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Abstract

The processing of brain diffusion tensor imaging (DTI) data for large cohort studies

requires fully automatic pipelines to perform quality control (QC) and artifact/outlier

removal procedures on the raw DTI data prior to calculation of diffusion parameters. In

this study, three automatic DTI processing pipelines, each complying with the general

ENIGMA framework, were designed by uniquely combining multiple image processing

software tools. Different QC procedures based on the RESTORE algorithm, the DTIPrep

protocol, and a combination of both methods were compared using simulated ground truth

and artifact containing DTI datasets modeling eddy current induced distortions, various

levels of motion artifacts, and thermal noise. Variability was also examined in 20 DTI

datasets acquired in subjects with vascular cognitive impairment (VCI) from the multi-site

Ontario Neurodegenerative Disease Research Initiative (ONDRI). The mean fractional

anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)

were calculated in global brain grey matter (GM) and white matter (WM) regions. For the

simulated DTI datasets, the measure used to evaluate the performance of the pipelines

was the normalized difference between the mean DTI metrics measured in GM and WM

regions and the corresponding ground truth DTI value. The performance of the proposed

pipelines was very similar, particularly in FA measurements. However, the pipeline based

on the RESTORE algorithm was the most accurate when analyzing the artifact containing

DTI datasets. The pipeline that combined the DTIPrep protocol and the RESTORE algo-

rithm produced the lowest standard deviation in FA measurements in normal appearing
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WM across subjects. We concluded that this pipeline was the most robust and is preferred

for automated analysis of multisite brain DTI data.

Introduction

Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) tech-

nique, sensitive to the microstructural organization of cerebral tissue constituents [1,2]. This

technique can be used to characterize healthy cerebral tissue microstructure as well as diverse

subtle pathological and age-related alterations within the brain [1,3]. Diffusion tensor imaging

can also be used to characterize primary water diffusion paths along axonal fibers to study

structural connectivity and white matter (WM) integrity [4].

To effectively interpret brain DTI data a number of consecutive image processing steps

must be performed including data conversions, artifact removal (such as eddy current (EC),

motion, and gradient distortion corrections), and tensor fitting before diffusion metrics are

calculated [5–11]. Recently, quality control (QC) procedures to remove outliers (e.g. distorted

gradient volumes) from the analysis, modify voxel-wise diffusion tensor components, and har-

monize data have also been identified as necessary steps in DTI analysis pipelines [5,8–10,12–

16]. The latter step, is particularly relevant when analyzing large multisite and/or multiscanner

DTI datasets [9,15–17], including those from the UK Biobank project [5,18–20] and the

Ontario Neurodegenerative Disease Research Initiative (ONDRI) [21].

Implementing such complicated [11] processing requires automation to reduce uncon-

scious user errors [22] and increase processing speed for large datasets [9,15–17]. Concerted

efforts have been directed towards implementing fully automatic image processing pipelines

for the analysis of brain DTI data [5–10,13]. For example, the Enhanced Neuroimaging Genet-

ics though Meta-Analysis (ENIGMA) Consortium, a collaborative network of researchers

working in the areas of neuroscience, genetics, and medicine, have analyzed neuroimaging

data from thousands of subjects [9,23,24]. The ENIGMA DTI working group has created a

well-known and widely accepted framework for region of interest (ROI) and tract-based analy-

ses, and harmonization of DTI data from multiple sites [9,24]. In particular, the ENIGMA DTI

working group focus has been on the analysis of high resolution multisite fractional anisotropy

(FA) maps from healthy subjects to study the influence of genetic factors on the intersubject

variabilities of WM microstructure [23,24]. Similarly, the Human Connectome Project (HCP),

a consortium of institutions across the Unites States and Europe, aims to delineate brain con-

nectivity and WM networks based on brain DTI analysis and tractography in a large numbers

of healthy individuals [10,25].

Recently minimal preprocessing pipelines for automatic analysis of the HCP DTI data and

other HCP MR imaging modalities were introduced [10]. In the HCP DTI preprocessing pipe-

line, essential image processing steps such as artifact (EC and gradient distortion) removal,

surface generation, cross-modal linear registration, and transformation to a standard space

were included [10]. This pipeline was designed to work with high quality DTI data produced

by the HCP [10] and accordingly some QC procedures such as outlier detection and the

removal of slice-wise and gradient-wise inconsistencies which are typically needed for conven-

tional DTI data [13] were not included.

In the current study, we present, validate, and compare three fully automatic ENIGMA-

based pipelines for processing brain DTI data by effectively connecting multiple image pro-

cessing tools. We tested the performance of different automatic QC procedures as a supple-

mentary image processing step added to the general ENIGMA recommended framework. For
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this purpose, two major types of QC procedures were considered. The first one is DTIPrep

[13,26], which fully rejects diffusion weighted volumes along gradient directions significantly

affected by gradient distortion artifacts [13]. The second one is Robust Estimation of Tensors

by Outlier Rejection (RESTORE) [27]. RESTORE iteratively detects local (voxel-wise) outliers

in the diffusion volumes and removes them from the final tensor estimation procedure [27].

Using these QC procedures, we devised three pipelines complying with the general ENIGMA

framework. The first one used RESTORE as a QC procedure, the second one used the DTIPrep

protocol, and the third one used a combination of both. The performance of the pipelines was

validated and evaluated using “ground truth” and “artifactual” simulated diffusion weighted

images (DWIs) generated based on the frameworks introduced in [28,29]. Pipelines were also

applied to multi-site diffusion data from the ONDRI study to assess variance in normal tissue.

