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Abstract

Blockchain technology gains more and more attention in the past decades and has been

applied in many areas. The main bottleneck for the development and application of block-

chain is its limited scalability. Blockchain with directed acyclic graph structure (BlockDAG) is

proposed in order to alleviate the scalability problem. One of the key technical problems in

BlockDAG is the identification of honest blocks which are very important for establishing a

stable and invulnerable total order of all the blocks. The stability and security of BlockDAG

largely depends on the precision of honest block identification. This paper presents a novel

universal framework based on graph theory, called MaxCord, for identifying the honest

blocks in BlockDAG. By introducing the concept of discord, the honest block identification is

modelled as a generalized maximum independent set problem. Several algorithms are

developed, including exact, greedy and iterative filtering algorithms. The extensive compari-

sons between proposed algorithms and the existing method were conducted on the simu-

lated BlockDAG data to show that the proposed iterative filtering algorithm identifies the

honest blocks both efficiently and effectively. The proposed MaxCord framework and algo-

rithms can set the solid foundation for the BlockDAG technology.

1. Introduction

Blockchain is a decentralized transaction and data management technology which was firstly

developed by Nakamoto [1] for Bitcoin. A sequence of blocks which contain block head and

block body form blockchain chronologically. Marc Andreessen, the doyen of Silicon Valley’s

capitalists, listed blockchain as the most significant invention which has the potential to trans-

form the world of finance and beyond since the Internet itself [2,3]. Nowadays blockchain has

gained more and more attention, and has been applied in lots of areas, such as IoT [4–7],

healthcare [8], finance [9–12] and supply chain [13]. But there still exist some developmental

bottlenecks for blockchain. Swan [14] points out seven challenges that the blockchain technol-

ogy faces, including throughput, security and so on. The throughput of current blockchain
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system under the Proof of Work (PoW) consensus mechanism is very low, nearly 6–7 transac-

tions per second, while bank card such as Visa can process thousands of transactions per sec-

ond. Many other consensus mechanisms such as Proof of Stake (PoS), Delegated Proof of

Stake (DPoS), Proof of Importance (PoI), Proof of Luck (PoL), hybrid PoW/PoS, were pro-

posed to accelerate the block validation process, but the performance of blockchain is still not

substantially improved due to the occurrence of blockchain forks. Moreover, the consensus

mechanisms with higher throughput often sacrifice the decentralization to some extent. The

poor scalability limits the development and application of blockchain greatly, especially in the

areas with high-frequency transactions.

Most of research on blockchain focused on improving blockchain from the perspective of

privacy and security [15–19], and some worked on the consensus algorithms [20], while only a

few of researchers conducted some research on its scalable limitation. Lin et al. [21] showed

the SPV (Simplified Payment Verification) technology to handle with the scalable limitation of

blockchain by only using the block head message without maintaining the full block informa-

tion, which is equivalent to expand the block size in disguised form. Decker et al. [22] studied

the information propagation in the Bitcoin network and pointed out that the propagation

delay in the network is the main reason for blockchain forks, and the abandoned blocks due to

blockchain forks are the source of low throughput and poor scalability. Biais et al. [23] mod-

eled the blockchain protocol as a stochastic game to analyze the equilibrium strategies of min-

ers. They found the longest chain without forks is a Markov perfect equilibrium and there also

exist equilibria with forks, which leads to the orphaned blocks. The model can show how folks

can be generated through information delays and software updates. Zohar et al. [24] proposed

an alternative to the longest-chain rule used in Bitcoin, named as GHOST, which determines

the main chain using all blocks in the subtree at the fork. By utilizing the abandoned blocks,

GHOST can improve the security of blockchain, but the throughput remains the same. In

another paper, Zohar et al. [25] presented the blockchain with directed acyclic graph structure

(BlockDAG), which allows the blocks to reference multiple predecessors to incorporate the

information from all blocks into log. The DAG structure works well and leads to an increased

throughput. More and more researchers agreed that BlockDAG is the next generation direc-

tion for the blockchain technology. An increasing number of BlockDAG-based blockchain

platforms appeared in industry, such as IOTA (Tangle), byteball, and XDAG [26–28].

