
RESEARCH ARTICLE

Rewilding with large herbivores: Positive

direct and delayed effects of carrion on plant

and arthropod communities

Roel van KlinkID
1¤*, Jitske van Laar-Wiersma1, Oscar Vorst2, Christian Smit1

1 Groningen Institute for Evolutionary Life Sciences (GELIFES), Conservation Ecology Group, University of

Groningen, Groningen, The Netherlands, 2 Independent Researcher, Utrecht, The Netherlands

¤ Current address: German Institute for Integrative Biodiversity research iDiv, Halle/Jena/Leipzig, Germany

* Roel.klink@idiv.de

Abstract

Carrion of large animals is an extremely nutrient rich, ephemeral resource that is essential

for many species, but is scarce in the anthropogenic Western-European landscape due to

legislative restrictions. Rewilding, a novel conservation strategy that aims at restoring natu-

ral processes with minimal human intervention, is increasing in popularity and could lead to

increased carrion availability in the landscape. It is therefore important to understand the

effects of carrion on biodiversity. We investigated the direct and delayed (five months)

effects of red deer (Cervus elaphus) carcasses on plants and arthropods in the Oostvaar-

dersplassen, the Netherlands, one of the oldest rewilding sites in Europe. Specifically, we

tested whether carrion has a positive direct effect on the abundances and diversity of vari-

ous arthropod functional groups, as well as a delayed effect on the vegetation and arthro-

pods through the increased nutrient availability. During the active decomposition stage in

spring, we, not surprisingly, observed higher abundances of carrion associated species

(scavengers and their specialized predators) at the carrion sites than at control sites without

carrion, but no higher abundances of predators or detritivores. In late summer, after near-

complete decomposition, plant biomass was five times higher, and nutritional plant quality

(C:N ratio) was higher at the carrion sites than at the control sites. Arthropod abundance

and diversity were also manifold higher, owing to higher numbers of herbivorous and preda-

tory species. Regression analysis showed that abundances of herbivores and detritivores

were positively related to plant biomass, and predator abundances were positively related to

abundances of herbivores and detritivores, suggesting bottom-up effects propagating

through the food chain. Our results show that even in a naturally nutrient-rich ecosystem like

the Oostvaardersplassen, carrion can have strong positive effects on local plant biomass

and nutritional quality and arthropod abundances, lasting the whole growing season. We

found evidence that these effects were first directly caused by the presence of carrion, and

later by the enhanced nutrient availability in the soil. This highlights the importance of the

indirect pathways by which carrion can structure arthropod communities.
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Introduction

Carrion is a nutrient-rich but ephemeral resource that has become rare in the human domi-

nated landscape of Western Europe. The importance of carrion for obligate scavengers such as

vultures or carrion beetles is well recognized, but its importance for the broader fauna remains

understudied. Because many vertebrate and invertebrate scavenger species may benefit from

carrion directly or indirectly, carrion may significantly contribute to biodiversity [1,2]. The

management of many European nature reserves involves grazing by large mammalian herbi-

vores, but since most of these animals are domestic livestock, European legislation requires

any dead animals to be removed and destroyed [3,4]. Carcasses of domestic animals are only

allowed to remain in the landscape when the aim is to provide food for endangered scavengers

such as vultures [5]. The carcasses of culled or hunted wild herbivores are legally allowed to

remain in situ [4], but such a practice is controversial in many parts of Europe, and has met

fierce public opposition [6,7].

With the increasing popularity of rewilding as a nature management strategy, however, the

potential carrion pool could increase significantly if carcass disposal regulations can be over-

come. Rewilding is a type of conservation management where, usually after reintroduction of

some key-stone species (sensu Paine [8]), a non- or minimum intervention policy is practiced

in order to maintain self-sustaining, biodiverse ecosystems [9,10]. Higher availability of car-

rion in nature reserves could be beneficial for carrion associated fauna, as well as for the

broader biodiversity, for example due to opportunistic scavenging or increased heterogeneity

in nutrient availability to plants. How various trophic groups respond to carrion presence and

how long these effects last, however, remains poorly studied.

Carrion enters the ecosystem whenever an animal dies and is not consumed directly by

predators. This may occur very frequently (estimates range from 25% to 95% of animal

deaths), but varies among ecosystems and species [11,12]. Also kills by predators may become

available to scavengers as leftovers, or if the kill is abandoned [11,13,14]. Vertebrate scavengers

may detect and utilize such a rich nutrient resource rapidly, especially with warmer weather

and when carcasses are large [15]. However, carcasses may also remain undetected by verte-

brates [15,16], leading to decomposition being solely performed by invertebrates.