We hypothesized that the third pipeline, which combined both QC procedures would produce

optimal measurement precision by generating a smaller range of DTI parameter values in nor-

mal appearing WM.

Materials and methods

Simulated DWI data

POSSUM (Physics-Oriented Simulated Scanner for Understanding MRI) is an FSL toolbox

that simulates MRI data by solving the Bloch and Maxwell equations. The toolbox produces

realistic MR images and artifacts [28]. The simulated DWI data in this study were generated

by an extension to POSSUM [30,31] called DW-POSSUM [28]. DW-POSSUM [29] effectively

simulates DWI data and related artifacts such as eddy current induced artifacts. Here we

adopted two major types of DWI datasets from [29,32]: a ground truth DWI dataset and four

corresponding datasets with motion artefact, eddy current artefact, and thermal noise (Rician

noise). Specifically, one dataset contained a large amount of motion at SNR = 20 (LM-20), a

second dataset contained a large amount of motion at SNR = 40 (LM-40), a third dataset con-

tained a small amount of motion at SNR = 20 (SM-20), and a fourth dataset contained a small

amount of motion at SNR = 40 (LM-40). Motion artifacts were added to the simulated datasets

by applying various degrees of rigid rotations to the geometric object (head), before the MR

simulation began, in order to model instantaneous between-volume motions [28,29]. Detailed

profiles of the head rotations used to generate motion artifacts in both the large and small

motion scenarios were provide in reference [29]. POSSUM required two major inputs to simu-

late DWI datasets. First a realistic brain object was provided by a full-brain segmentation of

high resolution T1- and T2-weighted images (matrix size: 260×311×260 and voxel size: 0.7

mm) of a single subject from the WU-Minn HCP dataset [25]. These images were segmented

using the FSL Fast toolbox [33]. Second, a diffusion-weighted pulse sequence was simulated by

a voxel-wise spherical harmonic fit (order n = 8) [34] to the b = 700 s/mm2 shell considering

32 gradient directions plus four b = 0 images [28,29]. The image acquisition was simulated

using an echo-planar imaging (EPI) pulse sequence with TE = 109 ms and TR = 7500 ms and a

matrix size of 72×68×55 (isotropic voxel size of 2.5 mm).

ONDRI participants

We included 20 participants with VCI aged 60–85 years (40% female) available in the ONDRI

database. ONDRI is a multi-site longitudinal research study of diverse neurodegenerative dis-

eases including VCI [21,35]. ONDRI includes neuroimaging and genomics in addition to

assessments of cognition as well as language, speech, gait, retinal imaging, and eye tracking

[21,35]. The study was approved by the Ethics Review Boards at all participating institutions

[21].
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Magnetic resonance imaging data acquisition

The acquisition of neuroimaging data for ONDRI participants has been previously described

and was consistent with the Canadian Dementia Imaging Protocol (CDIP) [21]. Briefly, T1-

weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), T2
�-weighted, positron

density (PD)-weighted image, resting state functional MRI (fMRI), and diffusion MRI (dMRI)

images were acquired from 11 different 3.0T scanners across Ontario. Scanner specific details

are provided in Table 1.

For the current study, dMRI data were available and incorporated from seven different

scanners/sites. The DTI processing pipelines utilized T1-weighted (voxel dimensions of

1.0×1.0×1.0 mm3), T2-weighted images (0.9375×0.9375×3.0 mm3), and dMRI data. The details

of the acquisition parameters and pulse sequences for the DTI data across the seven scanners

used for analysis are provided in Table 1. All the ONDRI DTI data used in this study were pro-

duced with 30 different gradient directions (with b = 1000 s/mm) with voxel dimensions of

2.0×2.0×2.0 mm3. The DTI data produced on Siemens and Philips scanners were acquired

with one b0 volume, while in the case of GE scanners, three b0 volumes were acquired. On the

Siemens and Philips scanners, two additional b0 images were acquired with phase encoding

reversed. These were utilized for EPI distortion corrections in the processing pipelines. The

simulated DWI data used in this study were comparable to the ONDRI data in terms of the

number of the gradient directions as well as b-value.

Segmentation of cerebral tissues and vascular lesions

The procedures used to segment regions of interest have been detailed previously (Semi-Auto-

matic Brain Region Extraction (SABRE) [36], Lesion Explorer [37,38], and Fuzzy Lesion

EXtractor (FLEX) [39]), including a scan-rescan reliability analysis [40]. Briefly, interleaved

proton density (PD), T2-weighted images, and FLAIR images were co-registered to the T1-

weighted image, and a PD-T2 based mask was automatically generated and manually edited.

Using this mask, the T1-weighted image was segmented using a multi-feature histogram

method [41] to generate GM, WM, and cerebrospinal fluid (CSF) regions, and ventricular CSF

(vCSF) was manually relabeled. WM hyperintensities (WMHs) and lacunae were also auto-

matically identified using FLEX (FLAIR-based) and Lesion Explorer along with manual edits.

Each lesion type was further subdivided into a region-based class (periventricular or deep) by

an automated algorithm [37–39]. Lesion Explorer was also used to capture enlarged perivascu-

lar spaces (PVS) [38,42], and cortical strokes were manually traced. A combination of these tis-

sue segmentation methods produced ten different tissue classes including normal appearing

WM (NAWM), which was used in the current study to evaluate DTI processing pipeline

performance.

