). CAN prices were only reported

for East African countries. The lowest median prices were reported in Kenya and Tanzania

and the highest were reported in Malawi and Mozambique (Fig 2 and S1 Table). Out of seven-

teen countries only in Burundi the median urea price was higher than the median NPK price;

in Benin, Ghana, Niger, Nigeria, Senegal, Togo, and Zambia it was about the same, and in the

Table 2. Number of observations, median, mean price, and coefficient of variation (CV) for non-subsidized urea price (USD kg-1) per country. Subsidized urea

price (median-USD kg-1), percentage of the non-subsidized urea price, and number of observations per country (values between parenthesis). Slope (USD kg-1) of the

regression models between subsidized and non-subsidized prices.

Country n Median Mean CV Subsidized price (%), (n) Slope

Benin 41 1.12 1.17 20 0.80 (71), (10) 0.78

Burkina Faso 90 1.48 1.49 12 1.09 (74), (42) 0.75

Burundi 66 1.52 1.51 20 0.96 (63), (50) 0.61

Côte d’Ivoire 80 1.16 1.23 16 --- ---

Ethiopia 2045 1.25 1.23 16 --- ---

Ghana 83 0.80 0.80 29 0.56 (70), (65) 0.72

Kenya 122 0.84 0.97 38 --- ---

Malawi 1142 1.31 1.19 41 0.12 (9), (23) 0.18

Mali 386 1.02 1.08 18 0.94 (70), (45) 0.69

Mozambique 96 1.36 1.39 22 --- ---

Niger 27 1.34 1.35 7 --- ---

Nigeria 1135 1.00 0.99 26 0.43 (53), (6) 0.61

Rwanda 88 1.26 1.32 14 1.06 (84), (135) 0.77

Senegal 74 1.38 1.38 25 0.70 (51), (16) 0.62

Tanzania 515 1.36 1.35 30 0.81 (60), (14) 0.68

Togo 26 1.48 1.41 23 0.84 (57), (19) 0.62

Uganda 121 1.42 1.49 30 --- ---

Zambia 83 1.32 1.32 28 0.24 (18), (85) 0.23

https://doi.org/10.1371/journal.pone.0227764.t002
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other countries, the urea price was lower. Urea price was lower than DAP in most of the coun-

tries, but it was higher in Burundi and Malawi.

The regression models for all locations showed a strong association between the price of

urea and that of the other products. The slopes (that is, how much the price of NPK/DAP/

CAN changes for a one dollar increase in the urea price) were 1.07 USD kg-1 for NPK; 1.16

USD kg-1 for DAP; and 0.95 USD kg-1 for CAN (Fig 3). For the NPK models fitted for each

country, the average slope was 1.07 USD kg-1 (range: 0.85–1.18 USD kg-1) (S2 Table and S1

Fig). For the DAP models by country, the average slope was 1.13 USD kg-1 (range: 0.87–1.27

USD kg-1) (S3 Table and S2 Fig). For the CAN models by country, the average slope was 0.96

(range: 0.89–1.01 USD kg-1) (S4 Table and S3 Fig).

Fig 1. Subsidized urea price (USD kg-1) versus non-subsidized urea price (USD kg-1) for location where both urea

prices were reported in each country.

https://doi.org/10.1371/journal.pone.0227764.g001

Fig 2. NPK median price (USD kg-1) versus urea median price (USD kg-1); DAP median price (USD kg-1) versus

urea median price (USD kg-1); CAN median price (USD kg-1) versus urea median price (USD kg-1) for each

country and location where both prices were reported. All the prices are non-subsidized. The black line represents

y = x.

https://doi.org/10.1371/journal.pone.0227764.g002
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Subnational urea price variation

Data quality. The density of the reported fertilizer prices varied between countries, but

generally appeared to be a reasonably good spatial sample of the distribution of crop land in

the analyzed countries (Fig 4). That is, price data was collected in areas with crop production,

and excluded, for example, desert regions in the Sahel and Kenya, and the extensive protected

areas in Tanzania. Nevertheless, some regions within countries had poor coverage. For exam-

ple, observations in Zambia are concentrated in Central province, around Lusaka, the capital,

and along the main north-south road that links Lusaka with major cities in Southern and

Northern provinces, and there is only a single observation in western Zambia.