Invertebrates, and particularly insects, on carrion have received considerable attention in

the context of forensic entomology (reviewed in [17]) and succession research (reviewed in

[18]), but much less in the context of biodiversity research ([1,19], but see[20,21]). Specialized

scavenger species, as well as opportunists, which either feed on the carrion itself (e.g. ants), its

intestinal content (dung beetles and -flies), or on the scavenging insects (e.g. ants and spiders),

colonize fresh carcasses within minutes [22–26]. Opportunistic feeding on carrion and its flu-

ids is not limited to predators and detritivores, but also includes unexpected species such as

butterflies, honey bees and true bugs [19,23,24].

During decomposition, a significant amount of the nutrients from a carcass will enter the

soil under or near the carcass [27–32], due to leakage of bodily fluids, via excreta of scavengers,

and from the intestinal contents of the carcass [33]. After microbial decomposition, these

nutrients become available to plants [34]. Plant growth around carrion sites is thus often

increased [28,35], and plant nutrient levels are enhanced over ambient conditions [30–

32,35,36].

The resource pulse provided by carrion can thus be expected to propagate across trophic

levels, but the pathways may change over the lifetime of a carcass. In this study, we hypothe-

sised that first, invertebrate abundance and species richness will be enhanced through the

occurrence of specialized scavengers and their predators (Fig 1 black arrows), as well as oppor-

tunistic species. Later, the nutrients from the carcass that entered the soil can result in
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Fig 1. Hypothesised effects of carrion presence across trophic levels during active decomposition (black arrows)

and following complete decomposition (grey arrows). During decomposition, the carcass (A) will provide resources

for obligate scavengers (B) and their specialized predators and parasites (C), as well as facultative scavengers (D and E).

Predatory arthropods (E) can also feed on the obligate and facultative scavengers. Following decomposition, plants (F)

can use resources leaked into the soil, leading to enhanced populations of herbivorous insects (G). Detritivores (D) can

benefit from decaying plant matter and microbial biomass in the soil. Predator (E) abundances can be expected to

benefit from these enhanced abundances of herbivores and detritivores.

https://doi.org/10.1371/journal.pone.0226946.g001
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enhanced plant growth and nutritional value, which can increase the abundance and diversity

of herbivorous and detritivorous invertebrates. This should, in turn, enhance abundances of

invertebrate predators (Fig 1 grey arrows).

We tested these predictions using red deer (Cervus elaphus) carcasses in one of Europe’s

oldest rewilding sites, the Oostvaardersplassen, the Netherlands. In this reserve, herds of large

herbivores, considered wild by law, (Heck cattle (Bos primigenius taurus), Konik horses (Equus
ferus caballus) and red deer) roamed freely in grasslands on nutrient rich clay soils. The intro-

duced large herbivores were exempt from carrion disposal regulations (see [6] for an historical

overview of the carrion policy in the Oostvaardersplassen). Due to the absence of top-down

control, there tended to be a large die-off of large herbivores at the end of each winter due to

food scarcity (up to 30% of the populations), leading to high seasonal carrion availability. Con-

cretely, we expected positive direct effects of carrion on abundances of different functional

groups of arthropods in spring, and a delayed effect mediated by vegetation development over

the summer.

Methods

Study area

Our study was performed in the Oostvaardersplassen (52˚26’ N, 5˚19’E), a 5600-ha nature

reserve situated on reclaimed land, in the province of Flevoland, the Netherlands. The area has

a temperate oceanic climate with a mean annual temperature of 9.7˚C, and an annual precipi-

tation of on average 833 mm (averages over 1981–2010, data from Royal Netherlands Meteo-

rological Institute www.knmi.nl). The reserve consists of an undrained wetland of 3600 ha

(open water and reed beds) and a terrestrial area of 2000 ha. The soil consists of a several

meters thick clay layer resting on Pleistocene sands.

Following reclamation in 1969, the area was originally intended for industrial and agricul-

tural use, and partly shortly used for agriculture. It was designated as a nature reserve in the

mid 1970’s because of its importance for breeding birds. Three large herbivore species were

successively introduced in the area to counteract encroachment by willows (Salix spp) and

elderberry (Sambucus nigra). In 1983, 32 Heck cattle were introduced, followed by 18 Konik

horses in 1984, and 52 red deer in 1992–1993. These herds of herbivores grew rapidly and

transformed the original shrub cover into a homogeneous grassland in most of the reserve

[37–39]. This grassland is best described as a productive, wet grassland on clay soil, dominated

by nitrophilous grasses, such as Lolium perenne and Poa trivialis, and forbs, such as Sysim-
brium officinale, Trifolium sp. and Carduus crispus.