The block ordering problem is the main concern under directed acyclic graph (DAG) struc-

ture. In order to avoid the double-spending attack (attackers try to spend the same cryptocur-

rencies more than once), the ordering of transactions is very necessary: People can determine

the valid transactions through accepting the first transaction and rejecting the later one

according to the order of two conflict transactions. And the ordering of transactions is depen-

dent on the ordering of blocks. Unlike the traditional blockchain, the ordering of blocks in the

DAG is not straightforward since the DAG is essentially a partial order graph. Therefore,

many approaches were developed to derive a stable and invulnerable total order of blocks

from the DAG. A typical approach for block ordering problem, as PHANTOM proposed by

Zohar et al. [29], is mainly composed of two steps. First, distinguish the honest blocks (blocks

generated and propagated timely by the miners who conform with the rules of blockchain)

from the suspect dishonest blocks (blocks generated by the miners who deliberately keep the

blocks secrete for a long time or take other actions which are not in accordance with the rules

of blockchain). Second, derive a full topological ordering based on the temporal information

embedded in the topological structure of honest blocks. In the two-step approach, the quality

of final block ordering is largely dependent on the precision of the honest block identification

since the dishonest blocks might disturb the true temporal information. The more precise the

honest block identification is, the better the block ordering.
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In this paper, we presented a novel graph theory-based framework MaxCord for identifying

the honest blocks in BlockDAG. Using this framework, several algorithms were developed and

evaluated on the simulated BlockDAG data. Compared with the existing approach PHAN-

TOM, the proposed algorithms are both effective and efficient which can lay the solid founda-

tion for the following development of BlockDAG technology. The following of the paper is

organized as follows. In Section 2, we described the honest block identification problem and

proposed a novel general framework and illustrated its relationship with PHANTOM. Several

algorithms for solving the problem were presented, including an iterative filtering algorithm

MAXCORD-IFA. The algorithms were evaluated, analyzed and compared in Section 3 based

on the simulated BlockDAG datasets. The conclusions were drawn, and further research direc-

tions were given in the last section.

2. Honest block identification problem

Briefly speaking, BlockDAG is a DAG of blocks, in which each block is constructed by one of

the participated miners and linked to other blocks. The new block is connected to the existing

DAG by referencing all tip blocks (those blocks are not referenced by any other blocks) of the

DAG found by the miner. If there is no network delay, the DAG will become a directed chain

where the first block (genesis block) is the root. Generally, the blocks constitute a growing

DAG. If all participated miner honestly obey the rules of block generation and connection, the

relative temporal order of blocks can be straightforwardly inferred, with acceptable small error

which depends on the extent of network delay. However, the blocks generated by potential

attackers might significantly disturb the temporal order information embedded in the Block-

DAG. By analyzing the possible attack modes, we found that there are two key policies can be

taken by the attackers:

1. keep their blocks secret and publish them later, e.g. after a certain transaction is confirmed;

2. only reference the specific blocks, e.g. the blocks created by themselves.

When generating a block and connecting it to the BlockDAG, the attackers might take any

one or both two of the above policies depending on their attacking strategy. Whatever the pol-

icy the attackers use, the connection patterns between the blocks created by the attackers and

the normal blocks are very different from the patterns within each group. Based on the intui-

tion, we first defined a novel discord measurement which can estimate the possibility of two

blocks belonging to different groups. Using the discord measurement, the honest block identi-

fication problem can be formulated as a maximum k-independent set problem.

2.1 Discord between blocks

Given a block DAG G = (V,E) where each vertex in V represents the block and each directed

edge in E represents the reference link. For a block A, the future set is the blocks that can reach

A, denoted as future(A,G). Similarly, the past set of block A is the blocks that can be reached

from A, denoted as past(A,G). Fig 1 shows an example of the future and past sets. Naturally,

there are still some blocks left except the block’s future, past and itself. These blocks are the

complementary set of the past(A,G), A and future(A,G), denoted as anticone(A,G):

anticoneðA;GÞ ¼ G ðA [ pastðA;GÞ [ futureðA;GÞÞ:

The example of anticone is also illustrated in Fig 1. Normally, the anticone set denotes the

blocks that are created during the block A’s propagation time. When blocks are created very

frequently, there are more blocks in the anticone set of each block.
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We further define a novel measurement called discord to distinguish the blocks in the

anticone set. For a block A, the discord between A and any block in past(A,G) and future(A,

G), is defined as zero. The discord between A and a block B in anticone(A,G) is defined as

the length of loop formed by A, B, their nearest common ancestor and nearest common

descendant. For the situation where there is no common descendant between two blocks, a

virtual block is added which references all tip blocks so that the blocks A, B, their nearest

common ancestor and the virtual block can form a loop. An example of discord is illustrated

in Fig 1.