National level models. The cross-validation correlation coefficient of the national level

ensemble models was between 0.17 and 0.83, with a mean of 0.52 while the EI (RMSE) varied

from 0.005 to 0.188, with a mean value of 0.095. The error relative to the Null model of no spa-

tial variation, ER, was above 0.25 for ten countries. For Nigeria, the ER was similar to the Null

model and for Rwanda the ER was negative, meaning that the national average was a better

predictor of local prices than the spatially interpolated prices. The correlation coefficient of the

models fitted with LSMS data varied between 0.08 to 0.42 with a mean equal to 0.27. The

model built with LSMS data performed poorer than the model built with Africa Fertilizer data

for Mali and Malawi (correlation coefficient for Mali: 0.08 vs 0.59 and Malawi: 0.28 vs 0.17 and

ER for Mali: -0.03 vs 0.28 and Malawi: 0.02 vs 0.28). The LSMS models for Nigeria was slightly

better than the model fitted with Africa Fertilizer data, but still very low (correlation coefficient

0.32 vs 030 and ER: 0.02 vs -0.08). For Tanzania, the performance of the models was better for

Africa Fertilizer but in this case LSMS also performed well (correlation coefficient 0.42 vs 0.58

and ER 0.21 vs 0.26). For the regional models, the correlation between observed and predicted

prices was 0.59 for East Africa and 0.54 West Africa and the models performed 21% and 16%

better than the Null model (Table 3).

The range in the predicted relative prices within the countries was between 0.59 and 1.40

(Figs 5 and 6). It was particularly high in Kenya (0.77–1.12), Nigeria (0.83–1.34), Senegal

(0.73–1.40), Tanzania (0.90–1.29) and Uganda (0.93–1.30). It was low in Burkina Faso (0.96–

1.04), Burundi (0.95–1.05), and Togo (0.94–1.05). For Rwanda, the spatial models performed

worse than the Null model and the range in the relative prices was very low (0.99–1), so we

assume no (systematic) variation in urea prices in these countries; and for that reason we did

not include maps for Rwanda.

In several countries, for example, Côte d’Ivoire, Ethiopia, Kenya, Mali, Uganda, and Zam-

bia, prices were lower closer to the capital and or other main markets. However, in Ghana and

Fig 3. NPK price (USD kg-1) versus urea price (USD kg-1); DAP price (USD kg-1) versus urea price (USD kg-1); CAN price

(USD kg-1) versus urea price (USD kg-1) for each location where both prices were reported. All the prices are non-

subsidized. The black line represents y = x. The red line represents the fitted model.

https://doi.org/10.1371/journal.pone.0227764.g003
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Benin the prices were lower in the north, further away from the capitals and main ports. In

Tanzania, prices were relatively low in the south and coastal region and higher at the north-

west. In Mozambique prices were lowest near the border with Zambia. In Senegal, prices are

much higher south of The Gambia, which is a region of Senegal that is relatively difficult to

reach from the other part of the country (Figs 5 and 6).

For Nigeria the interpolation models were not much better than the Null model regardless

the data source (ER: 0.08 and -0.02) (Table 3). The poor performance was associated with very

limited variation in predicted prices for the Africa Fertilizer model, and for the LSMS model as

well in most parts of the country. These results suggest that there is limited systematic spatial

variation in fertilizer prices in Nigeria (Fig 7).

For Tanzania, models from both sources showed strong spatial variation. They both showed

higher prices in the northwest, but they did not agree on prices in the south. Although the

Africa fertilizer model performed slightly better than the LSMS model (ER: 0.26 vs 0.21); LSMS

had much more data, and a better geographic coverage. There was no Africa Fertilizer data in

the south where the predictions were most dissimilar. The performance of the model that com-

bined Africa Fertilizer and LSMS data was not as good as that of the individual models (ER:

0.12) (Table 3). However, the spatial prediction of the combined model could be more realistic

mostly in the south-east where no data from Africa Fertilizer was reported (Fig 8).