Due to the absence of large predators or targeted population control, these populations of

large herbivores have increased until 2011, after which a small decrease occurred. At the time

of sampling in 2013, there were 155 heads of cattle (0.18 ha-1), 800 horses (0.61 ha-1) and 1900

red deer (1.8 ha-1) in the area, resulting in a total number of 2855 large herbivores (1.4 animals

ha-1, considering the dry 2000 ha only) [40]. The only management intervention on these pop-

ulations was an early reactive culling of animals that would not survive the winter, in order to

minimize animal suffering [41]. Because the herbivore populations were bottom-up regulated,

the highest mortality rates occurred when food was scarcest, in late winter (February–March).

The annual mortality rates of the large herbivores reached up to 30% in harsh winters and sim-

ilar recruitment rates occurred during favourable growing seasons [41]. In the winter preced-

ing sampling, 1728 large herbivores died, of which 1296 red deer [40]. Carcasses of Heck cattle

and Koniks were, when accessible, removed by the managers because of public and veterinary

concerns, but red-deer carcasses remained in the reserve [6]. Vertebrate scavengers of these

carcasses are red fox (Vulpes vulpes), raven (Corvus corax), carrion crow (Corvus corone) and
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white-tailed eagle (Hylaeetus albicans), but because of the high carrion availability, many car-

casses remained untouched by vertebrates. The reserve is fenced off from the surrounding

agricultural and urban areas, and because the majority of carcasses were left to decompose on

site, most nutrients are retained within the reserve boundaries.

Setup

In late April 2013 five carcasses of adult red deer (healthy live weight >100 kg) were selected

in the Oostvaardersplassen. A sample size of five carcasses and five control sites with three pit-

fall traps each, was chosen because of the expected high number of arthropods to be identified.

At this time, carcasses from previous years were only visible as scattered bones in the reserve.

The carcasses were at the same stage of decomposition (the advanced decay stage sensu [23]),

where most of the flesh, in particular the intestines, had been removed, but carrion associated

insects were still present in large numbers (S1 Photo). The carcasses were estimated to be

about one month old. Due to the advanced decomposition, the carcasses were left in place. For

each carrion site, a matching control site was chosen as the closest site to the carcass where no

carrion was present in a 25-m radius, with similar conditions (i.e. presence/absence of dead

wood, tree cover, distance from open water, and soil conditions [42]). This was important so

that differences in biotic and abiotic conditions would be controlled for. When there was more

than one potential control site, the control site was selected at random: first a random direction

was determined by twirling a bamboo stick in mid-air and choosing the direction pointed to

when it hit the ground. Then, the control site was appointed at the distance of two throws of

the stick from the carcass in the direction pointed to. The distance between the carrion and

control sites ranged between 37 m and 283 m (mean 100 m). At the start of sampling, there

was no visible difference in vegetation structure or composition around the traps, as all vegeta-

tion was short-grazed (<5 cm), and annual plants had just started sprouting.

In late August, some five months after death, each site was revisited. At this time, the car-

casses had reached the dry stage (sensu [23]), where only skin and bones remain. The two car-

casses in the northern part of the reserve could not be found back, so we selected two new sites

following the above protocol in the southern part of the reserve. For these newly chosen car-

casses, the decomposition stage corresponded with that of the other carcasses (dry stage),

although the exact age of the carcasses was unknown. The two new carcasses were in the open

with no water or dead wood nearby, and control sites were selected following the method

detailed above. At this time, we could detect no difference in plant species richness between

the carrion and control sites (GLMM with site and pair as random factors: P = 0.61).

Plant and arthropod sampling and identification

Starting late April, when the carcasses were approximately one month old and the vegetation

was short (< 5cm), arthropods were sampled by means of pitfall trapping. We used pitfall

traps at this stage of carrion decomposition because we were particularly interested in arthro-

pods migrating to and from the carcasses, as this could be an indication of resource utilisation.

At each carcass and control site we placed three pitfall traps (Ø 11 cm, 10 cm deep) to ensure

adequate sampling of mobile arthropods. The traps were placed at 1m distance from the car-

cass or the hypothetical control point (S2 Photo). This distance was chosen to prevent the

traps from overflowing with maggots when they migrate from the carcass for pupation. The

traps had a coarse mesh cover (3 cm), to prevent capturing small vertebrates, and were covered

with rebar-fortified plastic roofs (S2 Photo) for protection against rain and trampling by the

large herbivores. The traps contained a 4% formaldehyde solution as preservative to prevent

the catch from rotting (which would have attracted more scavengers). The traps were emptied
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weekly over a six-week period. Because several weekly samples (but not more than 1 week per

trap) were lost due to leakage or other causes, we analysed five out of six trapping weeks per

trap. From the catch, all ground- and vegetation dwelling arthropods were identified to species

level: woodlice (Isopoda), centipedes (Chilopoda), millipedes (Diplopoda), spiders (Araneae),

harvestmen (Opiliones), beetles (Coleoptera), true bugs (Heteroptera), plant- and leafhoppers

(Auchenorrhyncha), jumping plant lice (Hemiptera: Psylloidea), and earwigs (Dermaptera).