Ground truth DTI metrics

The ground truth DTI metrics were calculated by rigidly registering the (artifact-free) simu-

lated DTI data to the high resolution T1-weighted image and then tensor fitting to calculate

DTI values at each voxel. Registering the DTI data to the T1 space is part of each pipeline as

recommended by ENIGMA framework.

Automated DTI processing pipelines

Three different fully automated pipelines were designed for processing and analysis of the

brain DWIs. All the pipelines complied with the general ENIGMA DTI framework, a well-

established methodology for processing diffusion data [9,24]. In the proposed pipelines we
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effectively used and optimized seven different image processing software packages including

3D Slicer [43], FSL [44], Ants [45], Camino [46], DTIPrep [13], MRIcron [47], and DTI-TK

[48]. In all pipelines, automated QC procedures were added to the ENIGMA DTI framework,

allowing detection of outlier data for removal prior to calculation of the diffusion tensor.

These QC procedures are essential in multisite studies, where data is acquired on typical scan-

ners available in healthcare centers [21]. All the proposed pipelines were automated using

Bash scripts that are executable on Linux-based operating systems. All analyses were per-

formed on a commodity computer work station with an Intel Core i7-6800k @3.4 GHz × 12

CPU, 16 GB RAM, GeForce GTX 1050 Graphics card, and a Linux Ubuntu 64-bit operating

system.

The proposed pipelines are illustrated in Fig 1. As we used three different MR modalities,

i.e. T1-weighted, T2-weighted, and diffusion images in all the proposed pipelines, we describe

the subpipelines related to the processing of each MR modality as shown in Fig 1. The three

proposed pipelines differ only in the DTI processing subpipelines.

Pipeline #1 based on robust tensor fitting. T1-weighted image processing subpipeline.

The DTI data were registered to the native T1-weighted image space. This was done so that

subject specific tissue segmentations could be applied to the DTI scalar maps to obtain ROI

based DTI scalar metrics. Moreover, the T1-weighted image was used as the target of the non-

linear registration of the DWI data in the proposed DTI pipelines, to improve the susceptibil-

ity-induced EPI distortions on the diffusion data. The following image processing procedures

were performed on the T1 images (Fig 1):

1. DICOM to NIFTI conversion. The T1-weighted image was converted from DICOM [49]

to 3D NIFTI [50] volumes so that image processing procedures could be applied to the

Table 1. DTI data acquisition parameters for the different MRI scanners utilized in the current study.

Scan Type Parameter value Parameter ranges used in evaluation of protocol compliance according to site and scanner type

HGH SBH TWH RRI SMH TOH TBR

Scanner Brand GE GE GE Siemens Siemens Siemens Philips

Scanner Model MR 750 MR 750 Signa HDxt Prisma Skyra Tim Trio Achieva

DTI

TR 9000 9000 11700 9400 9400 9500 9400

TE [81:90] [80:95] [105:110] [62:66] 53 96 [94:98]

Flip 90 90 90 90 90 90 90

pixelBandwidth 3906.25 3906.25 3906.25 2055.0 [2055.0:2056.0] 1955.0 2056.0

Matrix Size 128x128 128x128 128x128 1152x1152 1152x1152 128x128 1152x1152

Voxel Size (in mm) 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2 2x2x2

slice 2310 2310 2310 31 31 2170 31

DTI_b0

TR - - - 9400 9400 9500 9400

TE - - - [62:66] 39 96 [94:98]

Flip - - - 90 90 90 90

Pixel Bandwidth - - - 2055.0 [2055.0:2056.0] 1955.0 2056.0

Matrix Size - - - 128x128 128x128 128x128 128x128

Voxel Size (in mm) - - - 2x2x2 2x2x2 2x2x2 2x2x2

slice - - - 70 70 70 70

HGH = Hamilton General Hospital, SBH = Sunnybrook Health Sciences Centre, TWH = Toronto Western Hospital, RRI = Robarts Research Institute,

SMH = St. Michael’s Hospital, TOH = Ottawa Hospital, TBR = Thunder Bay Regional Hospital, TR = repetition time, TE = echo time.

https://doi.org/10.1371/journal.pone.0226715.t001
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data. Tools such as DWI Converter in 3D Slicer software v4.8.0 [51,52] or dcm2nii in MRI-

cron [53] can accomplish this image transformation. In the proposed pipelines we used

DWI Converter in 3D Slicer (v4.8.0).

2. Gradient nonlinearity distortion correction. The NIFTI T1-weighted image was trans-

formed to eliminate gradient nonlinearity artifacts from the image [54] using a procedure

previously described [55]. Gradient distortions alter brain geometry [54] and may reduce

the accuracy of tissue segmentation. This step was performed in an attempt to reduce site-

Fig 1. Schematic representation of the three pipelines utilized for brain DTI data processing. The T1- and T2-

weighted imaging processing subpipelines are common to all DTI processing pipelines. The blue, red, and purple arrows

depict the 1st, 2nd, and 3rd DTI processing pipelines, respectively. T1 = T1-weighted image, T2 = T2-weighted image, b0 =

b0 image.

https://doi.org/10.1371/journal.pone.0226715.g001
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specific image distortions to improve the precision of the quantitative morphometric analy-

ses [54].

