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Abstract

Online product reviews underpin nearly all e-shopping activities. The high volume of data,

as well as various online review quality, puts growing pressure on automated approaches

for informative content prioritization. Despite a substantial body of literature on review

helpfulness prediction, the rationale behind specific feature selection is largely under-stud-

ied. Also, the current works tend to concentrate on domain- and/or platform-dependent fea-

ture curation, lacking wider generalization. Moreover, the issue of result comparability and

reproducibility occurs due to frequent data and source code unavailability. This study

addresses the gaps through the most comprehensive feature identification, evaluation, and

selection. To this end, the 30 most frequently used content-based features are first identified

from 149 relevant research papers and grouped into five coherent categories. The features

are then selected to perform helpfulness prediction on six domains of the largest publicly

available Amazon 5-core dataset. Three scenarios for feature selection are considered:

(i) individual features, (ii) features within each category, and (iii) all features. Empirical

results demonstrate that semantics plays a dominant role in predicting informative reviews,

followed by sentiment, and other features. Finally, feature combination patterns and

selection guidelines across domains are summarized to enhance customer experience in

today’s prevalent e-commerce environment. The computational framework for helpfulness

prediction used in the study have been released to facilitate result comparability and

reproducibility.

Introduction

Customer product reviews play a significant role in today’s e-commerce world, greatly assist-

ing in online shopping activities. According to a survey conducted in 2016 [1], 91% of online

shoppers read product reviews while searching for goods and services, and 84% of them believe

that the reviews are equally trustworthy as recommendations from their friends. Online

reviews do not only enhance the customer purchasing experience through valuable feedback

provision, but also facilitate future product development activities by better understanding the

customer needs.

PLOS ONE | https://doi.org/10.1371/journal.pone.0226902 December 23, 2019 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Du J, Rong J, Michalska S, Wang H,

Zhang Y (2019) Feature selection for helpfulness

prediction of online product reviews: An empirical

study. PLoS ONE 14(12): e0226902. https://doi.

org/10.1371/journal.pone.0226902

Editor: Farhan Hassan Khan, College of EME,

NUST, PAKISTAN

Received: May 11, 2019

Accepted: December 6, 2019

Published: December 23, 2019

Copyright: © 2019 Du et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: This paper used the

Amazon 5-core dataset which is publicly available

on http://jmcauley.ucsd.edu/data/amazon/. The

configuration of training-validation-testing splits

and source code for our experiments containing

pre-processing, feature extraction, and forward

feature selection, are provided with open access on

https://github.com/tokawah/Helpfulness-Feature-

Selection.

Funding: The author(s) received no specific

funding for this work.

http://orcid.org/0000-0001-9676-1186
https://doi.org/10.1371/journal.pone.0226902
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226902&domain=pdf&date_stamp=2019-12-23
https://doi.org/10.1371/journal.pone.0226902
https://doi.org/10.1371/journal.pone.0226902
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/tokawah/Helpfulness-Feature-Selection
https://github.com/tokawah/Helpfulness-Feature-Selection


Online product reviews are also highly susceptible to quality control [2], which can poten-

tially harm online shopping experience. A recent study [3] shows that users tend to limit their

attention to only first few reviews, regardless of their helpfulness. It is generally viewed that

helpful reviews have more impact on customers’ final decisions. However, the large and over-

whelming nature of online product reviews makes it difficult for customers to efficiently locate

useful information. Although the majority of online platforms enable review helpfulness

assessment through user voting, the large proportion of records does not contain any votes.

The scarcity of user votes is even more noticeable for less popular products.

Automatic helpfulness prediction helps consumers identify high-quality reviews, which has

attracted substantial attention. The mainstream approach follows a procedure of careful fea-

ture curation from multiple data sources [4]. Still, the features are frequently domain- and/or

platform-dependent, substantially inhibiting wider application. Also, the features are selected

arbitrarily without solid justification. Furthermore, prior research mainly focuses on the pre-

dictive power of the entire feature set, while little is known on the contribution and necessity

of using individual or subsets of features. Since identical feature set is rarely used among exist-

ing studies, the reported results prove challenging for fair comparison. Finally, the existing

studies are often conducted on publicly unavailable ad-hoc datasets, hampering result

reproducibility.

To address the aforementioned gaps, this study comprehensively identifies, evaluates, and

selects representative features for helpfulness prediction. Specifically, frequently used domain-

and platform-independent features (i.e., content-based features) are first identified from con-

siderable recent literature. The predictive power of the identified features is then evaluated on

six domains of large-scale online product reviews. Instead of evaluating the entire feature set,

the study allows for performance-oriented feature selection under multiple scenarios. Such

flexibility can effectively justify (not) selecting certain features. As a result, feature combination

patterns and selection guidelines across domains are summarized, offering valuable insights

into general feature selection for helpfulness prediction. The publicly available source code

and datasets ensure result comparability and reproducibility of the study.

This study contributes to existing literature in four aspects:

• First, the study conducts one of the most comprehensive literature reviews on helpfulness

analysis to identify frequently used content-based features.

• Second, the study conducts the first and most extensive empirical validation on large-scale

publicly available online product reviews to report feature behaviors in multiple scenarios

(individual and combinations) and domains.

• Third, a holistic computational framework is developed for helpfulness prediction from

scratch, including data pre-processing, extracting the identified features, and evaluating the

predictive power of individual features and feature combinations.

• Fourth, the source code, dataset splits, pre-processed reviews, and extracted features have

been released for result reproducibility, benchmark studies, and further improvement.

The remaining of the study is organized as follows. The Related work section surveys recent

literature regarding the use of features and feature selection for review helpfulness prediction.

The Methodology section introduces steps for approaching feature-based helpfulness predic-

tion, including feature identification, feature extraction, and feature selection strategies used

in the study. Substantial analysis is conducted in the Empirical analysis section. Empirical

results are reported and discussed to evaluate and locate optimal feature combinations, fol-

lowed by frequent pattern discovery. Subsequently, the study summarizes the implications and
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discusses the limitations in the Implications and Limitations section, respectively. Finally, the

Conclusions and future works section encapsulates the findings and outlines future directions

of the study.

Related work

The automatic prediction of reviews helpfulness is majorly approached via feature engineering.

Previous studies have curated a large body of features derived from (i) review content [5–10]

and (ii) review contexts such as reviewers [11, 12], social networks among reviewers [13, 14],

review metadata [15, 16], and product metadata [17, 18]. Some other less frequent contextual

features include review photos [19, 20], manager responses [21], travel distances [22], to name

a few. This study focuses on content-based features due to the ubiquitous use in literature and

the ability of review texts to generalize across online platforms.