Additionally, fly larvae were counted (Diptera), with special attention for blowfly larvae (Calli-

phoridae). For literature used for identification and nomenclature followed see S1 Table.

Late August, when the carcasses were approximately five months old, each site was revisited

to measure the delayed effects on plants and arthropods. Because at this stage we were inter-

ested in the local ecosystem impacts of the carcasses, we only sampled the direct vicinity of the

carcasses (0–50 cm). Three samples of plants and arthropods were collected at each carcass

and control site. This was done by placing a cotton bag with a framed opening of Ø 50cm over

the vegetation (to prevent flying insects from escaping) and cutting the vegetation at ground

level. Plant litter, detritus and arthropods on the soil surface were then collected with an

inverted leaf blower equipped with a fine mesh (< 0,5 mm). At sites with only short vegetation

(< 30 cm), suction was applied before cutting of the vegetation to prevent jumping and flying

insects from escaping. The same arthropod groups as for the pitfall traps were identified to spe-

cies level.

Plant biomass and chemical analysis

In the lab, plant species were separated, dried at 70˚C for 24 h and weighed. Four species were

sufficiently frequent and provided enough biomass to perform chemical analyses on: C. crispus
(20.8% of biomass), Plantago major (4.3%), Sisymbrium officinale (29%), Urtica dioica (2%)

and a mixture of the grass species pooled together (Lolium perenne, Poa annua, Poa trivialis
and Dactylis glomerata, in total 2.5%). These grass species were pooled for weighing and chem-

ical analysis because they could not all be identified to species level based on the leaves that

were damaged by the cutting. Urtica dioica was not found at the control sites, therefore five

individuals were collected from within 20 m from the control sites where no carcass was pres-

ent. These individuals were used for the chemical analysis only.

We measured carbon and nitrogen concentrations in the plant tissue of the four most abun-

dant plant species and the pooled grasses. Of all species except S. officinale we used leaf bio-

mass for chemical analysis, but because S. officinale yielded insufficient leaf material for

chemical analysis, we used the stems of this species. For each carcass or control site, we used

one randomly selected sample of each species for measurements. The dried plant matter was

ground with a FOSS cyclotec grinder with a 2 mm sieve. We measured the concentrations of

elemental C and N according to the DUMAS method, using the Interscience EA 1110 Elemen-

tal Analyzer and Eager 200 for Windows. Samples were weighed in tin capsules and brought

on a reactor tube with WO3 and Cu. After combustion, the N2 and CO2 were transported

through the system, divided by a gaschromatic system and detected with a TCD (thermal con-

ductivity detector). All data collected for this research are available at [43].

Statistical analysis

Classification of arthropod species into functional groups. The identified arthropods

were classified into five functional groups: carrion associated fauna, dung associated fauna,

predators, herbivores (including pollen feeding beetles and granivores) and non-dung or car-

rion feeding detritivores (i.e species associated with rotting plant biomass, including

fungivores).

Effects of carrion on plants and arthropods
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Carrion and dung associations were most relevant for beetles, and the species were classi-

fied based on the extensive database of beetle catches of the third author. The group of carrion

associated species included those known to feed directly on carrion as well as their specialized

predators and parasites, and the same approach was taken for dung associations. For both

groups, three levels of association were defined: strict association (those species found exclu-

sively in association with carrion or dung), weak association (those species often, but not

exclusively found in association with these substrates), and no association. There was a high

overlap in the species with weak associations with carrion and dung, and these species may

also occur in association with other rotting organic substrates. A summary of functional group

attribution at higher taxonomic levels (S1 Text), and the full species list with for each species

its carrion or dung association and functional group are provided in the supplementary mate-

rial (S2 Table).

For all analyses, the group of carrion-associated species consisted of all species with a strict

or weak association with carrion. The dung-associated species were those with strict or weak

associations with dung, excluding those that are also associated with carrion.