3. Bias field correction. Inhomogeneity of the magnetic field within the MR scanner is inevi-

table due to two major factors: 1) inherent inhomogeneity of the MRI magnet, and 2) inho-

mogeneity of the magnetic properties of the subject [33]. This inhomogeneity leads to low

spatial frequency intensity (gray value) alteration across the image known as a bias field

[33]. The bias field artifacts can be eliminated from the T1-weighted image using tools such

as FAST in FSL (v5.0) [33] or N4ITK in 3D Slicer (v4.8.0) [56] using random field estima-

tion models and expectation-maximization algorithms.

4. Skull stripping. The brain was extracted from the skull and other tissues surrounding the

brain to increase processing efficiency and improve the performance of the registration of

the DWI data and T2-weighted images to the T1-weighted images. There are many different

algorithms and software tools to extract the brain from the T1-weighted structural images.

In the current study, we used the robust brain extraction tool (ROBEX) in 3D Slicer (v4.8.0)

[57] for skull stripping, which provided consistent high quality brain extraction in most

cases tested. It is noteworthy that the performance and quality of the image extraction tools

depend on the quality of the MR images.

T2-weighted image processing subpipeline. The T2-weighted MR images were utilized in

all the proposed DTI processing pipelines to improve the quality of the nonlinear registration

of the DWI data (mainly the b = 0 diffusion image) to the T1-weighted structural image. To

the best of our knowledge, the nonlinear registration of DWI data to the T1-weighted struc-

tural image is challenging using common registration schemes [58,59]. This stems from the

fact that both the T1-weighted images and the b = 0 diffusion images have different tissue

intensity profiles for WM, GM, and CSF, which hinders the functionality of current similar-

ity metrics (such as mutual information) [58–60]. As the T2-weighted images have similar

signal intensity characteristics to those found in the b = 0 image, the similarity metrics typi-

cally used in registration algorithms can more precisely assess the resemblance between

these images (i.e. b = 0 and T2-weighted). Therefore, to improve the quality of this nonlinear

registration, the b = 0 image was registered to a high quality non-EPI T2-weighted image as

an intermediate stage for nonlinear registration of the b = 0 image to the T1-weighted struc-

tural image. To facilitate the nonlinear registration of the diffusion data to the T1-weighted

image, both the b = 0 (diffusion data) and T2-weighted images were first linearly registered

to the native T1-weighted structural image and then a nonlinear registration was performed

between the T2-weighted and b = 0 images after both were linearly registered to the corre-

sponding native T1-weighted image.

The T2-weighted image processing subpipeline was similar to the T1-weighted image pro-

cessing subpipeline (Fig 1) except for two major differences: 1) gradient distortion correction

was not applied to the T2-weighted image and 2) the T2-weighed image processing subpipeline

incorporated a linear registration of the T2-weighted image to the T1-weighted structural

image as explained above. To increase the accuracy of the linear registration of the T2-weighted

image to the T1-weighted image, two major steps were considered in the T2-weighted image

processing subpipeline. First, the T2-weighted image was linealy registered to the T1-weighted

image using the well known linear registration tool FSL FLIRT [61,62]. Then, alignment was

improved using a boundary-based registration (BBR) tool avaialble in FSL that was applied to

the output of the first registration [63].

Diffusion weighted imaging processing subpipeline. The diffusion weighted imaging pro-

cessing subpipeline involved a number of image processing procedures (Fig 1):
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1. DICOM to Nearly Raw Raster Data (NRRD) conversion. We used the DWIConverter

module in 3D Slicer (v4.8.0) to transform the DICOM data from the scanner to a 3D

NRRD volume rather than NIFTI format. This step was performed because the Rician lin-

ear minimum mean square error (LMMSE) Image Filter Module in 3D Slicer used in the

next stage of the subpipeline requires NRRD input images.

2. Denoising DWI volumes. DWI typically suffers from low SNR and is thus highly prone to

noise artefacts [64–66]. DTI is known to be affected by Rician noise [64–66], which imposes

a positive bias on the calculated voxelwise diffusion tensors [64]. Consequently, it is vital to

reduce the level of Rician noise in the diffusion data. The level of the denoising must not

oversmooth the data, which decreases image resolution and may reduce the ability to differ-

entiate diverse types of cerebral tissues/lesions [67]. Therefore, we moderately denoised the

DWI data using the Rician LMMSE Image Filter Module in 3D Slicer [66], with the itera-

tion parameter of the filter set to 1. This denoising step in the DTI processing pipeline can

be regarded as a QC procedure moderating the effect of the noise on the DWI data.

3. NRRD to NIFTI converter. After denoising, the NRRD data was converted to NIFTI for-

mat, for compatibility with most of brain DTI processing software packages including FSL

and Camino. For this image conversion, we used the DWIConverter module in 3D Slicer

(v4.8.0).