Recent studies regarding helpfulness prediction and feature selection have been identified

and summarized. Kim et al. [5] investigated the effect of ten features spanning four main cate-

gories (i.e., lexical, structural, semantic, syntactic and metadata), and their combinations on

helpfulness prediction. The authors found out that the most useful features were review length,

unigrams, and product ratings. Zeng et al. [23] reported the results of individual features and

all-minus-one feature combinations. They introduced “the degree of detail” feature as a func-

tion of review length and n-grams, alongside seven other features. The introduced feature

proved to be the most important in helpfulness prediction, leading to a significant drop in

accuracy after its exclusion. Yang et al. [8] evaluated the impact of review structure, unigrams,

and three sentiment features: Geneva Affect Label Coder, Linguistic Inquiry and Word Count,

and General Inquirer. The latter two features not only improved the prediction performance,

but also provided a useful interpretation to what makes a review helpful.

Akbarabadi et al. [24] focused on 12 features from the review characteristics category,

including review length, review age, part-of-speech, richness, sentiment and readability. The

title characteristics category was also introduced, which did not improve the performance of

helpfulness prediction. Vo et al. [25] investigated the four feature categories, namely anatomi-

cal, metadata, lexical and added feature group, which included (i) the number of helpfulness

votes, and (ii) the number of positive and negative words. The impact of (i) on prediction

accuracy proved to depend on both datasets and the choice of classifiers. The results for

(ii) demonstrated a similar pattern.

Haque et al. [26] analyzed the performance of lexical, structural, semantic and readability

feature groups. The last group was added in order to unfold the complexity of the review con-

tent, and showed significant impact on helpfulness prediction. Chen et al. [27] adopted the fea-

tures related to text surface (i.e., the number of words, sentences, exclamation marks, question

marks, and uppercase, lowercase), unigrams, part-of-speech, and word embeddings. The word

embedding features trained using the Skip-gram model outperformed unigrams on an opinion

spam detection dataset collected from amazon.

In terms of neural network-based models, Fan et al. [28] conducted helpful review identifi-

cation based on recurrent neural networks, using the metadata of their target products. Sau-

mya et al. [29] developed a two-layer convolutional model upon both the Skip-gram and

Global Vectors model. Still, such approaches lack interpretability, making it difficult to identify

what particular aspects of the reviews are good indicators of helpfulness.

As presented above, the numerous analysis tasks have been conducted to extract the most

useful features for helpfulness prediction. However, the research within domain is often frag-

mented and heterogeneous, which challenges the objective comparison and findings syntheti-

zation. For example, the categorization of features differs among the studies, impacting

Feature selection for review helpfulness prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0226902 December 23, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0226902


finding generalizability. Also, the features selected in prior research frequently lacks justifica-

tion behind particular feature selection, leading to the potential bias in results interpretation.

Moreover, most of the existing studies suffer from result reproducibility due to the unavailabil-

ity of ad-hoc datasets and implementation details.

Given the limitations identified, this study (1) provides the most comprehensive and general-

izable content-based feature set evaluation on large-scale publicly available datasets, (2) conducts

the empirical validation of the most effective feature selection in an objective manner, and (3)

releases the datasets and source code describing the implementation details used in this study.

To the best of our knowledge, this study is the first to address the reproducibility and trans-

ferability issue of review helpfulness prediction, as well as the first work that provides the justi-

fication-driven feature selection process regardless of the platform and domain of applications.

The complete and systematic literature review proves practically infeasible given largely frag-

mented state of the research in helpfulness prediction domain. Still, the study has made best

efforts to report the latest state-of-art and identify the gaps to fill with the current work.

Methodology

Feature-based helpfulness prediction entails three steps. To start with, the procedure and crite-

ria are described to collect recent relevant literature, from which frequently cited content-

based feature candidates are identified. Each of the identified feature candidates is then intro-

duced and the feature construction process is specified. Finally, the evaluation protocols and

feature selection strategies are provided to locate optimal feature combinations for review

helpfulness prediction.

Feature identification

The study identifies frequently cited feature candidates from recent literature to provide wide

generalization and fair comparison with the majority of studies on the topic. To this end, a col-

lection of most recent relevant studies are first collected and filtered, from which feature candi-

dates are identified.

Paper acquisition The collection of relevant papers is based on (i) the references of the three

most recent survey papers from the review helpfulness field [4, 30, 31] and (ii) the top 50

relevant studies retrieved from the Google Scholar database and published before 2019,

using the following search query:

(“online reviews” OR “product reviews” OR “user review” OR “customer review” OR

“consumer reviews”) AND (“useful” OR “helpful” OR “usefulness” OR “helpfulness”).

Given the scope of the study, the 149 collected papers are filtered based on the following cri-

teria: (i) automated prediction of online product review helpfulness; (ii) inclusion of factors
influencing review helpfulness; and (iii) English-written review analysis only. As a result, 74

papers (See the “Literature” column in Table 1) are identified.

Feature acquisition Features mentioned in the 74 identified papers are collected, along with

the frequency of feature mentions. The following rules are adopted for feature list compila-

tion: (i) features mentioned at least three times over the entire paper collection to exclude

rare features, (ii) removal of human-annotated features due to expensive manual annota-

tion process, and (iii) inclusion of only content-based features to support platform-indepen-

dent generalizability and transferability. As a results, 27 feature candidates are identified.

Feature selection for review helpfulness prediction
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As a novelty, the study additionally incorporates two semantic features and one sentiment

feature that are gaining more recent attention. Such features have been proved robust in

numerous text mining and natural language processing applications but are so far under-stud-

ied in review helpfulness prediction.

Table 1 presents the 30 content-based features identified from recent literature. The features

are further grouped into five coherent categories (i.e., semantics, sentiment, readability, struc-

ture, and syntax) following the convention in the research field.

Note that context-based features such as reviewer characteristics are currently excluded

from the feature pool since they are domain- and/or platform-dependent, and thus not always

available.

Table 1. Features used in the analysis.

Category Feature Dimension Description Literature

Semantics UGR V Unigram TF-IDF [5, 7, 8, 13, 23, 26, 32–43, 88]

BGR V2 Bigram TF-IDF [5, 23, 26, 40, 42, 44]

LDA 100 LDA topic distribution [37, 39, 45–48, 88]

SGNS 300 Skip-gram Negative Sampling —

GV 300 Global Vectors —

Sentiment LIWC 93 Linguistic Inquiry and Word Count

dictionary

[8, 35, 49–55, 88]

GI 182 General Inquirer [5, 8, 18, 33, 39, 42, 56, 88]

GALC 21 Geneva Affect Label Coder [7, 8, 33]

OL 3 Opinion lexicon [13, 38, 40, 57–59]

SWN 3 SentiWordNet [37, 59–62]

SS 3 SentiStrength [10, 63, 64]

VADER 3 VADER lexicon —

Readability FKRE 1 Flesch–Kincaid Reading Ease score [7, 10, 18, 29, 35, 38–40, 48, 51, 54, 59, 62, 65–67]

FKGL 1 Flesch–Kincaid Grade level [9, 10, 35, 38, 39, 65, 68]

GFI 1 Gunning Fog Index [9, 10, 16, 38, 40, 50, 52, 53, 65, 66, 68]

SMOG 1 Simple Measure of Gobbledygook [9, 10, 38–40, 65]

ARI 1 Automated Readability Index [9, 10, 38, 52, 56, 65, 66, 68, 69]