Suppose dij denotes the shortest distance from block i to block j in the original DAG, and

dA
AB ¼ min

k
ðdAk þ dBkÞ, dD

AB ¼ min
k
ðdkA þ dkBÞ, dT

A ¼ min
i2Tips
ðdiAÞ, dT

B ¼ min
i2Tips
ðdiBÞ. The discord

between blocks A and B can be mathematically defined by the following formula.

discordðA;BÞ ¼

0 if minðdAB; dBAÞ <1

dA
AB þ dD

AB if dD
AB <1

dA
AB þ dT

A þ dT
B þ 2 if dD

AB ¼ 1

ð1Þ

8
>><

>>:

Fig 1. The illustration of past, future, anticone of block A. The discord between blocks A and B is 6 (the length of blue loop), and the discord between

blocks A and D is 4 (the length of red loop).

https://doi.org/10.1371/journal.pone.0227531.g001
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2.2 MaxCord framework

The discord is designed to estimate the temporal inconsistency (ambiguity) between two

blocks. If two blocks are in the anticone of each other, their temporal order cannot be deter-

mined. But the time discrepancy of two blocks are bounded by their nearest common ancestor

and nearest common descendant, since the real creation time of a block is bounded by its

ancestors and descendants. The dishonest blocks always intend to hide or counterfeit its real

creation time in order to carry out some attack such as double spending. Therefore, the dis-

cords between the dishonest block and most honest blocks should be very large, otherwise the

real creation time of the dishonest block would be bounded by some honest blocks into a small

interval. On the other hand, the discord of two honest blocks is normally much smaller. If the

links between blocks are not artificially manipulated, the discord of two blocks should only

depend on the network propagation speed and the block creation rate. When the network

propagation speed or the block creation rate increases, the time discrepancy between the near-

est common ancestor and the nearest common descendant will decline, however, the length of

shortest path between two blocks will increase and cancel out the decline of time discrepancy

to some extent. Therefore, the discords are not very sensitive to the network propagation

speed and the block creation rate. The analysis on simulated BlockDAG datasets shows that

the discords between two honest blocks are mostly smaller than 10 while the discords between

the honest block and the dishonest block might be higher in two or more order of magnitude.

Fig 2 shows the relationship between the block creation rate and the maximum discord

between honest blocks. In every case of block creation rate, 100 simulations are conducted.

The statistical analysis is shown in Table 1. Even when the block creation rate reaches 600

blocks per second, the discord between honest blocks still does not increase too much. There-

fore, the discords can be utilized to filter the suspect dishonest blocks. In this section, we give a

novel framework named MaxCord for identifying the honest blocks based on the discord.

Given a block DAG, we first calculate the discords for every pairs of blocks and get the dis-

cord matrix. Then the discord matrix is converted into a binary matrix where each element is

1 if the corresponding element in the discord matrix is larger than a preset threshold d and 0

otherwise. By using the obtained binary matrix as the adjacency matrix, we can construct an

undirected graph, in which each vertex represents a block. This graph is called d-discord graph

of the given block DAG. Intuitively, if a block DAG only contains honest blocks, the degrees in

the d-discord graph would be very small since the discords between most honest blocks are

zero and the remaining non-zero discords are also very small. Considering the honest blocks

are the majority, the honest block identification problem can be addressed by identifying the

maximum subset of vertexes with small degrees.

Considering a graph G = (V,E), the k-independent set of G refers to the vertex subset V’ in

which the maximum degree in the induced subgraph does not exceed k. The maximum k-

independent set problem is to find the k-independent set with maximum size, which is a gen-

eralization of classical maximum independent set problem. The maximum k-independent set

can be formulated as the following integer programming, in which xs represents whether a cer-

tain vertex s is selected and aij denotes the element of adjacency matrix of the graph G.

max
X

i

xi

s:t:

X

j

aijxixj � k; 8i

xi 2 f0; 1g;8i

ð2Þ
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Given the non-negative integer parameters k and d, the honest block identification problem

can be formulated as a maximum k-independent set problem in the d-discord graph of the

given block DAG, denoted as MaxCord-(k,d).