Analyses. We tested for differences between the carrion and control sites for arthropod

abundances and species richness, and plant biomass and nutrient content using generalized

linear mixed models (GLMM). No comparisons were made between the two sampling periods

because different sampling methods were used, and because of the replacement of the two lost

carcasses. Because the three samples per site and the pairing of carrion and control sites violate

the assumption of independent observations, we accounted for this using nested random

effects (site nested in pair). We recognize that the p-values resulting from this test should be

regarded conservative, therefore we also report the power (1- probability of type ii error) of all

tests. We calculated the power using the effect size, standard deviation and sample size (5) of

all tests, assuming t-distributions. Arthropod abundance showed overdispersion of the residu-

als in all cases, therefore we used Penalized Quasi Likelihood (PQL) estimation in Poisson

regression [44]. Models for species richness followed a Poisson error structure. We performed

a logarithmic (ln) transformation on plant biomass before analysis, to account for heterosce-

dasticity, and used models assuming a Gaussian distribution of the residuals.

From the measured C and N concentrations in the plant tissue, we calculated C:N ratios

and tested for differences between carrion and control sites. To account for heteroscedasticity,

the C:N ratios were ln transformed for analysis. Because only one measurement per species

per site was taken, only ‘pair’ was included as random factor. To test for differences in C:N

ratios across all species, we scaled the C:N ratios of all plant species and ran an LMM of the

log-transformed scaled values, with plant species and pair as random factors, to account for

non-independence of the measurements. For these tests we again calculated statistical power,

using the treatment with the lowest sample size (<5 in case certain plant species were absent at

one or more sites).

To test the relations in abundance or biomass between adjacent trophic levels, and whether

carrion presence modulated this relationship, we used LMM’s on logarithmically transformed

data. For the spring data we regressed predator abundance (excluding carrion associated pred-

ators) against the abundance of carrion associated insects (excluding carrion associated preda-

tors), and against the abundance of detritivores (excluding carrion and dung associated

detritivores). For the summer data, the abundances of herbivores and detritivores (excluding

carrion associated detritivores) were regressed against plant biomass, and predator abundance

(excluding carrion associated predators) was regressed against the abundances of herbivores

and detritivores. In all these models, carrion presence was included as additive fixed effect, but

no interactive term was included. These models had the same random structure as above: site

nested in pair. All analyses were performed in R 3.4.3 [45].

Effects of carrion on plants and arthropods
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Results

In total we collected 18 988 arthropod individuals, which were identified to 366 species. In

spring, the most abundant species caught in the pitfall traps were larvae and adults of the car-

rion beetle Thanatophilus rugosus (3702 individuals) and blowfly larvae (4256 individuals).,

One of the larvae successfully underwent metamorphosis in captivity, and could be identified

to the common with carrion associated species Cynomya mortuorum. In summer, most abun-

dant species was the flea beetle Psylliodes cuprea (393 individuals), which feeds on Brassica-

ceae, in this case probably S. officinale.

Direct effects

As expected, during the active decomposition stage, the total number of arthropod individuals

was higher (over three times as high) at the carrion sites than at the control sites (Fig 2A;

Table 1), but there was no difference in species numbers (z = 0.83; P = 0.40). Of the five func-

tional groups, only the carrion associated fauna showed higher abundances at the carrion sites

than at the control sites (almost 100 times as many; Fig 2B; t = 6.83, P = 0.002), whereas no dif-

ferences could be detected for any other group (Fig 2C–2F, Table 1). Species richness of the

carrion associated fauna at the carrion sites was higher 2.4 times higher (z = 4.70, P< 0.001),

and 1.4 times higher for the dung-associated fauna (z = 2.08, P = 0.038), but did not differ for

the other functional groups (all p-values > 0.5; S3 Table).

We found no relation between the abundance of carrion associated arthropods (excluding

predatory and parasitic species) and non-carrion associated predators (t = 0.38, P = 0.71; Fig

Fig 2. Effect of carrion presence on abundances of arthropods in various trophic groups. Arthropods were sampled in spring, one month after death (top row), and in

summer, five months after death (bottom row). Predators, detritivores and dung associated fauna exclude carrion associated species. Crosses represent model estimates,

boxes represent the 25% and 75% quartiles from the median (thick line), whiskers represent the maximum and minimum values, excluding outliers, where outliers are

defined as points further than 1.5 times the interquartile range. Stars denote significant differences: �� = P<0.01; � = P< 0.05; o = P<0.1; N.S. = P> 0.1; N.A. = statistical

test not possible. ‘Con’ = control sites, ‘Car’ = carrion sites. All test statistics are presented in Table 1.

https://doi.org/10.1371/journal.pone.0226946.g002
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3A), but a positive relation between abundances of detritivores and predators (t = 3.21,

P = 0.004; Fig 3B), while this relation was not affected by carrion presence (P = 0.71).