4. Estimation of the susceptibility-induced off resonance field. Off resonance spins arising

from inhomogeneities of the static magnetic field, can produce artefacts in the DWI vol-

umes that appear as unidirectional stretching or compression [68,69]. These off resonance

spins occur due to magnetic susceptibility variations throughout the brain known as sus-

ceptibility-induced off resonance fields [68,69]. A systematic approach to eliminate the

susceptibility-induced off resonance field from the EPI images is to collect either a mag-

netic field map or a second DWI dataset with reverse phase-encode (PE) direction during

each specific diffusion acquisition [70]. Neither of these two options were implemented in

the ONDRI DWI data acquisition, as greater scan time is needed, which is problematic

for the ONDRI cohort suffering from various neurodegenerative conditions. Conse-

quently, to minimize the effect of the susceptibility-induced artifacts on the ONDRI DWI

data, we used a nonlinear registration to the T1-weighted structural image based on the

recommendation made in the ENIGMA DTI framework (khaki dashed rectangle in Fig 1)

[9,24]. Meanwhile, b = 0 images obtained on Siemens and Philips platforms as part of the

DWI dataset were acquired with reverse PE direction, which was input to the well-known

FSL top-up tool to estimate the susceptibility-induced off resonance field [68]. This esti-

mated susceptibility-induced off resonance field in the absence of the DWI data with

reverse PE direction was utilized as an input argument to the FSL eddy tool, to correct

susceptibility-induced artefacts across the diffusion images [69]. Additional b = 0 images

with reverse PE direction were not acquired on GE scanners, and hence this step was not

performed (Fig 1).

5. EC-induced distortion and motion correction. Eddy currents induced in the magnet bore

by fast gradient-switching during the diffusion weighted echo planar imaging sequence

produces a time-dependent off resonance field [69]. In addition, head motion during long

diffusion scans produces shifts in head position at different diffusion weightings [69]. Both

artefacts are tackled in the FSL eddy tool by registering each individual gradient image to a

model-free prediction of that image [69]. To increase the computational efficiency of the

eddy and motion corrections procedure, we used FSL (v5.0) eddy_openmp, which is
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executable on multiple CPU cores using parallelization algorithms. The FSL eddy (step 5)

and topup (step 4) tools used in the 1st DTI processing pipeline were adopted from FSL ver-

sion 5.0.9. In that version correcting slice-to-volume movement and correcting susceptibil-

ity-by-movement interactions with eddy were not available and hence were not used. These

options may be used to apply appropriate eddy/motion corrections in case of DTI data with

severe motion artifacts.

6. EPI distortion correction. As indicated previously neither a magnetic field map nor

DWI data with reverse PE direction were acquired. Hence, EPI distortion correction was

achieved in the presented DTI processing pipeline using a nonlinear registration to the cor-

responding T1-weighted structural images [71,72]. Registration of the DWI data to the T1-

weighted images as described in the T2–weighted images processing subpipeline section

was performed using a two-stage registration scheme. First, the DWI b = 0 image was line-

arly registered to the T1-weighted structural image using the FSL (v5.0) BBR tool. Then, the

SyN registration algorithm implemented in the ANTs software [73,74] was utilized for non-

linear registration of the b = 0 image to the T2-weighted image, which was itself already

transferred to the native T1-weighted image space using a linear registration. Prior to the

SyN nonlinear registration, the skull was stripped in the DWI data to improve the quality

and computational efficiency of the nonlinear registration. Skull stripping was performed

in the diffusion processing subpipeline using FSL BET2 [75].

7. Robust tensor fitting. In this step, an automatic QC procedure was performed on the DWI

data. For this purpose, we used the RESTORE algorithm in the Camino software, which

detects local voxelwise outliers in the DTI data and excludes them from the final tensor esti-

mation procedure using iteratively reweighted least-square regression [27].

8. Calculate DTI scalar metrics. In this step, DTI scalar metrics including FA, mean diffusiv-

ity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were calculated through-

out the brain. Diverse tools such as Camino dtfit [76,77], FSL (v5.0) dtifit [78,79], and

DTI-TK TVtool [80] can be used to estimate voxelwise DTI metrics. In the 2nd pipeline, we

used FSL (v5.0) dtifit while in the 1st and 3rd pipelines the DTI-TK TVtool was utilized.

9. Voxelwise QC procedure. At this final step the diffusion tensor in all the voxels throughout

the brain was checked to obtain more reliable DTI metrics. To this end, the voxels whose

diffusion tensors had at least one negative eigenvalue or whose AD, MD, or RD were higher

than 5.5 were excluded from the ROI analysis [1].

Pipeline #2 based on the DTIPrep protocol. This pipeline is similar to Pipeline #1 except

the QC procedure performed in step 7 of the DTI processing pipeline described above was

removed and replaced by the DTIPrep QC protocol (v1.2.8) [13,26] after denoising (Fig 1).

DTIPrep QC protocol. This automatic QC protocol utilizes global rejection of the diffusion

volumes affected by various DWI artefacts such as inter-slice brightness artefacts, venetian

blind artefacts, eddy current distortions, and motion artefacts, beyond the threshold limits

defined by the DTIPrep protocol [13]. During the DTIPrep QC procedure, all gradient vol-

umes were linearly registered to the b = 0 image in the DWI data [13]. Moreover, in the 2nd

pipeline, the topup, EC, and motion correction blocks considered in pipeline #1 (i.e. steps 4

and 5) were also skipped as they were implemented inside the DTIPrep automatic QC software

package [13].

Pipeline #3 combining the DTIPrep protocol with robust tensor estimation. In the 3rd

pipeline, both QC pipelines were applied (Fig 1) to detect outliers and remove them from

brain DWI data.
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Evaluation of the processing error of the pipelines

Each DTI processing pipeline introduces some error during the processing of the MR images.