It is straightforward to verify that MaxCord-(0,0) is equivalent to the longest-chain rule

adopted in the traditional blockchain system such as Bitcoin. PHANTOM also falls into the

MaxCord framework as it indeed solves the model MaxCord-(k,0). PHANTOM’s intuition is

that the number of honest blocks in the anticone set of each honest block should be very small,

e.g. less than k, since there are not many blocks generated during the propagation of the honest

block. However, the parameter k is closely related to the block creation rate and it is difficult to

determine a proper value of k in practice. Notice that the discord information is not fully uti-

lized in the model MaxCord-(k,0). In this paper, we focus on the other special case, i.e. Max-

Cord-(0,d), which assumes the discords between each pair of honest blocks should be very

small, e.g. less than d.

Fig 2. The relationship between block generation rate and maximum honest block discord.

https://doi.org/10.1371/journal.pone.0227531.g002

Table 1. The statistical analysis of maximum honest block discords.

Block creation rate (blocks/s) 1/120 1/30 1/5 1 5 30 120 600

Mean 4.08 7.68 8.50 8.09 8.34 8.78 10 9.07

Maximum 5 9 10 9 9 10 10 10

Variance 0.07 0.30 0.29 0.12 0.23 0.27 0.00 0.61

https://doi.org/10.1371/journal.pone.0227531.t001
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The parameter d in the model MaxCord-(0,d) plays a very important role as it determines

the potential boundary between the honest blocks and the suspect dishonest blocks. Smaller

threshold d implies more stringent criterion of honest blocks. If the discords between a suspect

dishonest block and all honest blocks are smaller than the threshold, the suspect dishonest

block might be misidentified as an honest block. Therefore, larger threshold might decline the

precision of honest block identification. On the other hand, if the discord between two honest

blocks is larger than the threshold, one of these two blocks would be misidentified as suspect

dishonest block. Thus, smaller threshold might decrease the recall. In a word, small d empha-

sizes the precision of honest block identification, while large d emphasizes the recall. This

property will be exploited to develop a heuristic algorithm in the next section.

2.3 Algorithms for MaxCord-(0,d)

There are many algorithms of maximum independent set which can be directly applied to

solve the model MaxCord-(0,d), including approximation algorithms [30, 31] and exact algo-

rithms for particular graphs [32, 33]. It is well-known that the maximum independent set

problem is NP-hard, thus, there does not exist a polynomial-time exact algorithm. Generally,

the exact algorithm is fast if the graph is very sparse, and very slow for dense graph. Besides the

exact algorithm, a simple greedy algorithm was also implemented to solve the problem more

efficiently, in which the vertex with the maximum degree is repeatedly removed as long as the

remaining vertex set is not an independent set. The exact and greedy algorithms are named

MAXCORD-EXACT and MAXCORD-GREEDY, respectively. In order to solve the honest

block identification problem more efficiently, we further developed a new heuristic algorithm

called MAXCORD-IFA.

Notice that when the threshold d is large, the model MaxCord-(0,d) has high recall. Large d
also leads to a sparse d-discord graph. By exploiting these two special characteristics of Max-

Cord framework, MAXCORD-IFA solves the model MaxCord-(0,d) by iteratively filtering out

the suspect dishonest blocks identified by a series of models MaxCord-(0,s) with s> d. Starting

with a very large s, MAXCORD-IFA applies the exact algorithm of the maximum independent

set problem to solve the model MaxCord-(0,s), and removes the vertexes identified as suspect

dishonest blocks. Then it decreases the value of s and solves a new model MaxCord-(0,s)
defined on the remain blocks. The procedure is repeated until s converges to the predeter-

mined d. The detail of the MAXCORD-IFA algorithm is described in Fig 3.

There are two parameters in Algorithm 1. The parameter d is the final value of the threshold

for constructing the d-discord graph. In each iteration, the algorithm takes the top (1-alpha)

percentage discords into account. That is, we gradually decrease the value of the threshold

until it reaches the desired value d. In this way, the suspect dishonest blocks with high proba-

bility are filtered out step by step. The parameter alpha determines the sparsity of the d-discord

graph in each iteration. If it is set close to 1, the d-discord graph becomes very sparse thus the

computation of each iteration is fast, but more iterations are required to finish the algorithm.

On the other hand, if it is set too low, the computation of each iteration would be unacceptably

slow, and the result would be similar to that of the single iteration exact algorithm. Because

MAXCORD-IFA is by means of multiple iterations while MAXCORD-EXACT is through one

iteration to convert the discord matrix into binary matrix, as long as the parameters d takes the

same value, MAXCORD-EXACT is a special case of MAXCORD-IFA.