Delayed effects (summer)

Plants. In late summer, when the carcasses were almost completely decomposed, substan-

tial differences in vegetation were visible between the carrion and control sites. All carcasses

were overgrown with the biannual thistle Carduus crispus (S3 Photo). The total plant biomass

at the carrion sites was on average five-fold higher than at the control sites (Fig 4; Table 2).

This was largely driven by the biomass of C. crispus, which was significantly higher at carrion

sites than control sites (Fig 4, Table 2). For Sisymbrium officinale, Plantago major and the

pooled grasses there was a clear trend towards higher biomass at the carrion sites (i.e. large

effect size). However, these statistical tests had low power (Table 2) due to low replication and

a relatively large variance, hence, the p-values often exceeded 0.05, despite the clear directional

trend (Fig 4 top row).

The nutritional quality of the plants was higher at the carcasses than at the control sites, as

indicated by lower C:N ratios (Fig 4, Table 2). Again, due to low power, the p-values of some of

the species were>0.05, despite relatively large effect sizes (Fig 4 bottom row, Table 2). These

tests had invariably low power (Table 2), and hence a high chance of showing false negatives.

Arthropods. At the carrion sites, the arthropod abundance was on average 4.2 times

higher (Fig 2G, Table 1), and species richness was 2.6 times higher than at the control sites

(z = 4.56, P< 0.001) in summer. We found fewer carrion-associated arthropod species in sum-

mer, despite sampling closer to the carcasses, with only 40 beetle individuals, belonging to

nine species, all restricted to the carrion sites (Fig 2H). Because of the high proportion of zero

counts at the control sites, no statistical test could be done. The abundance of predators was

4.1 times higher, and the abundance of herbivores was 3.9 times higher at the carrion sites

than at control sites (Fig 2I and 2J, Table 1. The abundance of detritivores did not differ signifi-

cantly between the carrion and control sites (Fig 2K, Table 1). The dung feeding fauna were

only represented by three individuals at one of the control sites (Fig 2L). The species richness

of predators was 2.7 times higher (z = 7.80, P<0.001), herbivore richness was two times higher

(z = 2.73 P = 0.006), and detritivore richness was five times higher (z = 2.42, P = 0.02) at the

carrion sites compared to controls (S3 Table).

Table 1. Summary statistics of models testing differences in arthropod abundance between carrion and control sites using penalized quasi-likelihood regression.

Model convergence failed in cases where in one of the treatments almost only zero counts were present. Significant differences (P< 0.05) are denoted bold. Power of the

tests is provided to indicate the chance of reporting false negatives.

Panel in Fig 2 Season Functional group Estimate Standard error t P-value Power

A Spring All arthropods 1.179 0.196 6.015 0.004 0.959

B Spring Carrion-associated species 4.548 0.666 6.829 0.002 0.987

C Spring Predators 0.051 0.136 0.378 0.725 0.056

D Spring Herbivores -0.205 0.204 -1.005 0.372 0.096

E Spring Detritivores 0.784 0.365 2.148 0.098 0.268

F Spring Dung-associated species 0.368 0.264 1.396 0.235 0.141

G Summer All arthropods 1.437 0.382 3.761 0.020 0.646

H Summer Carrion-associated species model convergence failed because of excessive zeros

I Summer Predators 1.410 0.327 4.308 0.013 0.761

J Summer Herbivores 1.369 0.452 3.026 0.039 0.469

K Summer Detritivores 2.935 1.341 2.188 0.094 0.276

L Summer Dung-associated species model convergence failed because of excessive zeros

https://doi.org/10.1371/journal.pone.0226946.t001
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There was a strong positive relation between plant biomass and the abundance of herbi-

vores (t = 6.41, P< 0.001, Fig 3C), and a marginally significant relation with the abundance of

detritivores (t = 1.98, P = 0.059, Fig 3D), but the presence of carrion did not change these rela-

tionships (P> 0.05). Predator abundance was positively related to herbivore abundance

(t = 7.49, P< 0.001, Fig 3E). We found a higher intercept at the carrion sites for the relation

between detritivores and predators (carrion: t = 2.63, P = 0.044; detritivore abundance:

t = 2.40, P = 0.030; Fig 3F), which indicates higher abundance of predators at the carrion sites,

possibly because of the higher abundance or herbivores (see Fig 2J).