Regional models. The regional maps of the absolute prices show the strong effect of coun-

tries on fertilizer prices. Most of the variation is now between countries, instead of within

countries. The predictions from a single regional model are similar to that of the combined

country-based models, but with reduced spatial variation within countries (Figs 9 and 10).

Variable importance. The most important variables in the country level Random Forest

models were latitude and longitude, followed by rural population density, precipitation, and

Fig 4. Major cropland area in Sub-Saharan Africa (gray areas), distribution of the urea price data from Africa

Fertilizer (red dots) and the Living Standards Measurement Survey-Integrated Surveys on Agriculture (LSMS; blue

dots), and country boundaries (black lines).

https://doi.org/10.1371/journal.pone.0227764.g004
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population density (Fig 11). For the East Africa regional model, the most important variables

were y-coordinates (32%), cropland (32%), and rural population density (32% increase of

MSE). For the West Africa regional model, the most important variables were longitude

(28%), precipitation (21%), latitude, population density and distance to port (20% increase of

MSE).

Transportation cost. LSMS reported where the farmers purchased the fertilizer (within

or near the village, within or near the town, urban center, outside the district or region) for

Ethiopia, Nigeria, and Tanzania. On average, 58% of the fertilizer was purchased within the vil-

lage (70% in Ethiopia, 51% in Nigeria, and 52% in Tanzania); 22% near the village (18% in

Ethiopia, 29% in Nigeria, and 18% in Tanzania); 15% within or near town (10% in Ethiopia,

18% in Nigeria, and 18% in Tanzania).

For Nigeria and Malawi, LSMS reported type of transportation and transportation costs

farmers paid in order to obtain the fertilizer from the market. In Nigeria, for transportation

52% of the farmers used a motorcycle, 36% used a truck/bus/minibus, 5% a commercial bicy-

cle, and the rest used either a wheelbarrow, own bicycle, animal cart, on foot, or a boat. Trans-

portation cost range between 0.01 to 3.76 USD kg-1 of fertilizer, with a mean equal to

Table 3. Summary results for country level and regional models to predict the spatial price index (price divided by the national average) for urea and cross-valida-

tion results: Pearson’s correlation coefficient between observed and predicted data price. EI: Root mean square error (USD kg-1). E0: Mean square error of the Null

model. ER: Relative mean square error, calculated as: 1-(EI / E0). EI and E0 are expressed for the relative index and for the relative index multiplied by the national average

price (USD kg-1, values between parenthesis). For country-level models the data source was Africa Fertilizer, except where indicated otherwise.