3. Results

In order to evaluate the proposed MaxCord framework, we applied several algorithms, includ-

ing MAXCORD-EXACT, MAXCORD-GREEDY and MAXCORD-IFA to the simulated
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BlockDAG datasets and compared them with the existing method PHANTOM. Although

there already exist some real BlockDAG systems, it is hard to get the real data. We simulated

the BlockDAG datasets by using the probabilistic model of block creation and propagation on

the P2P network. The computation power is assumed equally distributed, i.e. the blocks are

created by the participated miners with equal probability. Two types of interval between two

consecutively generated blocks is considered, including fixed interval and random interval

(e.g. exponential distribution). The block transfer time on the P2P network is simulated using

a gamma distribution. The parameters are tuned so that the throughput of blockchain with the

longest-chain rule approximates the real world. The simulation algorithm is implemented in

Fig 3. The pseudocode of MAXCORD-IFA algorithm.

https://doi.org/10.1371/journal.pone.0227531.g003
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the R package BlockSim which is available at http://github.com/wulingyun/BlockSim. The fol-

lowing simulation experiments were all run in R 3.5.1.

3.1 Parameter determination

The parameter d of the MaxCord-(0,d) model is set identical for three algorithms MAXCOR-

D-EAXCT, MAXCORD-GREEDY and MAXCORD-IFA. According to the analysis in the pre-

vious section, we take 8 as the default value of the parameter d to identify the honest blocks in

this study.

There is an additional parameter alpha in the algorithm MAXCORD-IFA. The parameter

alpha is chosen not only to make sure the d-discord graph constructed in each iteration is

sparse enough thus easy to solve by the exact algorithm of maximum independent set problem,

but also to strike a balance between the number of iterations and the time taken by each

iteration.

The influence of the parameter alpha on running time, precision and recall of different

attack powers is shown in Fig 4. The results of MAXCORD-EXACT are also shown for com-

parison. Two attack modes are simulated, moderate attack (the attackers have 33% of all com-

putation power) and heavy attack (the attackers have 49% of all computation power). In each

attack mode, the algorithms are applied to 100 BlockDAG datasets. Each dataset contains 1000

blocks and the block creation rate is 10 blocks per second. The left part A of Fig 4 is the results

under the moderate attack case while the right part B is the results under the heavy attack case.

The horizontal axis represents that the parameter alpha ranges from 0.7 to 0.95. Notice that

when the parameter alpha takes the value of 0.7, the results of MAXCORD-EXACT and MAX-

CORD-IFA are the same. Because when the value of alpha is small enough, MAXCORD-IFA

takes only one iteration, and degenerates to MAXCORD-EXACT. From the aspect of running

time, as the number of iterations increases, namely the gradual increment of the alpha, the

total running time decreases although the decrements become less and less. Considering the

indicators of precision and recall, 0.9 is the best choice for alpha no matter what level the attack

power. In the following analysis of this study, we set the default value of alpha as 0.9.

3.2 Comparison between algorithms for MaxCord-(0,d)

We first evaluated several algorithms proposed for the MaxCord-(0,d) model, including MAX-

CORD-EXACT, MAXCORD-GREEDY and MAXCORD-IFA, and the comparisons among

them are made. The BlockDAG is simulated with 1000 blocks and the block creation rate is 10

blocks per second. For each circumstance, we simulate 100 BlockDAG networks and the algo-

rithms are applied to the same block DAG each time. The results are shown in Fig 5.

The horizontal axis represents the parameter d. With the increment of the parameter d, the

indicator precision of the three algorithms decreases step by step, while their indicator of recall

makes no big difference and approximates 1 when the attack power is moderate. The results of

MAXCORD-GREEDY and MAXCORD-EXACT are almost identical under this case. MAX-

CORD-EXACT is a little bit better than MAXCORD-IFA in the aspect of the indicator of recall

and they are nearly the same in the aspect of the indicator of precision. Stated in another way,

MAXCORD-IFA improves the running time a lot by omitting a little bit honest blocks and

maintaining the precision of the honest blocks when the attack power is moderate, but this lit-

tle omission does not have large influence on the subsequent blocks ordering problem.

When the attack power is heavy, the parameter d has larger influence on the results for

MAXCORD-EXACT than the MAXCORD-IFA, that is MAXCORD-IFA is more robust.

MAXCORD-IFA outperforms MAXCORD-EXACT no matter the indicators of precision or
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recall. MAXCORD-GREEDY is the worst under this case. In a word, MAXCORD-IFA is both

effective and efficient in distinguishing the honest blocks from the suspect dishonest blocks.