CLI 1 Coleman–Liau Index [9, 10, 15, 38, 49, 52, 65, 66, 68, 70]

Structure CHAR 1 Number of characters [26, 35, 45, 52, 65, 71–75]

WORD 1 Number of words [5, 7, 8, 11, 13, 15, 16, 18–21, 23, 26, 29, 32, 33, 35, 37–43, 45, 48–50, 52, 53, 56–58, 60,

62, 63, 65–71, 76–82, 88]

SENT 1 Number of sentences [5, 7, 8, 13, 21, 26, 32, 33, 35, 37, 39–43, 45, 52, 57, 58, 65, 71, 79, 88]

AVG 1 Average number of words per

sentence

[5, 8, 13, 33, 35, 39, 40, 43, 45, 52, 57, 58, 71, 79, 83, 88]

EXCLAM 1 Number of exclamatory sentences [5, 8, 33, 41, 42, 88]

INTERRO 1 Number of interrogative sentences [5, 8, 26, 33, 41, 42, 88]

MIS 1 Number of misspelling words [38, 39, 54, 59, 65, 71]

Syntax NOUN 1 Number of nouns [5, 7, 10, 13, 29, 32, 39, 42, 43, 52, 59]

VERB 1 Number of verbs [5, 7, 10, 13, 29, 32, 39, 41–43, 59, 84]

ADJ 1 Number of adjectives [5, 7, 10, 13, 29, 32, 39, 41–43, 58, 59]

ADV 1 Number of adverbs [5, 7, 10, 13, 32, 39, 41–43, 58]

COMP 1 Number of comparative sentences [13, 23, 32, 43, 55, 85]

V indicates the vocabulary size of the training set of a corpus.

https://doi.org/10.1371/journal.pone.0226902.t001
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Feature extraction

The description and construction process of the identified features in groups is presented as

follows. It is worth noting that some features overlap functionally, for instance, all sentiment

features compute the emotional composition of reviews via different lexicons. Some features

are constituents of others, such as readability scores resulting from different linear transforma-

tions of certain structural features. Following the convention in the research field, features in

both cases are treated as individual ones.

Semantics. Semantic features refer to the meaning of words and topical concepts from the

review content by modelling terms statistics into vectors. The five semantic features for the

helpfulness prediction task are as follows:

UGR and BGR The unigram bag-of-words representation of a review uses the term fre-

quency-inverse document frequency (TF-IDF) weighting scheme [86], where each element

of a vector corresponds to a word in the vocabulary. Similarly, the bigram bag-of-words

representation encodes all possible word pairs formed from neighboring words in a corpus.

Both UGR and BGR ignore terms that have a document frequency value below 10 when

building the vocabulary. The vector representations are then transformed into unit vectors

via the L2 normalization.

LDA Latent Dirichlet Allocation representation learns the topic distribution of a review. Topic

modeling considers corpus as a mixture of topics, and each topic consists of a set of words.

In the case of online product reviews, the topics can be different product properties, emo-

tional expressions, etc. The original LDA algorithm [87] is adopted to learn the probability

distribution of latent topics for each review. Following [88], the number of topics is set to

100 during training.

SGNS and GV As a novelty, the study also uses the two most recent types of word embeddings
as features. The Skip-Gram with Negative Sampling [89] and Global Vectors [90] aim at

learning the distributed representations of words. Under this setting, each word is mapped

into a dense vector space, where similar terms display closer spatial distance. Thus, each

review can be simply converted into a vector by averaging the embeddings of its constituent

words, where out-of-vocabulary words are skipped.

Sentiment. Sentiment features analyze the subjectivity, valence, and emotion status of

content written by customers. Previous works [22, 91] have shown relevance between helpful-

ness of a review and the sentiments expressed through its words. The study constructs senti-

ment features using the seven most frequently-used lexicons. The first three lexicons are

category-based, each estimating the probability of a review belonging to its predefined lexicon

categories. The remaining lexicons are valence-based, each looking up the valence (i.e., posi-

tive, neutral, and negative) of words in a review where possible. Note that both the categories

and word valence are defined differently among lexicons. As a result, the seven sentiment fea-

tures will lead to different vector representations due to various measurement criteria.

LIWC The Linguistic Inquiry and Word Count dictionary [92] classifies contemporary

English words into 93 categories, including social and psychological states. The dictionary

covers almost 6, 400 words, word stems, and selected emoticons.

GI General Inquirer [93] attaches syntactic, semantic, and pragmatic information to part-of-

speech tagged words. It contains 11, 788 words collected from the Harvard IV-4 dictionary

and Lasswell value dictionary, which are assigned to 182 specified categories.
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GALC Geneva Affect Label Coder [94] recognizes 36 emotion categories of affective states

commonly distinguished by 267 word stems. The Geneva Emotion Wheel model [7, 8] is

followed, and the 20 of the GALC categories plus an additional dimension for non-emo-

tional words are adopted.

OL The Opinion Lexicon [95] is widely used by researchers for opinion mining. It consists of

2, 006 positive and 4, 783 negative words, along with the misspellings, morphological vari-

ants, slang, and social media markups.

SWN SentiWordNet [96] is a lexical resource for sentiment and opinion mining. It assigns to

each synset of WordNet [97] three sentiment scores: positivity, negativity, and objectivity,

in terms of probability.

SS SentiStrength [98] is a tool for automatic sentiment analysis on short social web texts writ-

ten in informal language, incorporating intensity dictionaries, words with non-standard

spellings, emoticons, slang and idioms.

VADER As a novelty, the study also adopts the Valence Aware Dictionary and sEntiment Rea-

soner [99]. VADER is a lexicon specifically attuned for social media texts. It has 3, 345 posi-

tive and 4, 172 negative terms, and is enhanced with general heuristics for capturing

sentiment intensity.

Sentiment features are built as follows. For each categorical lexicon, a sentiment feature is

represented by the histogram of all its predefined categories. Take LIWC as an instance, the

generated feature vector of 93 dimensions contains numeric statistics of a review correspond-

ing to each predefined category. Similarly, a feature vector derived from GI and GALC con-

tains 182 and 21 elements encoding information of a review towards individual predefined

categories, respectively.

As for valence-based lexicons, a review is described using a three-dimensional vector: the

percentage of positive, neutral, and negative sentences in a review. Given a sentence, all its

words are looked up in a lexicon, and the corresponding valence values are subsequently

summed up. A sentence is considered positive if the total valence is greater than zero, negative

if less than zero, and neutral otherwise. During the valence lookup, VADER heuristics are

applied to OL and SWN to improve the detection accuracy [100]. The heuristics does not

apply to SS since the toolkit offers a similar built-in mechanism for sentiment intensity

evaluation.

The aforementioned sentiment features differ one another. In category-based lexicons, the

sentiment of a review is described using predefined categories, similar to an opinion is under-

stood from different perspectives. Meanwhile, valence-based lexicons detect the polarity of

review words differently. For example, the term “clean” can be positive in some lexicons but

neutral in others. As a result, the same review will obtain different vector representations due

to various sentiment measurement criteria. Further details of the lexicon composition, such as

the predefined categories and vocabulary can be found in the corresponding literature of indi-

vidual lexicon and the survey papers [100, 101].