Discussion

We found clear positive effects of carrion on arthropod abundances and plant biomass. Most

striking was the strong positive response of various arthropod groups, visible until at least five

months after the death of the large herbivore. The responses differed between the early and

Fig 3. Observed relations between abundances and/or biomass of neighbouring trophic levels. The top row shows the relations in spring, the

middle and bottom row show the relations in summer. Note the logarithmic scales of both axes. The relations were fitted using GLMM.

https://doi.org/10.1371/journal.pone.0226946.g003
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late stages of decomposition, from positive direct effects on the carrion associated species, to

plant mediated effects in herbivorous and carnivorous species after decomposition was com-

plete. The positive relations within the food web suggest that nutrient-flows from the carcass

changed over the decomposition process: from a direct pathway to scavengers, to an indirect

pathway through the soil microbes, and plants. By enhancing plant growth near carcasses, car-

rion may contribute to biotic heterogeneity, which is especially important in a homogeneous,

productive former agricultural area such as the Oostvaardersplassen.

Fig 4. Vegetation biomass (top row) and nutritional quality (bottom row) responses to carrion presence after five months of decomposition (dry stage).

Nutritional quality was calculated as C:N ratio of leaf or stem material. Crosses represent arithmetic means. Note that because of low power (low sample size) of some

tests, large effect sizes do not always provide p-values<0.05. The test statistics and power of all tests are provided in Table 2. Stars denote significant differences: o =

P< 0.1; � = P< 0.05; �� = P<0.01; ��� = P< 0.001; N.S. = P> 0.1. Plant species: Carduus crispus, Sisymbrium officinale, Plantago major, and Urtica dioica. ‘Con’ =

control sites, ‘Car’ = carrion sites.

https://doi.org/10.1371/journal.pone.0226946.g004

Table 2. Summary statistics of models testing differences in plant biomass and C:N ratio between carrion and control sites. We tested for differences using general-

ized linear mixed models, which provide conservative p-values. Power of the tests is provided to indicate the chance of reporting false negatives. Significant differences

(P< 0.05) are denoted bold. Plant species: Carduus crispus, Sisymbrium officinale, Plantago major, and Urtica dioica.

Plant species Random effects Estimate Standard error t P-value Power

Biomass All species pair/site 16.573 0.254 6.52 0.003 0.98

C. crispus pair/site 27.814 0.551 5.053 <0.001 0.88

S. officinale pair/site 1.398 0.791 1.768 0.150 0.2

P.major pair/site 12.362 0.484 2.554 0.207 0.13

Grasses pair/site 0.546 0.347 1.573 0.201 0.16

U. doica NA

C/N ratio All species species + pair -0.247 0.047 -5.251 <0.001 0.9

C. crispus pair -0.249 0.059 -4.205 0.003 0.74

S. officinale pair -0.175 0.115 -1.515 0.168 0.15

P.major pair -0.201 0.082 -2.446 0.050 0.26

Grasses pair -0.142 0.122 -1.164 0.278 0.11

U. doica pair -0.55 0.067 -8.2 <0.001 0.98

https://doi.org/10.1371/journal.pone.0226946.t002
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Most of the effect sizes were large enough to show strong effects despite the relatively low

sample size. For the plant biomass and C:N ratios of some plant species, however, we had low

statistical power because of the low sample sizes, which increased the chances of reporting

false negatives. A larger sample size would have probably led to p-values < 0.05 also for these

species, and can be recommended for future studies. The substitution of two of the carcasses is

unlikely to have affected our results, since we did not make a direct comparison between the

two sampling periods at each site, but only compared the carrion and control sites at each

time.

Direct effects

The positive and direct effect of carrion on the abundance of arthropod scavengers and their

specialised predators and parasites is unsurprising [20,21,46], but we did not detect a direct

positive effect of carrion presence on predatory or detritivorous arthropods. We could also not

detect a positive relation between the abundances of carrion associated insects and (not car-

rion-associated) predators, and the weak positive relation between detritivore and predator

abundances was independent of carrion presence. This suggests that opportunistic scavenging

and predation on carrion associated insects are not important in our system, possibly due to

the natural high productivity of the soil, or we failed to detect this for other reasons. In recent

work at Yellowstone National Park, only two out of 13 not carrion-associated beetle families

(Carabidae and Curculionidae) were found to have higher abundances at carrion than at con-

trol sites [21]. Although opportunistic scavenging has often been observed [19,23–26], it thus

remains unclear how important this behaviour is for shaping arthropod communities.

How much carrion can directly contribute to biodiversity will depend on the season of

death. Mammal and bird diversity at carrion has been reported to be highest in winter [15],

whereas, at least in Europe, insect diversity on carrion is highest in spring, [25,47,48]. Decay

rates, however, are highest during summer, when temperatures peak [24,25,48]. More gener-

ally, it can be expected that in any given ecosystem the availability of carrion is highest after

periods of harsh environmental conditions. However, where large predators are present, car-

rion availability may be more evenly spread throughout the year, which can be more beneficial

to scavenger communities.