3.3 Comparison between MAXCORD-IFA and PHANTOM

Because PHANTOM is a recursive algorithm which is very time-consuming, it is impracticable

to apply PHANTOM in large-scales cases. Therefore, we only simulated small-scale cases to

compare MAXCORD-IFA with PHANTOM. In detail, we simulated the BlockDAG with 200

blocks and the block creation rate is 1/10 blocks per second. The attackers’ computation power

percentage ranges from 0.1 to 0.45. For each attack circumstance, we conducted 10 simulations

and both MAXCORD-IFA and PHANTOM are applied to the same 10 BlockDAG datasets.

The parameter k in PHANTOM takes the default value 3.

Fig 6 shows the precision and recall indicators of the two algorithms. It can be seen that

MAXCORD-IFA can well recognize the honest blocks no matter how much computation

power the attackers own. Even if the recall indicator of MAXCORD-IFA is not always 1 (very

close to 1), which means it may omit a little bit honest blocks. This small sacrifice is worthwhile

since it can save plenty of time. When the attack power is very strong, MAXCORD-IFA

Fig 4. The influence of the parameter alpha on MAXCORD-IFA. Part A represents the case with moderate attack power, while part B represents the case with heavy

attack power.

https://doi.org/10.1371/journal.pone.0227531.g004
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obviously outperforms PHANTOM. In a word, MAXCORD-IFA is an effective and efficient

algorithm in the honest block identification problem.

4. Conclusions and discussions

In the paper, we introduce the honest block identification problem in the BlockDAG technol-

ogy and present a novel universal framework of honest block identification problem through

converting it into the maximum k-independent set problem on the basis of the definition of

discord measurement between blocks. We point out the existing method PHANTOM is one of

its special cases, and give several algorithms for the other special case MaxCord-(0,d), named

MAXCORD-EXACT, MAXCORD-GREEDY, and MAXCORD-IFA.

Comparisons are made among these algorithms on the simulated BlockDAG datasets.

MAXCORD-IFA outperforms PHANTOM to large extents, especially when the attack power

is heavy. PHANTOM takes very long time therefore can only be applied to small-scale cases.

The results of PHANTOM are sensitive to the value of parameter k which is difficult to be

determined for a given dataset. In large-scale cases, MAXCORD-IFA outperforms MAXCOR-

D-EXACT and MAXCORD-GREEDY except that the recall of MAXCORD-IFA is a little bit

lower than that of another two algorithms when the attack power is moderate. But this small

Fig 5. The comparisons among the algorithms for MaxCord-(0,d). The left part A represents the case with moderate attack power, while right part B represents the

case with heavy attack power.

https://doi.org/10.1371/journal.pone.0227531.g005
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sacrifice, only omitting a little bit honest blocks while maintaining the precision of identifica-

tion, can save lots of time and does not have significant influence on the subsequent block

ordering problem.

This study is the first work on the MaxCord framework. In this direction, there are many

problems deserved for future research. For example, MaxCord-(0,d) and MaxCord(k,0) are

only two special cases of the MaxCord framework to identify the honest blocks. As our study

suggests that MaxCord-(0,d) is better than MaxCord-(k,0), it is interesting to investigate the

performance of general model MaxCord-(k,d) for the cases where d and k are both non-zero.

Development of better algorithms for MaxCord models is also a very important and challeng-

ing task. The influence of different algorithms on the following block ordering problem is still

not very clear. The block ordering derived from the honest block sets identified by several algo-

rithms might be very different, even if their honest block identification results are very similar.

There are also other mathematical problems in the BlockDAG technology that is closely

related to the honest block identification, such as the transaction fee allocation.

In this paper, we consider the BlockDAG in which the new block could be connected to all

the tip blocks observed by the node when issuing the new block. All blocks are kept in the sys-

tem and can be referenced directly or indirectly by the new blocks in the future. BlockDAG

Fig 6. The comparison between MAXCORD-IFA and PHANTOM.

https://doi.org/10.1371/journal.pone.0227531.g006
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attempts to identify the dishonest blocks by an algorithm independent of the construction of

DAG. There also exist different approaches for the DAG-based blockchain technology. For

example, IOTA Tangle attempts to distinguish the dishonest transactions from normal trans-

actions by the tip selection algorithm based on MCMC (Markov Chain Monte Carlo) random

walk and cumulative weights, and the dishonest transaction may fall into oblivion. It is inter-

esting and important to study the pros and cons of two different approaches as well as the pos-

sible meld of them.
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