Readability. Readability measures the ease of reading texts. As pointed out by [102], even

a minor increase in readability largely improves review readership, leading to more opportuni-

ties for reviews to receive helpful votes. Thus, readability has been frequently addressed in the

past papers on helpfulness prediction. The following six formulas are used to construct the

readability features, taking advantage of the number of characters, syllables, words, complex
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words, and sentences.

FKRE ½103� ¼ 206:835 � 1:015
#words

#sentences

� �

� 84:6
#syllables
#words

� �

� 15:59; ð1Þ

FKGL ½104� ¼ 0:39
#words

#sentences

� �

þ 11:8
#syllables
#words

� �

; ð2Þ

GFI ½105� ¼ 0:4
#words

#sentences

� �

þ 100
#complex words

#words

� �� �

; ð3Þ

SMOG ½106� ¼ 1:0430

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#complex words�
30

#sentences

r

þ 3:1291; ð4Þ

ARI½107� ¼ 4:71
#characters
#words

� �

þ 0:5
#words

#sentences

� �

� 21:43; ð5Þ

CLI ½108� ¼ 0:0588L � 0:296S � 15:8; ð6Þ

where complex words have at least three syllables, L ¼ #characters
#words � 100, S ¼ #sentences

#words � 100. The

z-score is calculated for each feature for normalization.

Similar to the sentiment category, the six readability features used in the study will obtain

different vector representations. While referring to the same underlying concept (ease of readi-

ness), the use of different formulas, namely linear transformations of the counting statistics,

reflects different focuses on understanding the readability of a review. Interested readers can

access detailed information regarding readability tests in [109].

Structure. Structural features count the length and occurrence of specific language unit

types. The following six features are selected to represent the structure of a review. The first

three features are self-explanatory, including the number of characters (CHAR), tokens

(WORD), and sentences (SENT). Similarly to Xiong et al. [110], the percentage of exclamatory

(EXCLAM) and interrogative (INTERRO) sentences is taken into account. Finally, the num-

ber of misspelling words (MIS) in a review is considered.

Syntax. Syntactic features consider specific types and patterns of parts-of-speech within

the review content. The percentage of the most prevalent open-class word categories, namely

nouns (NOUN), adjectives (ADJ), verbs (VERB), and adverbs (ADV) is estimated. Addition-

ally, the percentage of comparative sentences (COMP) is calculated. The procedure for com-

parative sentence detection follows the work by Jindal et al. [111], which employs a list of

keywords and patterns to match the review sentences. Given that comparisons can take place

implicitly, only explicit expressions are captured.

Feature selection for helpfulness prediction

Feature-based helpfulness prediction is formulated as a binary classification (either helpful

or unhelpful) problem. Most existing studies approach the task either by classification or

regression. This study adopts the former due to its intuitive and simple output to customers.

The task of feature-based helpfulness prediction is formally defined as follows. Let

D ¼ fðD1; u1Þ; . . . ; ðDn; unÞg be a collection of n product reviews, where D is the content

of a review and u the accompanying helpfulness information (u = 1 helpful and u = 0

unhelpful). Each review content D 2 D is associated with a set of features, denoted by

Feature selection for review helpfulness prediction
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FðDÞ ¼ ff1ðDÞ; . . . ; fmðDÞg, viam different feature extractors {f}. The goal of the task is to

train a binary classifier C that searches for the optimal feature combination F̂ from the feature

pool F to approximate the helpfulness u such that:

F̂ ¼ arg max
F 0�FðDÞ

X

D2D

1ðu ¼ CðF 0ÞÞ; ð7Þ

where 1ð�Þ is an indicator function. Ideally, the search of F̂ would exhaust all possible feature

combinations. Though, such a scenario is not suitable form = 30 features due to the exponen-

tial complexity of calculation.

Instead, the search is fulfilled by a wrapper method, specifically, the step forward feature

selection. Given the feature pool, the search starts with the evaluation of each feature and

selects the one with the highest performance. Subsequently, all possible combinations between

the selected feature and each of the remaining features are evaluated, and the second feature is

selected. The iteration continues until adding features cannot improve the prediction perfor-

mance. As a result, the selected features together form the optimal feature combination.

As for the classifier C, the linear Support Vector Machine (SVM) algorithm is chosen given

its wide adoption and high performance in previous studies on the task [5, 9, 23, 84]. Using the

most common linear SVM classifier also facilitates fair comparison between the studies within

the same field.

Empirical analysis

This section conducts substantial helpfulness prediction analysis using the 30 identified con-

tent-based features. The large-scale publicly available datasets and implementation details is

introduced. The empirical results are discussed and further summarized to obtain insights into

feature selection for helpfulness prediction.

Datasets

The analysis is conducted on the largest publicly available Amazon 5-core dataset [112]. Ama-

zon is the largest Internet retailer, which has accumulated large-scale user-generated reviews.

The helpfulness of such reviews is rated by online customers, which makes it an ideal candi-

date for review helpfulness prediction task. In fact, Amazon product reviews are predomi-

nantly used and analyzed in previous studies. Thus, adopting Amazon reviews allows for fair

comparisons with previous studies.

The original dataset consists of 24 domains, covering 142.8 million reviews collected

between May 1996 and July 2014. The six domains with the highest number of reviews are

selected for the study. Table 2 presents the helpful versus unhelpful review examples, where

each review contains (i) a summary headline, (ii) a review text commenting in detail on the

product, and (iii) the helpfulness information, namely the number of helpful and unhelpful

votes given by online customers. During analysis, content-based features are extracted from

the combination of the summary headline and review text.

The following pre-processing steps are performed: (1) All blank and non-English reviews

are filtered out; and (2) regarding identical and nearly identical reviews [113] common on

Amazon, only the ones with the highest number of votes are retained (two reviews are nearly

identical if more than 80 percent of their bigram occurrence is shared [5]); and (3) the reviews

with less than 10 votes are skipped to alleviate the effect of words of few mouths [114]; and

(4) the remaining reviews are lowercased, tokenized, and the articles are removed.

The helpfulness label of the pre-processed reviews is determined via human assessment.

For each domain, a review is labeled as unhelpful if its ratio of helpful votes is fewer than a pre-

Feature selection for review helpfulness prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0226902 December 23, 2019 9 / 26

https://doi.org/10.1371/journal.pone.0226902


defined threshold and otherwise helpful. The threshold is set to 0.6, which is the most com-

monly used threshold in prior research [9, 10, 65]. To avoid the class imbalance problem,

which is outside the scope of this study, the same number of helpful and unhelpful reviews are

sampled.

Finally, reviews in each domain are partitioned using random stratified split: 80%, 10%,

and 10% of the reviews are randomly (with a fixed seed) selected respectively for training, vali-

dation, and testing, while preserving the percentage of samples for each class. During analysis,

all feature combinations are trained on the training set, compared and selected on the valida-

tion set, and evaluated on the test set serving as unseen data in reality.