Scavenger biodiversity can also depend on carcass size. Medium to large carcasses can sup-

port more species of both invertebrate [49] and vertebrate scavengers [15,50], but are often

monopolized by large vertebrate scavengers [50–52]. Smaller to medium sized carcasses can be

beneficial to a broader range of scavenging species, particularly when their availability is

unpredictable in time and space [51,52]. Smaller carcasses may even remain undetected by ver-

tebrates [15,16], leaving decomposition completely to invertebrates. Small carcasses, however,

decompose quickly, often within a matter of days [23,25,29,53]. The decomposition of larger

carcasses may take longer [54,55], and therefore provide a more stable resource to scavenging

invertebrates. This may also benefit their predators, such as passerine birds [56]. Thus, the

presence of medium to large carcasses in the landscape, such as the red deer carcasses studied

here, can contribute positively to the biodiversity of both vertebrates and invertebrates,

although the presence of large scavengers may have negative effects on local bird and mammal

populations due to enhanced predation [56–58].

Indirect effects

We found strong positive delayed effects of carrion on the biomass and nutritional contents of

plants, and on the abundance of arthropods across trophic levels, in line with our predictions.

Such an increase in plant biomass around carrion is likely to be a common phenomenon
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[32,36,46], but it is rarely measured (but see [28,35]). We recorded these effects some five

months after death, but they are likely to last much longer. In other systems, plant biomass was

shown to remain elevated up to one year [35], and soil and foliar nutrients up to five [30,31] or

even over 10 years after death [36]. It has been suggested that this effect may be (partially)

driven by reduced herbivory around carcasses [35,36], but is in our case more likely to be

caused by the enhanced nutrient availability provided by the carcass. In fact, grazing by large

herbivores at carrion sites may, increase (possibly after a period of avoidance), rather than

decrease, due to the availability of nutrient rich forage, despite posing a health risk to the herbi-

vores [35]. In our study area, camera trapping showed that especially Konik horses grazed

close to decomposing deer (P. Jansen personal communication), probably driven by food scar-

city, which may last until spring. That the enhanced plant growth was driven by nutrient avail-

ability is also supported by our finding that the spiny thistle Carduus crispus showed an almost

tenfold higher biomass at the carrion sites. Because C. crispus is a biennial species, the overwin-

tering rosette must have been present before the deer died, and was ready to make optimal use

of the nutrients from the carcass. This contrasts with the control sites, where the C. crispus
plants remained small.

It stands to reason that carcass size will also strongly determine the delayed responses of

vegetation and arthropods, where medium to large carcasses will have much stronger effects

than small carcasses, but to our knowledge this has not been tested. Such relations could pro-

vide a fruitful avenue for future exploration, and could enhance our understanding of the

patch-dynamics of carrion in wild and re-wilded ecosystems significantly.

Conclusions

Rewilding as a management strategy has gained momentum in nature conservation and aca-

demic discourse, but at the moment both the number of rewilding sites and the number of

opinion papers on the topic outnumber the publications with actual data [9]. Carrion is a natu-

ral part of ecosystems, but legislative restrictions and cultural norms limit the presence of car-

rion of large mammals in many European nature reserves [6]. In the Oostvaardersplassen, the

introduced Heck-cattle and Koniks were exempt from carrion disposal regulations by an

exception in legislation, making them legally wild animals [7]. However, even though in the

Oostvaardersplassen it is technically legal to leave carcasses of Heck cattle and Koniks to

decompose in situ, these are usually removed to favour public opinion. During a cold spell in

the winter of 2018, public outrage about the starvation of the large herbivores, and in particular

the horses in the Oostvaardersplassen reached high levels in the media. It was decided that the

herds of large herbivores will be regulated at some 1100 animals, of which 490 red deer[59]. De

facto, this meant that the unique bottom-up regulated herbivore population dynamics in this

oldest rewilding site will be abandoned. What this means for the carrion availability in the area

remains unclear.

Our results show that if carrion regulations can be overcome, even in a naturally productive

ecosystem such as the Oostvaardersplassen, large carcasses can significantly increase local

invertebrate abundances. The pathways by which carrion affected arthropod communities

shifted during the decomposition process, from direct effects on carrion-associated species, to

plant and nutrient mediated effects on herbivorous and predatory arthropods. This highlights

the importance of indirect pathways by which carrion can structure arthropod communities.
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