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Abstract

Several methods to quantify the complexity of a time series have been proposed in the litera-

ture, which can be classified into three categories: structure/self-affinity, attractor in the

phase space, and randomness. In 2009, Lacasa et al. proposed a new method for charac-

terizing a time series called the natural visibility algorithm, which maps the data into a net-

work. To further investigate the capabilities of this technique, in this work, we analyzed the

monthly ambient temperature of 4 cities located in different climatic zones on the Peninsula

of Yucatan, Mexico, using detrended fluctuation analysis (structure complexity), approxi-

mate entropy (randomness complexity) and the network approach. It was found that by

measuring the complexity of the dynamics by structure or randomness, the magnitude was

very similar between the cities in different climatic zones; however, by analyzing topological

indices such as Laplacian energy and Shannon entropy to characterize networks, we found

differences between those cities. With these results, we show that analysis using networks

has considerable potential as a fourth way to quantify complexity and that it may be applied

to more subtle complex systems such as physiological signals and their high impact on early

warnings.

Introduction

The variation in ambient temperature in a geographic zone is a combination of well-organized

behavior as well as chaotic behavior in constant evolution and adaptation. The former is mod-

ulated by solar radiation and the latter by the diversity and distribution of vegetation and bod-

ies of water around the planet, which makes a dynamical system more complex depending on

how many factors affect the heating. All of this operates in diverse space and time scales

through nonlinear interactions [1]. Ambient temperature is present in all processes involved

not only in preserving life on the planet but also in degradation processes, such as materials
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corrosion, which is a hot topic highly in coastal cities, such as those on the Yucatan Peninsula,

where this research study was carried out [2], [3], [4], [5], [6]. Because the variation in temper-

ature comes from a complex system [7], new analysis techniques have been developed and

applied to obtain information that helps us understand its dynamics [8].

Complexity is one of the most important measurements needed to analyze time series such

as temperature variation. Three approaches for measuring the complexity of a time series can

be found in the literature: the characterization of attractors in the phase space, the self-affine

structure of the time series and the degree of randomness. The first one can be approached by

he Lyapunov exponent or Poincaré diagrams [9], [10]. The second one can be measured by

detrended fluctuation analysis (DFA) or fractal dimension [11], [12]. The third one can be

treated using approximate entropy (ApEnt) or sample entropy [1], [13].

An alternative way to analyze time series is by mapping their structure into a network.

According to the information they obtain, algorithms can be divided into two groups: those

that map similar dynamic states by drawing information from the phase space [14], [15], [16]

and those that map the structure of the time series [17], [18].

The analysis of time series using networks is a method to characterize the dynamics of a sys-

tem in an integral way. Lacasa [17] demonstrated that the structural and order/disorder char-

acteristics of a dynamic system are extracted in the transformation. When the network is

obtained, the connectivity can be characterized to analyze its structure, and its order/disorder

can also be analyzed by measuring the entropy of its degree distribution. For the phase state

attractor, there is no construction yet.

In addition to analyzing the structure and its order/disorder characteristics, we can analyze

other features of the network that can be associated with the dynamics, such as the energy of a

series, by computing the energy of the network.

Due to the simplicity of the algorithm, its low computational cost, and the structural infor-

mation that can be obtained from the dynamics [19], the Lacasa et al. visibility algorithm has

been very popular in diverse applications, such as the study of the time series of solar spots

[20], the strength and frequency of hurricanes impacting the US [21], paleoclimatic and tidal

measures [22], seismicity [23], [24], and finance [25], [26].

The aim of this article is to verify the hypothesis that with the network approach, we may

obtain different insights from the analyzed dynamic system than those obtained from the pre-

viously mentioned techniques that focus on the structure or randomness of a time series. We

used the climate as a study system, in particular the differences in the dynamics of cities that

have distinct geographies but are relatively close to each other. We conducted our research in

this way because this system has been studied extensively and is very well known, which allows

us to conclusively verify which techniques work the best. For this purpose, we analyzed the

ambient temperature time series in cities with different geographical characteristics, and we

want to determine whether it is possible to differentiate between the dynamics of distinct geo-

graphical points that are located within a short distance from one another. We used DFA as a

structural analysis technique and ApEnt as a randomness technique, which are famous tools

used in nonlinear time series analysis.