Table 3 demonstrates the descriptive statistics and out-of-vocabulary (OOV) rate of the six

domains sorted by data size in ascending order. The vote distributions are further presented in

Fig 1, displaying a similar pattern for each domain that high frequency of reviews have a rela-

tively low number of votes.

Implementation

All analysis tasks are implemented with Python 3.6 and run on Ubuntu 16.04. Text pre-pro-

cessing, part-of-speech tagging, and feature extraction are done using NLTK [115]. Specifi-

cally, both SGNS trained on 100 billion words from Google News and GV trained on 840

billion words from Common Crawl are publicly available online. Regarding the sentiment cat-

egory, LIWC 2015, the commercial version (February 2017) of SentiStrength, and VADER

3.2.1 are employed. The remaining lexicons are acquired as per the papers. All the readability

Table 2. Example helpful and unhelpful reviews.

Helpful Unhelpful

actually free!!! are you serious?!!?

i thought for sure after downloading this app that i

would have to creat an account and give away

unnessecary information but surprisingly the only thing

that was required was an email address and a password

and i was instantly watching movies also from other

reviews i was worried this app wouldnt have much to

choose from but was again delightfully surprised they

had more than a few good movie titles

I love hangman personally. when I saw this app I was like

hmmm. . . and then NINETYNINE DOLLARS ARE

YOU KIDDING ME? I don’t care how ultimate this is.

no app is worth 99$ especially hangman! I mean the

graphics are cool! I could see like 2.99 at the most but I

would never buy any app for 100 dollars. really? I

thought you guys were really stupid but this is ridiculous!

God I cant believe it! no no no no.

825 of 906 people think this review is helpful. 3 of 131 people think this review is helpful.

Typos in the reviews are intentionally preserved.

https://doi.org/10.1371/journal.pone.0226902.t002

Table 3. Descriptive statistics of the balanced datasets after pre-processing.

Domain #Reviews #Tokens #Sentences #Tokens
#Reviews

#Tokens
#Sentences

#Sentences
#Reviews OOV Rate

D1 Apps for Android 20,416 1,184,650 107,702 58.03 11.00 5.28 1.68% / 1.74%

D2 Video Games 23,100 7,522,835 469,856 325.66 16.01 20.34 0.86% / 0.86%

D3 Electronics 33,962 8,255,411 537,996 243.08 15.34 15.84 0.84% / 0.91%

D4 CDs and Vinyl 105,934 23,096,933 1,468,718 218.03 15.73 13.86 0.77% / 0.76%

D5 Movies and TV 164,052 40,549,434 2,510,899 247.17 16.15 15.31 0.62% / 0.64%

D6 Books 306,430 71,632,822 4,405,047 233.77 16.26 14.38 0.51% / 0.51%

OOV rate indicates the ratio of terms in the vocabulary of the training set is missing from the validation/test set.

https://doi.org/10.1371/journal.pone.0226902.t003

Feature selection for review helpfulness prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0226902 December 23, 2019 10 / 26

https://doi.org/10.1371/journal.pone.0226902.t002
https://doi.org/10.1371/journal.pone.0226902.t003
https://doi.org/10.1371/journal.pone.0226902


scores are computed via the textstat library. The Hunspell spell checker is used to detect

misspelling words. To enable the detection for product brands and contemporary language

expressions, Hunspell is extended with Wikipedia titles (Retrieved February 13, 2019, from

Wikimedia dump service). The linear SVM classifier [116] is developed using Scikit-learn

[117]. For reproducibility, all randomization processes involved in the study are initialized

with the same random seed.

Results and discussion

The study considers three scenarios for feature selection: (i) individual features, (ii) features

within each category, and (iii) all features. The research questions investigated can be formu-

lated as follows:

RQ1:What is the effect of individual features on review helpfulness prediction across domains?

RQ2:What are the optimal combinations of features within a category for review helpfulness pre-
diction across domains?

RQ3:What are the optimal combinations of all features for review helpfulness prediction across
domains?

RQ4: Are there any patterns of features/feature combinations for review helpfulness prediction
that perform well in general?

RQ1, RQ2, and RQ3 are answered one in a subsection. As for RQ4, the combination pat-

terns and selection guidelines (if any) are discussed at the end of each subsection.

Fig 1. Vote distributions.

https://doi.org/10.1371/journal.pone.0226902.g001
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Throughout the analysis, the performance of review helpfulness prediction is measured by

classification accuracy and its ranking. The latter is provided as another prioritization measure

to capture the general trend of feature performance since the accuracy of a feature (set) can

largely vary in domain.

RQ1: The predictive power of individual features. Table 4 demonstrates the classifica-

tion accuracy, in-category ranking, and overall ranking of individual features, respectively. As

shown, the semantics and sentiment category in general perform better than the other three

categories.

Semantics The semantics category consists of most of the globally top-five features. The best

overall performance lies in semantic features directly modeling review content, leading to

more dimensions for encoding information. In particular, UGR sets a strong baseline in all

domains, which indicates that specific term occurrences differ between helpful and unhelp-

ful reviews. Both GV and SGNS show comparable or higher performance than UGR, with

about 1% in accuracy lower than UGR in the worst case. The promising performance

Table 4. The classification accuracy and ranking (In-category/Overall) of individual features.

Category Feature D1 D2 D3 D4 D5 D6

Acc. Rank. Acc. Rank. Acc. Rank. Acc. Rank. Acc. Rank. Acc. Rank.

Semantics UGR 66.06 3 / 4 74.98 2 / 2 74.1 1 / 1 80.83 3 / 3 78.06 1 / 1 75.02 1 / 1

BGR 60.72 4 / 10 70.74 4 / 5 69.07 4 / 5 76.89 4 / 5 74.37 4 / 4 71.03 4 / 4

LDA 55.39 5 / 12 67.23 5 / 7 63.1 5 / 10 65.49 5 / 11 63.39 5 / 10 61.67 5 / 9

SGNS 67.58 2 / 2 75.15 1 / 1 73.28 3 / 3 81.02 2 / 2 77.26 3 / 3 73.91 3 / 3

GV 68.66 1 / 1 74.94 3 / 3 73.34 2 / 2 81.06 1 / 1 77.41 2 / 2 74.04 2 / 2

Sentiment LIWC 66.16 1 / 3 73.94 1 / 4 70.78 1 / 4 76.99 1 / 4 72.25 1 / 5 68.58 1 / 5