To evaluate this error all of the proposed pipelines were utilized to process the simulated

ground truth DWI data. Note that the EPI distortion correction was not included in the pro-

cessing of the ground truth DWI data as the datasets did not include any EPI-related artifacts.

Moreover applying the denoising Rician LMMSE filter was also omitted because the dataset

did not include any noise and applying this additional filter would have introduced unneces-

sary artifacts.

To evaluate the processing error in each pipeline, the difference of the mean value of each

DTI metric, i.e. FA, MD, AD, and RD from the ground truth values were examined in both

GM and WM regions. This difference was then normalized to the corresponding ground truth

mean DTI metric value to calculate the percentage error associated with each DTI metric. To

compare pipeline performance, the percentage errors associated with FA and MD calculations

in eight GM and WM regions including hippocampus, thalamus, temporal lobe-GM, temporal

lobe-WM, parietal lobe-GM, parietal lobe-WM, frontal lobe-GM, and frontal lobe-WM were

examined. For a more precise voxelwise comparison, the FA and MD of each voxel in the WM

region of the brain in the subject that was used to generate the ground-truth DTI data was

examined. Voxels were excluded with very small FA or MD values (FA or MD<1e-5) that

were unrealistic and likely due to inaccuracies associated with the WM region mask. FA and

MD values produced by the three DTI processing pipelines were compared using ANOVA.

The distribution of the FA and MD values as well as the ground-truth data were also examined.

The Pearson correlation coefficients between the voxelwise FA values and MD values were

also calculated between each pipeline.

Pipeline Evaluation based on the simulated artifactual DWI data

All of the proposed pipelines were also applied to four imperfect datasets: LM-20, LM-40, SM-

20, and SM-40 [28,32]. Note that the EPI distortion correction was not applied because these

datasets do not include EPI-related artifacts [28]. Similar to the previous section, the percent-

age error of the mean value of the DTI metrics from the ground truth value was measured in

both GM and WM regions. To compare pipelines performance, the percentage errors associ-

ated with FA and MD calculations in eight GM and WM regions were examined.

Evaluation of the pipelines based on in vivo ONDRI DWI data

All the proposed pipelines along with an additional DTI processing pipeline that included no

quality control steps, eddy current/motion correction, or artifact/noise removal but did apply

linear and non-linear registration to the T1 space (pipeline-no QC), were applied to the 20

DWI datasets from the ONDRI VCI cohort to examine pipeline performance. FA and MD

measurements were compared in NAWM using ANOVA followed by post hoc tests to identify

differences between the pipelines.

Pipeline performance following denoising

To reduce Rician noise in a DWI dataset the Gradient Anisotropic Diffusion (GAD) filter [81]

that is implemented in 3D Slicer was applied. This filter was tested on simulated the LM-20

dataset, which had the lowest quality among the tested datasets considering both the magni-

tude of motion artifacts and level of thermal noise. Parameters were chosen for the GAD filter

(Conductance = 1, number of iterations = 5) to avoid blurring the edges of the image [82]. The
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percentage error of the DTI metrics were compared for all pipelines in WM regions between

the LMMSE denoising filter (default filter, Fig 1) and the GAD denoising filter.

Results

Image processing

Ground truth dataset. All three pipelines successfully produced parametric maps of FA,

MD, AD, and RD after processing the raw data without noise and artefacts that was compara-

ble to the ground truth DTI metric maps obtained directly from ground truth data through

tensor fitting without any further processing (Fig 2). The average run time for Pipeline #1 and

Pipeline #3 was ~360 minutes, while Pipeline #2 took ~120 minutes to complete. Pipelines #1

and #3 likely required more time to process the ground truth data because the RESTORE algo-

rithm consumed time (more iterations) for iterative reweighting to fulfill the goodness of fit

criterion needed for successful robust tensor fitting.

Simulated data containing artefacts. All three pipelines successfully produced paramet-

ric maps of FA, MD, AD, and RD after processing the simulated DWI datasets containing

artefacts: LM-20, LM-40, SM-20, and SM-40. The FA and MD maps corresponding to these

datasets are shown in Figs 3 and 4, respectively. These maps are qualitatively similar to the

ground truth FA (Figs 2a–4) and MD (Figs 2b–4) maps, showing similar patterns of contrast.

The average run time per dataset was ~120 minutes for all pipelines.

Processing error of the proposed DTI pipelines

The differences in the measured FA and MD values associated with each pipeline when pro-

cessing the DWI data without noise are provided in Fig 5. Considering FA and MD in both

WM and GM regions, Pipeline #1 produced the most accurate FA and MD values.

Histograms describing the voxelwise distribution of FA values in the WM region obtained

using the three pipelines and the ground-truth data are provided in Fig 6. Despite a statistically

significant difference between the pipelines (ANOVA, p<0.05) little difference is observed in

the distribution of FA values.

The Pearson correlation coefficient between the FA values in each voxel obtained with the

1st and 2nd pipelines, 1st and 3rd pipelines, and 2nd and 3rd pipelines were 0.939, 0.940, and

0.998, respectively. The scatter plots along with the corresponding least squares regression

lines are provided in S1 to S3 Figs as supporting information.

Histograms describing the voxelwise distribution of the MD values in the WM region

obtained using the three pipelines and the ground-truth data are provided in Fig 7. There was

also a significant difference between the MD values obtained by the three pipelines (ANOVA,

p<0.05).