Materials and methods

Transformation algorithms

In order to build the natural visibility algorithm (NVA) [17], we started with a uniformly sam-

pled time series yt: t = 1, 2. . .N, where each datapoint in the series represents a node. The con-

nection between any two given datapoints yi, yj will have visibility or will be linked (see Fig 1)
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if any other point in the series yk found between yi and yj follows Eq (1):

yj � yk
j � k

>
yj � yi
j � i ð1Þ

There is a variant for the previous algorithm called the horizontal visibility algorithm

(HVA) (Fig 1). This algorithm differs from the other algorithm in the condition on which the

nodes i and j are linked, according to Eq (2):

yi; yj > yk; 8kji < k < j ð2Þ

Network characterization

Once the network has been generated, we characterize it with some metrics that will be pre-

sented in this section [27], [28]. Let G be a network with m links and N nodes, where the num-

ber of nodes linked with node i is called the degree of node i, denoted by ki, and the mean

degree is the average number of neighbors over all nodes in the network. To characterize the

connectivity of the network, a histogram called the degree distribution is plotted. This diagram

shows the probability p(k) of taking a node with degree k, as shown in Fig 1.

The assortativity is a measure of the correlation of the network. If the most connected

nodes prefer to be linked to the most connected nodes, the network is correlated, and its value

is close to 1. On the other hand, if the less connected nodes prefer to link with the most

Fig 1. From time series to networks. Mapping a time series to a network using NVA (left) and HVA (right). The figure shows the time series

with a solid line if there is visibility (link) between the indicated points. The generated network and its degree distribution are shown. It is

observed that NVA has more connections than HVA by the visibility rules.

https://doi.org/10.1371/journal.pone.0226598.g001
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connected nodes, the network is anticorrelated, and its value is close to -1. A value of zero

means that there is no preference at all.

Other measures have been suggested, such as Shannon entropy (Ent) and Laplacian energy

(LE). The first one is defined as [29], where k is the number of neighbors connected to the

node and p(k) is the probability of choosing a node with k degree:

EntðGÞ ¼ �
X

k

pðkÞlnðpðkÞÞ ð3Þ

The LE calculation used for this study was generated by Kragujevac [30], [31], whose defini-

tion is:

LEðGÞ ¼ 2mþ
XN

i¼1

k2

i ð4Þ

where ki is the degree of the ith node. We have reported the Laplacian energy per node (LEN),

which is LE/N.

Data

A time series was obtained for the ambient temperature measured by weather stations located

in the cities of Merida, Sierra Papacal, and Progreso, and Sisal (Fig 2) located in the state of

Yucatan, Mexico from Jan 01, 2015, to Sep 28, 2016.

The data was recorded by the weather station DAVIS Vantage Pro 2 Plus [32]. Measure-

ments were done every 2 seconds, and the average of all readings obtained within a 10 minute

period was registered in the instrument’s data base. Therefore, for each day, we will obtain 144

measurements. Each population was a group of 21 measurements, and we measured whether

the means of each population are statistically different or not. Therefore, we measured the

effectiveness of each parameter (DFA, ApEnt, and the network measures, such as mean degree,

assortativity, Laplacian energy and Shannon entropy). The measuring equipment is owned by

the CINVESTAV Department of Marine Resources, which is responsible for collecting the

data and maintaining the equipment. The data acquisition process described previously is the

way in which the equipment operates by default.

Data analysis was done on a monthly basis, out of which only the first 28 days were used to

have time series with the same length. A general characterization was done with the mean and

the standard deviation of the data. Afterwards, we applied DFA [11], [12] and ApEnt [1], [13].

On the other hand, the data was analyzed using networks, in which the time series for each

month was transformed into a network using NVA and HVA. From each network, the follow-

ing were obtained: degree distribution, mean degree, assortativity, Shannon entropy, and

Laplacian energy per node.

A t-test was done for two independent means to determine whether the variables we are

measuring are different, statistically speaking, among neighboring cities (see Fig 2), for exam-

ple, Merida and Sierra Papacal, Sierra Papacal and Progreso, and so on. To determine whether

two cities are different, we seek a p-value of< 0.05 in the t-test, which equals a 95% confi-

dence. Each city will have a group of 21 independent and normally distributed measurements

(DFA, ApEnt, mean degree, assortativity, Laplacian energy and Shannon entropy), one for

each month.
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Results

Descriptive analysis

Table 1 shows the mean and the standard deviation of the data. Additionally, ApEnt and the

DFA average coefficient in each city for the period between 2015 and 2016 are reported. It can

be seen that the standard deviation is highest for Sierra Papacal, closely followed by Merida,

and is lower in magnitude for the coastal cities Progreso and Sisal. For the ApEnt and DFA

measurements, we found very similar values amongst the cities. For ApEnt, a differentiation

could be made between the magnitudes for the coastal cities and Merida, with the magnitude

of ApEnt for Sierra Papacal as an intermediate value. For the DFA value, we cannot make a

very clear differentiation since all the values are close to 1.1; thus, the data correlation for all

cities could be considered very similar.