GI 63.76 2 / 5 69.18 2 / 6 67.07 2 / 6 72.07 2 / 6 70.75 2 / 6 67.04 2 / 6

GALC 55.88 7 / 11 53.81 7 / 28 58.21 7 / 21 56.14 7 / 27 54.86 7 / 27 55.17 7 / 23

OL 62.78 4 / 7 62.99 4 / 17 66.83 3 / 7 70.13 3 / 7 66.57 3 / 7 63.64 3 / 7

SWN 61.41 5 / 8 63.12 3 / 16 62.54 5 / 12 65.29 6 / 13 63.87 5 / 9 60.92 5 / 10

SS 60.77 6 / 9 58.05 6 / 22 60.86 6 / 19 65.6 5 / 10 61.23 6 / 17 60.6 6 / 11

VADER 63.42 3 / 6 62.55 5 / 18 64.6 4 / 8 67.68 4 / 8 65.32 4 / 8 62.51 4 / 8

Readability FKRE 52.99 4 / 23 58.44 3 / 21 55.36 5 / 26 62.38 4 / 20 59.15 5 / 24 53.64 6 / 27

FKGL 51.22 6 / 28 56.84 5 / 25 55.71 4 / 25 62.12 5 / 22 59.25 4 / 23 54.92 4 / 25

GFI 53.48 2 / 21 56.15 6 / 26 53.18 6 / 29 61.66 6 / 23 58.48 6 / 26 54.16 5 / 26

SMOG 53.23 3 / 22 61.34 2 / 20 59.12 1 / 20 64.8 1 / 15 61.32 1 / 16 56.45 1 / 21

ARI 51.37 5 / 27 57.1 4 / 24 55.83 3 / 24 63.15 3 / 19 59.46 3 / 22 55.57 2 / 22

CLI 53.82 1 / 19 62.08 1 / 19 56.45 2 / 22 64.58 2 / 16 60.72 2 / 19 54.98 3 / 24

Structure CHAR 54.36 3 / 16 65.24 1 / 9 62.07 1 / 13 64.85 1 / 14 62.56 1 / 13 58.79 2 / 14

WORD 54.55 2 / 15 64.76 2 / 11 61.86 2 / 14 63.95 2 / 17 62.17 2 / 14 58.87 1 / 13

SENT 52.69 5 / 26 63.94 3 / 15 61.8 3 / 15 61.64 3 / 24 60.51 3 / 20 57.94 3 / 18

AVG 52.94 4 / 24 57.71 4 / 23 56.18 4 / 23 59.83 4 / 26 58.87 4 / 25 56.59 4 / 20

EXCLAM 51.13 6 / 29 52.81 7 / 30 53.86 6 / 28 53.99 6 / 29 52.79 6 / 29 53.05 5 / 28

INTERRO 55.29 1 / 13 53.16 6 / 29 51.32 7 / 30 53.43 7 / 30 53.24 5 / 28 51.8 6 / 29

MIS 50.78 7 / 30 54.29 5 / 27 55.27 5 / 27 55.72 5 / 28 52.35 7 / 30 50.51 7 / 30

Syntax NOUN 54.06 2 / 17 64.94 2 / 10 61.77 3 / 16 65.38 2 / 12 63 2 / 12 58.92 1 / 12

VERB 53.72 4 / 20 64.2 4 / 13 61.09 5 / 18 62.27 4 / 21 60.81 4 / 18 58.41 4 / 17

ADJ 55.14 1 / 14 65.41 1 / 8 63.27 1 / 9 65.63 1 / 9 63.11 1 / 11 58.65 2 / 15

ADV 52.89 5 / 25 64.16 5 / 14 61.74 4 / 17 61.04 5 / 25 60.24 5 / 21 57.76 5 / 19

COMP 53.97 3 / 18 64.33 3 / 12 62.89 2 / 11 63.6 3 / 18 61.56 3 / 15 58.56 3 / 16

https://doi.org/10.1371/journal.pone.0226902.t004
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demonstrates the efficacy of traditional machine learning algorithms trained on general-

purpose distributed word representations for helpfulness prediction. GV outperforms

SGNS in all domains except D2, being a preferable option. In contrast, BGR scores 4%–5%

lower compared with UGR, suggesting increased data sparsity while using bigram features.

LDA consistently ranks the lowest within the category and is even lower than several fea-

tures in the sentiment and syntax category. The inferior performance can be attributed to

short product reviews hindering the training of topic distributions, which explains the low-

est (highest) overall LDA ranking on D1 (D2).

Sentiment The sentiment category shows mixed performance. As for the categorical lexicons,

LIWC, GI, and GALC rank respectively first, second, and last in all domains. LIWC out-

performs UGR in D1 but is beaten by other domains. The accuracy gap, ranging from 1%

to 6%, is proportional to data size. As such, LIWC can substitute for semantics when

applied to small datasets. While the drastic low performance of GALC results from its few

predefined categories and low vocabulary coverage compared with LIWC, GI shows that

having almost double the size of predefined lexicon categories and words does not neces-

sarily bring higher performance. On the other hand, the valence-based lexicons perform

variously depending on data size. In most cases, OL and VADER produce higher accuracy

than SWN and SS. Starting from D3, a more precise pattern that OL>VADER>SWN>SS

is observed. OL generally performs better than other valence-based lexicons because it is

originally generated from Amazon reviews, and thus more related to the tested domains.

The results from the category show that the predictive power of lexicon-based features

highly depends on the definition of lexicon categories, vocabulary coverage, as well as data

size.

Readability, Structure and Syntax Features from the remaining three categories generally

have less individual predictive power. The majority of the features have lower rankings,

with the accuracy about 10%-27% inferior to UGR. The low performance indicates the

indistinguishable nature among classes. In the readability category, for instance, similar

scores are observed regardless of helpfulness of a review. Likewise, both helpful and unhelp-

ful reviews are characterized by similar ratio of exclamatory and interrogative sentences, as

well as misspellings. As a result, such features are less preferable in the helpfulness predic-

tion task when used individually. Still, the slightly improved accuracy in the syntax category

indicates that helpfulness is more related to the proportion of open-class words. In particu-

lar, ADJ generally performs better than other syntactic features due to the descriptive nature

of products or general purchase satisfaction/dissatisfaction.

To better understand the behaviour of individual features across domains, the mean and

standard deviation of the overall ranking of each feature are produced in Fig 2. The former

describes the average performance of a feature, whereas the latter describes the stability of fea-

ture performance. As demonstrated, GV, SGNS, UGR, LIWC, and GI are the most ideal fea-

tures with both excellent performance and stability. Those features show the feasibility of

helpfulness prediction by modeling semantics and sentiment of product reviews. The remain-

ing features, however, have either less satisfactory or stable performance.

Summary The findings and guidelines for review helpfulness prediction using individual

features are summarized below:

1. Consider UGR, GV, and SGNS in the semantics category with higher priority since they are

the most distinctive for informative reviews. In particular, GV performs better than SGNS

in most cases.
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2. Features in the sentiment category are less effective in review helpfulness prediction com-

pared with the three semantic counterparts. However, it is worth trying to replace the

semantics with LIWC in small datasets.

3. Most features in the structure, readability, and syntax category are of minor predictive

power and not suggested to use individually.

RQ2: Optimal combinations of features within each category. Table 5 presents the

accuracy and ranking of the optimal feature combination in each category. As shown, BGR is

the only feature not being selected in any scenarios due to the associated sparsity. Also, all

domains demonstrate an identical ranking of feature categories, with the semantics, sentiment,

and structure category playing the dominant role in helpfulness prediction.