The Pearson correlation coefficient between the MD values in each voxel obtained with the

1st and 2nd pipelines, 1st and 3rd pipelines, and 2nd and 3rd pipelines were 0.978, 0.979, and

0.999, respectively. The scatter plots along with the corresponding least squares regression

lines related to these correlation analyses are also provided in S4 to S6 Figs as supporting

information.

Pipeline performance when processing DWI data containing artefacts

The differences in the measured FA and MD values in WM associated with each pipeline

when processing the datasets containing artefacts is provided in Fig 8. In the case of FA,

(Fig 8a), the percentage error did not differ significantly among the pipelines. In the case of
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MD, (Fig 8b), the percentage error associated with Pipeline #1 was lower than the other two

pipelines.

Performance of the pipelines in processing in vivo ONDRI DWI data

There was a significant difference in FA values measured by the pipelines in NAWM across

the 20 ONDRI VCI subjects (p<0.01). Multiple comparison post hoc tests also showed that

all pipelines differed significantly from each other (p<0.05) except pipeline-no QC and the

1st pipeline (p = 0.051), the 1st and 3rd pipelines (p = 0.051), and the 2nd and 3rd pipelines

(p = 0.989). FA measurement variations in NAWM is also depicted in Fig 9.

There was a significant difference in MD values measured by the pipelines in NAWM

across the 20 ONDRI VCI subjects (p<0.01). Multiple comparison post hoc tests also

Fig 2. (A) FA, (B) MD, (C) AD, and (D) RD maps produced from the raw ground truth DWI data by the three DTI processing

pipelines and directly from the ground truth data. First, second, and third columns correspond to the 1st, 2nd, and 3rd DTI

processing pipeline, respectively. The fourth column corresponds to the maps obtained directly from the ground truth data. (E)

The corresponding T1-weighted structural image and (F) full-brain segmentation of cerebral tissues (WM, GM, and CSF) are

also provided. The images were not interpolated.

https://doi.org/10.1371/journal.pone.0226715.g002
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showed that all pipelines did not differ significantly from each other (p>0.05), except the

pipeline with no QC and the 1st pipeline (p<0.05) and the pipeline with no QC and the 3rd

pipeline (p<0.05). It should be noted that the three proposed pipelines with diverse QC pro-

cedures (DTI-Prep and RESTORE) did not differ significantly with regard to MD measure-

ment performance. MD measurements in NAWM made by all four pipelines are shown in

Fig 10.

Fig 3. FA maps produced by the three proposed DTI processing pipelines from the DWI datasets containing

artefacts. First, second, and third columns correspond to the 1st, 2nd, and 3rd DTI processing pipeline, respectively.

First, second, third, and forth rows correspond to datasets LM-20, LM-40, SM-20, and SM-40, respectively. The

corresponding T1-weighted structural image and full-brain segmentation of cerebral tissues are provided in panels e

and f of Fig 2, respectively. The images were not interpolated.

https://doi.org/10.1371/journal.pone.0226715.g003
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Performance of the pipelines with an alternative denoising filter

The percentage error of the proposed pipelines for calculation of FA in WM when using the

GAD filter in comparison to the LMMSE filter is depicted in Fig 11. For the purpose of qualita-

tive comparisons the FA maps generated by the pipelines when using these two different filters

Fig 4. MD maps produced by the three proposed DTI processing pipelines from the DWI datasets containing

artefacts. First, second, and third columns correspond to the 1st, 2nd, and 3rd DTI processing pipeline, respectively.

First, second, third, and forth rows correspond to datasets LM-20, LM-40, SM-20, and SM-40, respectively. The

corresponding T1-weighted structural image and full-brain segmentation of cerebral tissues are provided in panels e

and f of Fig 2, respectively. The images were not interpolated.

https://doi.org/10.1371/journal.pone.0226715.g004
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were also presented in Fig 12. The use of the GAD filter increased the accuracy associated with

all pipelines.

Discussion

In this study, three different automated pipelines are presented for the analysis of the multi-

site ONDRI brain DTI data, each complying with the ENIGMA framework. The pipelines

were designed by uniquely combining multiple image processing software tools to robustly

and efficiently measure DTI metrics in the brain. In the proposed pipelines, three different

QC procedures were utilized including robust tensor fitting (1st pipeline), the DTIPrep pro-

tocol (2nd pipeline), and the combination of both methods (3rd pipeline), to determine which

produced optimal estimation of DTI metrics. It is noteworthy that based on the sequential

application of these two QC procedures (DTIPrep and RESTORE) in the 3rd pipeline we

expect that the overlap of the outliers detected by these algorithms would be minimal since

Fig 5. Processing error associated with the pipelines for FA calculation in (A) WM and in (B) GM, and MD calculation in (C) WM and in

(D) GM.

https://doi.org/10.1371/journal.pone.0226715.g005
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these two algorithms affect the diffusion data on two different levels: the gradient volume

level (in DTIPrep), and the voxel level (in RESTORE). These pipelines were applied to simu-

lated DTI data to measure the processing error of the pipelines, to simulated DTI data con-

taining artefacts to validate and compare the performance of the pipelines, and to 20 in vivo

datasets from people with vascular cognitive impairment, to examine performance of the

pipelines in a multi-site study.

All the pipelines successfully produced maps of the DTI metrics (FA, MD, AD, and RD

maps) from the simulated ground-truth data and the simulated data containing noise and arti-

facts, the latter were qualitatively similar to the ground truth maps. The 1st pipeline produced

the most accurate DTI metric values when compared to the ground truth, particularly for MD.