In order to determine whether there is a statistically significant difference (p-value < 0.05,

95% confidence) between the means of two neighboring cities, for example Merida-Sierra

Papacal (See the map in Fig 1), a t-test of the independent means was conducted (Table 2). It is

Fig 2. Climate map of the state of Yucatan. The map shows the locations of the measurements. Progreso and Sisal are coastal cities, whereas Sierra Papacal

and Merida are not. According to the Köppen climate classification modified by Garcı́a [33], Merida has an Aw2 climate (sub-humid warm), Sierra Papacal is

BS1 (semi-arid very warm), and Progreso and Sisal are BS0 (arid very warm).

https://doi.org/10.1371/journal.pone.0226598.g002

Table 1. Descriptive statistics and complexity quantifiers for the cities analyzed in the Yucatan Peninsula.

Merida Progreso SierraP Sisal

Mean(˚C) 27.22 25.93 25.91 26.63

SD 3.33 2.34 3.54 2.61

ApEnt 0.2434 0.3114 0.2631 0.2931

DFA 1.14 1.10 1.12 1.09

https://doi.org/10.1371/journal.pone.0226598.t001
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noted that DFA cannot distinguish between cities, while ApEnt can differentiate between

Sierra Papacal-Progreso and Merida-Progreso (non-coastal-coastal cities) but cannot differen-

tiate between Merida and Sierra Papacal (non-coastal cities) or between Progreso and Sisal

(coastal cities). This means that the complexity measured via ApEnt of the time series between

coastal cities and between non-coastal cities is the same, although Merida and Sierra Papacal

belong to different climatic zones.

Network analysis

NVA. Table 3 shows the results of the network measures generated for each city. We

found a downward trend in mean degree, LEN and Shannon entropy. There is no clear trend

for assortativity.

Table 4 shows the t-test results. Mean degree, entropy, and energy are measures that can

distinguish between the pairs Merida-Sierra Papacal and Sierra Papacal-Progreso. Further-

more, assortativity was not able to distinguish between these pairs. When the differences

between coastal cities were analyzed, only the assortativity could differentiate between Pro-

greso and Sisal.

Fig 3 shows the average degree distribution of the network generated for each month

between 2015 and 2016. In the inset, the same data are shown but in a logarithmic scale. We

can find that there is a bell in the middle of the degree distributions for the cities of Merida

Table 2. P-values of the t-tests performed for neighboring cities.

ApEnt DFA

Merida-SierraP 0.051012 0.272336

SierraP-Progreso 0.00823� 0.165988

Progreso-Sisal 0.207246 0.37817

Merida-Progreso 0.000897� 0.073192

Values with an asterisk (�) represent a statistical significance of 95%.

https://doi.org/10.1371/journal.pone.0226598.t002

Table 3. Results for the networks generated by averaging the months in 2015 and 2016 per city.

Merida Progreso SierraP Sisal

Mean Degree 45.1 29.9 39.7 32.2

Assortativity -0.1145 -0.0725 -0.1193 -0.1287

Ent(G) 1.99 1.86 1.95 1.88

LEN(G) 2919 1713 2397 1936

https://doi.org/10.1371/journal.pone.0226598.t003

Table 4. P-values of t-tests performed for neighboring cities for each metric in the networks presented in Table 3.

MeanDegree Assortativity Ent LEN

Merida-SierraP 0.000024� 0.396552 0.000066� 0.000037�

SierraP-Progreso 0.00001� 0.01132� 0.00001� 0.00001�

Progreso-Sisal 0.057084 0.001293� 0.104444 0.080656

Merida-Progreso 0.00001� 0.00001� 0.00001� 0.00001�

Values with an asterisk (�) represent a statistical significance of 95%.

https://doi.org/10.1371/journal.pone.0226598.t004
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and Sierra Papacal, with maxima around k = 40 and k = 33, respectively. For Progreso and

Sisal, this maximum is not as pronounced; instead, the values decrease smoothly until k = 100.