To evaluate the benefit of combining multiple features within the same category, the opti-

mal feature combination is compared with the most promising individual feature. As Fig 3

illustrates, in all but one cases, using multiple features achieves better performance on a cate-

gory level. The rationale is that combining features provides new descriptive information of

reviews and allows the information to complement one another. The improvement, depending

on domains, tends to be more noticeable in the sentiment, readability, and structure category.

On D1, GV alone reports higher accuracy than the optimal combination GV+SGNS in the

semantics category since the domain has a large proportion of OOV words. As shown in

Table 3, D1 has the shortest average length but highest OOV rate, which is about twice as

Fig 2. Feature performance versus stability.

https://doi.org/10.1371/journal.pone.0226902.g002
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much as other domains. Further manual inspection reveals that many OOV words are

domain-specific terms such as names of mobile applications and mobile games. Moreover,

only 53% of the OOV words overlap between the validation and test set. When converting

reviews into embeddings, the OOV issue in the pre-trained SGNS model further affects the

performance, which explains why GV+SGNS is worse than GV and less robust on D1.

The average number of features within each category used for helpfulness prediction is pro-

vided in Table 6. Frequent feature combination patterns that occur at least four times across

domains are extracted via the PrefixSpan algorithm. The constant use of LIWC, SMOG, ADV,

and INTERRO+WORD is observed, and thus it is recommended to include them for optimal

feature combinations within the corresponding categories. As for the sentiment category, add-

ing GI+OL (VADER alone) on top of LIWC can achieve higher performance in five (four) of

six domains. Similarly, using INTERRO+WORD in conjunction with CHAR (MIS) can

improve the structure category in five (four) domains. Furthermore, including one of ARI,

CLI, and FKGL in addition to SMOG in the readability category helps to increase the accuracy

in four domains. The same applies to ADJ and NOUN+VERB for ADV in syntax category.

Table 5. Optimal combinations of features within each category.

Category Accuracy Ranking Combination

D1 Semantics 67.53 1 GV+SGNS

Sentiment 67.29 2 LIWC+OL+GI

Readability 54.06 5 SMOG+CLI+FKGL

Structure 56.51 3 SENT+INTERRO+EXCLAM+AVG+WORD+CHAR

Syntax 55.14 4 ADJ+ADV+COMP

D2 Semantics 76.67 1 SGNS+GV+LDA

Sentiment 74.81 2 LIWC+VADER

Readability 64.46 5 CLI+SMOG+GFI+ARI+FKGL

Structure 66.67 3 CHAR+WORD+MIS+INTERRO

Syntax 65.54 4 NOUN+ADJ+ADV+VERB

D3 Semantics 74.10 1 GV+SGNS

Sentiment 73.98 2 LIWC+OL+GI+GALC+VADER

Readability 59.12 5 SMOG

Structure 64.10 3 CHAR+INTERRO+WORD

Syntax 63.60 4 ADJ+ADV

D4 Semantics 81.32 1 UGR+GV

Sentiment 78.81 2 LIWC+OL+GI+SS+SWN+VADER

Readability 65.52 5 SMOG+ARI+FKGL

Structure 68.68 3 CHAR+INTERRO+WORD+MIS+SENT

Syntax 67.36 4 ADJ+ADV+VERB+NOUN

D5 Semantics 78.18 1 UGR+GV

Sentiment 74.95 2 LIWC+GI+OL+VADER+SS+SWN

Readability 62.05 5 SMOG+CLI+GFI+ARI+FKRE

Structure 65.92 3 CHAR+INTERRO+WORD+EXCLAM+MIS

Syntax 63.89 4 NOUN+VERB+ADV+COMP

D6 Semantics 75.49 1 UGR+SGNS+LDA

Sentiment 71.45 2 LIWC+GI+OL+SWN+SS+GALC

Readability 59.05 5 SMOG+ARI+FKRE+CLI+FKGL

Structure 61.59 3 WORD+INTERRO+MIS+EXCLAM+SENT

Syntax 59.11 4 NOUN+COMP+VERB+ADV

https://doi.org/10.1371/journal.pone.0226902.t005
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Finally, the semantics category tends to have various feature combinations, with GV and

SGNS prevalent in most cases.

Summary The findings and guidelines for review helpfulness prediction using multiple fea-

tures within each category are summarized below:

1. The optimal combination of semantic features consistently outperforms those in other cate-

gories in helpfulness prediction. Specifically, it is suggested that the combination includes

GV as the first feature.

2. Regarding the sentiment (structure) category, it is recommended the optimal combination

base on LIWC (INTERRO+WORD), and subsequently follow an addition of OL+GI

(CHAR alone) to the corresponding category since performance gains are reported in most

cases.

Fig 3. Comparison between max-performance individual feature (Blue) and max-performance combination of features (Orange) within each

category.

https://doi.org/10.1371/journal.pone.0226902.g003

Table 6. Frequent feature combination patterns within each category.

Category #Features Pattern (Frequency)

Semantics 2.33 ± 0.47 GV (5);

Sentiment 4.67 ± 1.60 LIWC (6); GI+OL+LIWC (5); LIWC+VADER (4)

Readability 3.67 ± 1.49 SMOG (6); ARI+SMOG (4); CLI+SMOG (4); FKGL+SMOG (4)

Structure 4.67 ± 0.94 INTERRO+WORD (6); CHAR+INTERRO+WORD (5); INTERRO+MIS+WORD (4)

Syntax 3.50 ± 0.76 ADV (6); ADJ+ADV (4); ADV+NOUN+VERB (4)

https://doi.org/10.1371/journal.pone.0226902.t006
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3. In regard to the readability (syntax) category, it is suggested the optimal feature combina-

tion base on SMOG (ADV), and subsequently follow an addition of one of ARI, CLI, and

FKGL (ADJ, NOUN+VERB) to the corresponding category as this generally leads to visible

performance gains.

RQ3: Optimal combinations of all features. The final result of review helpfulness predic-

tion using the optimal feature combination from all categories are presented in Table 7. The

optimal combinations contain four to seven features selected from only 18 out of the 30 fea-

tures. Some of the 12 excluded features have excellent individual performance or are popular

in category-level combinations, such as GI and WORD. The exclusion is due to features

selected earlier (partly) contain information provided by those later. Despite no clear-cut

patterns across domains are observed from the combinations, the semantics, sentiment, and

syntax category play more important role in forming the optimal feature combinations. Espe-

cially, GV, UGR, LIWC and ADJ are used on half of the occasions.

The accuracy among the max-performance individual feature, optimal feature combination

within each category, and optimal combination of all features is further compared in Fig 4. As

Table 7. Optimal combinations of all features.