Country-Data source Median Price (USD kg-1) Correlation coefficient EI E0 ER

Benin 1.12 0.52 0.136 (0.15) 0.172 (0.19) 0.21

Burundi 1.36 0.39 0.063 (0.09) 0.062 (0.08) -0.02

Burkina Faso 1.42 0.22 0.048 (0.07) 0.056 (0.08) 0.14

Côte d’Ivoire 1.10 0.80 0.030 (0.03) 0.051 (0.06) 0.41

Ethiopia, LSMS 1.36 0.55 0.111 (0.15) 0.135 (0.18) 0.18

Ghana 0.73 0.79 0.097 (0.07) 0.118 (0.09) 0.19

Kenya 0.64 0.80 0.047 (0.03) 0.076 (0.05) 0.38

Malawi, Africa Fertilizer 0.76 0.17 0.067 (0.05) 0.093 (0.07) 0.28

Malawi, LSMS 1.29 0.28 0.359 (0.46) 0.367 (0.47) 0.02

Mali, Africa Fertilizer 1.28 0.59 0.075 (0.10) 0.104 (0.13) 0.28

Mali, LSMS 1.05 0.08 0.288 (0.30) 0.279 (0.29) -0.03

Mozambique 1.20 0.63 0.108 (0.13) 0.145 (0.17) 0.26

Niger 1.34 0.39 0.048 (0.06) 0.062 (0.08) 0.23

Nigeria, Africa Fertilizer 0.74 0.32 0.057 (0.04) 0.053 (0.04) -0.08

Nigeria, LSMS 0.80 0.30 0.185 (0.15) 0.188 (0.15) 0.02

Senegal 1.21 0.68 0.159 (0.19) 0.267 (0.32) 0.40

Rwanda 1.26 0.51 0.005 (0.01) 0.004 (0.01) -0.25

Tanzania, Africa Fertilizer 0.97 0.58 0.148 (0.14) 0.200 (0.19) 0.26

Tanzania, LSMS 0.97 0.42 0.182 (0.18) 0.229 (0.22) 0.21

Tanzania, combined 0.97 0.52 0.188 (0.18) 0.224 (0.22) 0.12

Togo 1.48 0.45 0.040 (0.06) 0.059 (0.09) 0.32

Uganda 1.16 0.83 0.097 (0.11) 0.155 (0.18) 0.37

Zambia 1.24 0.50 0.042 (0.05) 0.049 (0.06) 0.14

East Africa� 1.20 0.59 0.101 (0.12) 0.128 (0.15) 0.21

West Africa� 1.02 0.54 0.120 (0.12) 0.142 (0.14) 0.16

�East Africa: Burundi, Ethiopia, Kenya, Mozambique, Malawi, Rwanda, Tanzania, Uganda, Zambia. West Africa: Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali,

Niger, Nigeria, Senegal, Togo.

https://doi.org/10.1371/journal.pone.0227764.t003
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0.05 ± 0.17 USD kg-1. In this case, transportation cost (USD kg-1 of purchased fertilizer) by

transportation type range between 0.01 to 0.05 USD kg- (Table 4). On average the transporta-

tion cost was 4.35% of the total paid for the fertilizer price; for truck/bus/minibus this relation-

ship was 1.93%, for wheelbarrow 2.13%, for own bicycle/animal cart/push cart 3.15%, for hired

bicycle 3.68%, and for motorcycle 4.19%. The correlation between transportation cost and

access to market (travel time in hours) over 250,000 inhabitants was 0.21. We fitted a linear

regression with no-intercept between transportation cost and access to market and the slope

(how much transportation cost changes, for a 1 hour increase in the travel time) was 0.59

USD. The average travel time to a market over 250,000 was 3.45 hours.

In Malawi, for transportation 29% of the respondents used their own bicycle or oxcart, 28%

went on foot, 25% used truck/bus/minibus; 15% bicycle taxi; and 3% others. Transportation

cost ranged between 0.02 to 1.09 USD kg-1, with a mean equal to 0.06 ± 0.12 USD kg-1. In this

case, transportation cost (USD kg-1 of purchased fertilizer) by transportation type varied

between 0.04 to 0.08 USD kg-1 (Table 4). On average the transportation cost was 5.55% of the

total paid for the fertilizer price. For truck/bus/minibus this relationship was 6.23%; for bicycle

taxi was 5.11%; and for own bicycle/oxcart was 3.13%. Correlation between transportation

cost and travel time was equal to 0.26 for markets over 50,000 inhabitants and 0.20 for markets

over 250,000 inhabitants. On average travel time to markets over 50,000 was 3.98 hours and

the slope between transportation cost and travel time was 0.43 USD.

Discussion and conclusions

We have compiled a large amount of retail fertilizer price data to understand spatial variation

in urea prices in eighteen countries in SSA. Our data covered much of the SSA cropland area,

Fig 5. Predicted relative urea price of urea (local price divided by the observed median national price) for areas

with crop land in eight East African countries. For Malawi, the prediction of the best-performing model is shown

(Africa Fertilizer). For Tanzania, the prediction of the combined model (Africa fertilizer and LSMS) is shown.

https://doi.org/10.1371/journal.pone.0227764.g005
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but we did not have data for a few large countries including South Africa, Sudan, and Zimba-

bwe. We found a considerable amount of spatial variation in urea prices in many countries. In

most countries our spatial models fit the data reasonably well and outperformed the Null

model of no spatial variation. Countries where the model performed very well, such as Côte

d’Ivoire, Kenya, Senegal, Tanzania, and Uganda had a relatively high range in observed prices.