Histograms showing the voxel wise distribution of FA and MD in NAWM obtained using the

proposed pipelines (Figs 6 and 7) confirm that the performance of the three pipelines were

similar for FA. Greater differences were observed between the 1st pipeline and the two other

pipelines for MD.

The proposed pipelines also showed performance differences when tested in simulated

datasets containing eddy current induced artifact, and different levels of motion artefacts and

thermal noise. The performance of the pipelines was very similar for the calculation of FA in

WM. However Pipeline #1 demonstrated the greatest accuracy in calculation of both FA and

MD in WM (Fig 6). Both panels in Fig 8 also support the idea that the proposed pipelines suc-

cessfully handle motion artifacts. In addition, noise had the expected effect on the calculation

Fig 6. Distribution of FA values in the WM region generated by the three pipelines after processing the ground-

truth data.

https://doi.org/10.1371/journal.pone.0226715.g006
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of DTI metrics. Specifically, with a higher level of noise (SNR = 20) there was a greater percent-

age error in DTI metrics calculations compared to lower noise levels (SNR = 40). Therefore we

decided to test the effect of a denoising filter (GAD filter) in all the pipelines for the analysis

of the artifactual dataset LM-20. As shown in Fig 11, all the pipelines presented considerably

greater accuracy compared to the ground truth FA using the GAD filter in comparison with

the Rician LMMSE filter used by default in the pipelines. This confirms that all the pipelines

have the capacity to handle different levels of noise provided that an appropriate denoising fil-

ter is applied to the raw DWI data during processing.

The pipelines containing QC procedures were also used to analyze DWI datasets from

20 ONDRI VCI subjects and produced different results compared to the pipeline with

no QC. The average FA value in the NAWM region measured in the current study was

0.39 ± 0.03. This value is in agreement with previously published measurements of average

FA in WM regions and specific WM tracts in VCI subjects [83–85]. Specifically, the average

FA value in the WM of VCI subjects was previously reported as 0.41 ± 0.026 [83]. All

three pipelines performed similarly with regard to MD measurements while only the 2nd

and 3rd pipelines performed similarly with respect to FA measurements. The 3rd pipeline

was the most comprehensive as it included a combination of two different QC procedures

and produced the highest precision (i.e., lower STD) for FA calculation in NAWM (Fig 9).

High measurement precision is an important feature for the analysis of human cohort data

where the intention is to detect pathological microstructural alterations among different

neurodegenerative conditions towards more effective diagnosis and treatment of these

diseases.

Fig 7. Distribution of the MD values in the WM region generated by the three pipelines after processing of the

ground-truth data.

https://doi.org/10.1371/journal.pone.0226715.g007
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Study limitations

In the current study, we registered the DTI data to the high resolution structural image before

tensor fitting, which is consistent with the well-known ENIGMA protocol [23,24,86]. The pri-

mary reason was that reverse phase encode direction DTI data was not available as part of the

Fig 8. Percentage error associated with each pipeline when processing data containing artefacts. (A) shows FA in

WM, (B) shows MD in WM region.

https://doi.org/10.1371/journal.pone.0226715.g008
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ONDRI DTI data acquisition, and hence registering to the native T1 space provided a major

benefit to diminish EPI-related artefacts (distortions). The pipelines in the current manuscript

were developed for the calculation of scalar DTI metrics. These metrics are expected to be

minimally affected by issues arising from signal misorientation, which are more relevant for

tractography applications. The current study utilized the BBR approach to directly register

DTI to the native T1-weighted image. An alternative approach is to first register the DTI

data to the corresponding T2-weighted image using the BBR method followed by a linear reg-

istration to the T1-weighted image as previously described [87]. However, this additional lin-

ear registration would further interpolate the DTI data, which may not be preferred but could

be considered as an alternative approach if the direct registration to the native T1 space was

unsatisfactory.

Conclusions

Three different automated DTI processing pipelines, complying with the ENIGMA framework

were fully implemented and then evaluated using simulated ground truth and artifact contain-

ing DWI datasets as well as multisite DTI data from ONDRI. These unique pipelines were

created by optimizing and connecting components from seven different image processing soft-

ware packages. The major difference between the proposed pipelines was in the approach to

quality control. All the pipelines produced similar FA measurements while the 1st pipeline

incorporating the RESTORE algorithm produced more accurate MD measurements. The per-

formance of the 2nd and 3rd pipelines was very similar for both FA and MD measurements.

Fig 9. FA measurements in NAWM from 20 ONDRI VCI subjects.

https://doi.org/10.1371/journal.pone.0226715.g009
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Based on the performance of the pipelines in the analysis of the DTI data from the ONDRI

database and the observed DTI metric measurement precision, we conclude that the pipeline

that combined both the DTIPrep and RESTORE algorithms is more comprehensive and hence

recommended for the analysis of multisite DTI data.

Fig 11. Percentage error in calculation of FA in WM for the dataset LM-20 when using the gradient anisotropic diffusion

(GAD) filter and Rician linear minimum mean square error (LMMSE) filter. All pipelines produced lower percentage error

with the GAD filter.

https://doi.org/10.1371/journal.pone.0226715.g011

Fig 10. MD measurements in NAWM from 20 ONDRI VCI subjects.

https://doi.org/10.1371/journal.pone.0226715.g010
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