Accuracy Sem. Sen. Read. Str. Syn. Combination

D1 69.78 ✓ ✓ ✓ GV+VADER+ADV+SWN

D2 76.80 ✓ ✓ ✓ SGNS+GV+LDA+MIS+INTERRO+ADJ

D3 75.96 ✓ ✓ ✓ GV+SGNS+LIWC+OL+GALC+ARI

D4 83.09 ✓ ✓ ✓ ✓ ✓ UGR+LIWC+ARI+INTERRO+CLI+ADJ+VERB

D5 79.72 ✓ ✓ ✓ ✓ UGR+CHAR+LIWC+ADJ

D6 76.20 ✓ ✓ ✓ ✓ UGR+SMOG+ADV+VADER

https://doi.org/10.1371/journal.pone.0226902.t007

Fig 4. Comparison among the max-performance individual feature (Blue), max-performance in-category feature combination (Orange), and

max-performance combination of all features (Green).

https://doi.org/10.1371/journal.pone.0226902.g004
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shown, using features from multiple categories consistently achieves the highest performance.

Similar to using multiple features within a category, the improvement lies in features from dif-

ferent categories together describe a review from multiple perspectives, making the vector rep-

resentations more comprehensive.

Summary The findings and guidelines for review helpfulness prediction using features

from multiple categories are summarized below:

1. Initialize the optimal combination with no more than three (usually one or two) semantic

features, starting with GV or UGR, followed by SGNS.

2. Extend the combination with the remaining features in a forward selection manner. It is

suggested that features mentioned in Table 4 have higher priority than those that are not.

3. Finalize the search by integrating the unused features into the combination using forward

selection.

Implications

The last section has presented a series of optimal feature combinations across domains, along

with their predictive power. The general guidelines for feature selection under the three sce-

narios are also summarized for future researchers. Extensive analysis shows that appropriately

increasing the number of features can increase the performance of helpfulness prediction in

almost all cases, regardless of feature categories and feature selection scenarios. As discussed,

the performance gains lie in multiple features helping model a review’s helpfulness informa-

tion in a more comprehensive manner.

Nevertheless, it is worth noting that the semantics category contributes largely to the final

performance. Throughout the study, using UGR alone accounts for 97.96% ± 0.35% of the

accuracy compared with the optimal combination of all features across domains. The exclusive

use of SGNS and GV can also yield comparable prediction performance. The empirical results

demonstrate that combining many of the selected features, while leading to various perfor-

mance gains, does not significantly improve helpfulness prediction. This contradicts prior

studies largely combining multiple features without solid and sufficient justification. The

extensive feature evaluation conducted in this study fills the gap of currently arbitrary feature

selection process to review helpfulness evaluation.

The success of the semantics category can be explained from two perspectives: the encod-

ing dimensionality and encoding methods. UGR, SGNS, and GV encode review content

using more dimensions than other features. For many features that only have single dimen-

sion, encoding all text information into limited vector space can be challenging. On the

other hand, both SGNS and GV achieve comparable performance to UGR with far fewer

dimensions, showing that the information density of a feature varies from encoding

methods. Even when used jointly, features beyond the semantics category are still less

representative.

The dominance of review semantics also proves the feasibility of a new helpfulness predic-

tion direction: Instead of laborious feature engineering, potential performance gains can be

hopefully achieved by modeling sole semantic features from reviews via more advanced tech-

niques, for example, state-of-the-art deep learning algorithms.

The authors hope that the exploration of potential factors behind the helpfulness evaluation

process will deepen the insights obtained and contribute toward improved prediction system

development.
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Limitations

In terms of limitations, only the content-based features are considered due to their wide avail-

ability across various platforms. Also, the simplified forward selection search process for opti-

mal feature combinations is adopted, thus not all possible scenarios are exhausted. Finally, the

potential customer bias for the review helpfulness judgement (assertion of an initial belief), the

common fraudulence issue (positive/negative review manipulation), as well as the sequential

bias (early reviews receive disproportionately higher number of votes due to positive feedback

loop [118]) are not taken into consideration due to the complex nature of such assessment.

Conclusions and future works

With the rapid development of Web 2.0, online product reviews have become an essential

source of knowledge for most customers when making e-purchase decisions. In the deluge of

data, to identify and recommend the informative reviews, rather than those of random quality

is an important task. Feature-based methods have long been the paradigm of helpfulness pre-

diction due to relatively simple implementation and effective interpretability. In the study pre-

sented, the 30 most frequent content-based features from five categories have been identified,

and their extensive evaluation is conducted on six top domains of the largest publicly available

Amazon 5-core dataset. The individual features, feature combinations within each category,

and all feature combinations that lead to optimal performance have been studied. As stated by

Charrada [31], the usefulness of a review is likely to depend on numerous factors that are diffi-

cult to isolate and study. The empirical results set comparable and reproducible baselines for

review helpfulness prediction, and more importantly, highlight the feature combination pat-

terns that lead to general good prediction performance, regardless of application domain and/

or source platform.

Several significant findings and guidelines in feature selection are worth highlighting.

Among many features, unigram TF-IDF and the two more recent pre-trained word embed-

dings yield strong predictive power across all domains, demonstrating the effectiveness of

encoding semantics for helpfulness prediction. The LIWC dictionary achieves the closest per-

formance to the three semantic features with far fewer feature dimensions, showing the feasi-

bility of helpfulness prediction with fine-grained categorical sentiments. Another important

finding is that appropriately combining features from multiple categories effectively improves

the performance over individual features, or features from one single category. A good rule of

thumb for feature selection is to initialize the search with semantic features, followed by fea-

tures mentioned in Table 4, and finally the remaining content-based features. The findings

and guidelines of this work can facilitate feature selection in review helpfulness prediction.

As final contribution, the authors have open sourced the computational framework that

implements a holistic solution for feature-based helpfulness prediction. The dataset split con-

figurations, pre-processed reviews, and extracted features used in the study have also been

publicly released within research community for result reproducibility, fair comparison, and

future improvement. The framework can be extended to support additional methods for fea-

ture extraction, feature selection, classification, and parameter tuning, allowing for more flexi-

ble investigation on the feature behaviors. Meanwhile, the off-the-shelf extracted features can

help future researchers efficiently explore many possible feature combinations for the task.

The following directions will be addressed in the future. (1) Selected context-based features

and less popular content-based features that are currently excluded will be taken into account

to validate their predictive power. Especially, the social connection among reviewers and

reviewer characteristics (e.g., reviewer age, the number of history reviews posted by a reviewer)

will be emphasized. (2) The potential extension to other domains in the 5-core Amazon dataset
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and other platforms such as Yelp and TripAdvisor will be included following the holistic view

on helpfulness prediction task. (3) The moderating factors will be explored, such as the prod-

uct type and sequential bias. As stated by Ocampo et al. [4], it is perfectly sensible to expect the

helpful reviews of different product types to be different. Given the context of a review, Sipos

et al. [119] found that the helpfulness votes are often the consequence of its nearest neighbours.

(4) More robust and sophisticated machine learning models will be employed to select repre-

sentative features for helpfulness prediction. For example, recent explainable deep learning

techniques can be employed to model semantic features from review content to free helpful-

ness prediction studies from heavy feature engineering.
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