Countries where the spatial prediction model did not perform very well were relatively small

(e.g. Rwanda), and thus one might not expect as much spatial price variation. In Rwanda and

Malawi, the fertilizer subsidy program may also be lowering the variation and complicating

the pattern of spatial price variation. For instance, in Rwanda the price for subsidized prices

was the same in all locations and the number of observations was higher than for non-subsi-

dized urea. Nigeria was the only large country where the spatial prediction model did not

Fig 6. Predicted relative urea price (local price divided by the observed median national price) for areas with crop

land in nine West African countries. For countries with two data sources (Africa Fertilizer and LSMS), the prediction

of the best-performing model is shown.

https://doi.org/10.1371/journal.pone.0227764.g006

Fig 7. Predicted relative urea price (local price divided by the observed median national price) for areas with crop land

in (a) Nigeria using Africa fertilizer data; (b) Nigeria using LSMS data.

https://doi.org/10.1371/journal.pone.0227764.g007
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perform well. While the predictions based on the LSMS showed spatial variation; the model

predictions were poor, perhaps due to low data quality. The model fitted with Africa Fertilizer

data had also a poor performance, perhaps due to the sparse spatial coverage.

The LSMS would appear to be an attractive data source by virtue of the large number of rec-

ords of prices paid by farmers. However, models fit with LSMS data generally performed

poorly, possibly due to data quality issues which are not immediately apparent from examina-

tion of the values reported, and/or the fact that farmers in a given locality may purchase fertil-

izer from different market locations which are imperfectly identified in the data. For countries

where Africa Fertilizer data was also available, models fit with these data generally did better

(or both models were very poor). This suggests that the LSMS as a source of local price data is

Fig 8. Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in (a)

Tanzania using Africa Fertilizer data; (b) Tanzania using LSMS data; (c) Tanzania using Africa Fertilizer data and a sub-sample of

LSMS data with the sample size equal to Africa Fertilizer.

https://doi.org/10.1371/journal.pone.0227764.g008

Fig 9. Urea price (USD kg-1) for crop land in East African countries predicted with (a) country level models; and (b)

with a single regional model.

https://doi.org/10.1371/journal.pone.0227764.g009
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compromised by data quality issues. While we were able to remove outliers, we had no way of

correcting error for prices that were within a reasonable range of values. This problem has also

been reported by others [21, 44]. The high number of unrealistic prices (excluded in our study

as outliers) and poor model fit, suggest the need for better quality control mechanisms in this

survey.

The consistency of the Africa Fertilizer data was generally much better. However, it is

worth noting that these price data are only collected in towns and may not reflect the likely

higher prices in more isolated rural areas. Also, because of the relatively low sample size, some

important agricultural regions within countries were not sampled, making the predictions for

these regions highly uncertain. An expansion of the Africa Fertilizer observation network

Fig 10. Urea price (USD kg-1) for crop land in West Africa predicted with (a) country level models and (b) with a

single regional ensemble model.

https://doi.org/10.1371/journal.pone.0227764.g010

Fig 11. Variable importance across the eighteen-country level model. A variable is included if the % increase in

Mean Square Error was more than 10% in a country-level Random Forest model. Access -50, -100, and -250: travel

time (hours) to the nearest town with over 50,000 inhabitants, over 100,000 inhabitants, and over 250,000 inhabitants.

Distance to port: travel time (hours) to the nearest port.

https://doi.org/10.1371/journal.pone.0227764.g011
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within countries, and to other countries currently not covered would be very helpful to more

fully understand fertilizer price variation.

Using regional models (i.e. pooled observations from multiple countries within a region),

we predicted prices for the whole region with a single model. Regional models are attractive as

they could be used to predict price variation in countries for which we have limited local mar-

ket price data, but we did not investigate that here.

It has been reported that fertilizer prices in SSA increase when moving away from main

markets due to transportation costs from the port or blending facilities [45, 22, 23, 24]. For

example, a price gradient was reported for Uganda with retail prices steadily rising when mov-

ing away from Kampala [30]. We found this pattern in a number of countries, including Côte

d’Ivoire, Ethiopia, Kenya, Mali and Uganda. However, there were clear exceptions too. For

example, in Nigeria, Ghana, and Benin, prices went down when moving away from the coast.

Possible factors influencing this pattern could be that: market prices in areas with higher

demand are lower [46, 47, 27]. Aggregate fertilizer use in northern Nigeria is higher than in

the south because it has a larger cultivated area and produces high value crops [48, 49]. In addi-

tion, northern states have traditionally provided greater fertilizer subsidies [50].

In some cases, imports of fertilizer from neighboring countries with lower prices may affect

prices. For example, imported fertilizer from Malawi could be reducing the price in south-west

Tanzania. The allocation of subsidized fertilizer, and the degree to which this leak into the

non-subsidized market could also influence prices [51]. Political influence can affect the alloca-

tion of subsidies, with politically well-connected villages receive more input compared to less

connected villages [52, 53, 54] or to reward loyalty [55, 56, 57].

It is important to know the price at the farmgate which includes the costs of the fertilizer

per se plus the cost of reaching the market to get the product. Some authors reported little

effect of changes in the cost of shipping fertilizer from the distributor to local retailer [21,58].

However, like [59], they found that farmers were sensitive to the costs of reaching retailers. We

only had local transportation cost data for Malawi and Nigeria; our results suggest that the

additional costs were 2% and 5.8% of the total amount paid for the fertilizer. Our estimated

prices can be adjusted when using them in computations for on-farm costs.

Many studies of technology profitability have assumed spatially-constant input and output

prices (e.g., [26, 27]), which is at odds with rural economic reality. A few studies have utilized

“local” prices calculated as sub-national mean prices (e.g. at district or province level) from

survey data (e.g. [18, 30, 60]). The sizes of such sub-national units often vary widely, and the

boundaries are somewhat arbitrary, and there may be strong unobserved price variation within

such areas. Our interpolation method is very likely an improvement over such approaches,

particularly in countries where available spatial covariates perform well as predictors. We used

an ensemble model of Random Forest Regression and Thin Plate Spline methods. A downside

Table 4. Transportation type utilized by farmers to reach markets and purchase fertilizer, adoption rate (%), and median price paid (USD kg-1 of purchased fertil-

izer) reported by LSMS for Nigeria and Malawi.

Transportation type Nigeria Malawi

Adoption rate Price Adoption rate Price

Bicycle taxi 5 0.03 15 0.04

Motorcycle 52 0.05 --- ---

Own bicycle/Oxcart --- --- 29 0.06

On foot --- --- 28 ---

Others 7 0.03 3 0.04

Truck/Bus/Minibus 36 0.01 25 0.08

https://doi.org/10.1371/journal.pone.0227764.t004
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of using such algorithmic methods is that there is no direct way to estimate uncertainty. How-

ever, elaborate Bayesian geostatistical approaches have been developed to estimate uncertainty

in similar contexts (e.g., [61, 62]) and these methods could be applied to price data as well.

This is particularly relevant to account for the large uncertainty of the predictions in areas far

away from any observations. It is important to note that cross-validation results may be

inflated for such regions because, on average, model skill should decrease with the distance

from a location to locations with known prices (cf., [63]).

An important avenue for future empirical work would be to evaluate the extent to which

the subnational price variation we have documented is a useful explanatory factor for observed

variation in smallholder fertilizer use in Sub-Saharan Africa, after controlling for local agro-

nomic responses and output prices. One way to do that may be to integrate input (and output)

price predictions into spatial crop models, and then evaluate the degree to which modeled fer-

tilizer use profitability predicts observed fertilizer use rates across different locations.

Farmers in remote rural settings generally face less favorable input-output price ratios than

farmers in less remote settings [58, 64]. These differences can likely help explain differential pat-

terns of agricultural input use. Yet the specific ways in which these spatial patterns play out is

often obscured by insufficient data on local prices, and the patterns we have revealed did not

always follow simple expectations (e.g., prices being higher in coastal Ghana). The evidence we

have compiled in this paper suggests that, while investments in more comprehensive and spatially

representative price data collection would be very useful, we may utilize spatial price prediction

models to extend the value of existing data to better reflect local price variation through interpola-

tion. Even if imperfect, such estimates are almost certainly more usefully reflective of farmers’ eco-

nomic realities than assumptions of spatially constant prices within a given country, for all but the

smallest countries. We propose that spatial price estimation methods such as the ones we employ

here may serve for better approximating heterogeneous economic market landscapes, until such

time as truly comprehensive local market price information systems become available.
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