HVA. Table 5 shows the results for the transformation using HVA. We found that the ten-

dency is not as shown in the NVA results. Among the cities, Sierra Papacal had the largest

magnitudes of the mean degree and entropy and the smallest magnitude of the assortativity,

contravening the NVA trend.

When the statistical differences (p-value <0.05, 95% confidence) between coastal cities in
Table 6 were analized, we found a similar tendency for NVA except in the mean degree.

Coastal cities and non-coastal cities can be differentiated amongst themselves, but coastal cities

cannot.

Fig 4 shows the average degree distribution in the networks obtained with the transforma-

tion algorithm HVA. In general, the maximum occurs practically at the same k, and no clear

tendency is observed.

The maximum of the degree distribution represents the number of average neighbors that a

node will have. The higher the mean degree is, the more connections in the network. In this

Fig 3. Degree distributions for networks generated with NVA. The figure shows the degree distributions in normal scales and in logarithmic scales in the inset.

The non-coastal cites (Merida and Sierra Papacal) show a bell in the middle of the graph, while the coastal cities do not. These qualitative differences were

quantified with the other connectivity measures mentioned above.

https://doi.org/10.1371/journal.pone.0226598.g003

Table 5. Results for the networks generated by the averages of the months in 2015 and 2016 per city.

Merida Progreso SierraP Sisal

Mean Degree 3.09 2.97 3.16 3.03

Assortativity 0.1383 0.1834 0.0947 0.1585

Ent(G) 0.5898 0.5701 0.6100 0.5676

LEN(G) 14.19 13.24 14.99 21.35

https://doi.org/10.1371/journal.pone.0226598.t005
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context, a time series without fluctuations (smooth) maps into a network with a higher con-

nectivity than a series with variations (rough). As we can see in Fig 5, Merida is smoother than

Progreso, and the maximum of its degree distribution using NVA is higher. This behavior is

easy to see in the NVA but not in the HVA.

Discussion

Since Merida is a city without bodies of water, its heating dynamics are similar to a plate under

heating and cooling (like a sine wave), while in coastal cities, there are more factors that alter

the ambient temperature, in this case, the sea and the swamp. In the middle is Sierra Papacal,

which is a city that is between these two extremes: close to the effects of sea breezes but without

bodies of water. In terms of factors that affect heating-cooling dynamics, if Merida is the least

complex and Progreso is the most complex, Sierra Papacal would be an intermediate. DFA

Table 6. P-values of t-tests performed for neighboring cities for each metric of the networks presented in Table 5.

MeanDegree Assortativity Ent LEN

Merida-SierraP 0.51075 0.004396� 0.000178� 0.000178�

SierraP-Progreso 0.16361 0.00001� 0.00001� 0.00001�

Progreso-Sisal 0.63892 0.134022 0.405995 0.153107

Merida-Progreso 0.00001� 0.00001� 0.00001� 0.00001�

Values with an asterisk (�) represent a statistical significance of 95%.

https://doi.org/10.1371/journal.pone.0226598.t006

Fig 4. Degree distribution of networks generated with HVA. The degree distributions in normal scales and in logarithmic scales in the inset. None of the visual

representations shown display any pattern that allows us to qualitatively determine any insights, as observed in the degree distributions generated by NVA.

https://doi.org/10.1371/journal.pone.0226598.g004

Temperature time series analysis at Yucatan

PLOS ONE | https://doi.org/10.1371/journal.pone.0226598 December 19, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0226598.t006
https://doi.org/10.1371/journal.pone.0226598.g004
https://doi.org/10.1371/journal.pone.0226598


and ApEnt could not differentiate between Merida and Sierra Papacal, generating the same

magnitude of complexity for these two cities.

This cannot be true because Sierra Papacal is closer to the effects of sea breezes than Merida

and is also in an intermediate climatic zone, according to the Köppen climate classification

modified by Garcı́a. With the networks, we find that we can differentiate the 3 cities with NVA

and HVA and that these differences are statistically significant. Therefore, we can assign a

measure of complexity using networks that conventional methods such as DFA or ApEnt

cannot.

When the dynamics are analyzed by the network method, NVA not only statistically differ-

entiates Sierra Papacal and Merida in both structure (mean degree) and randomness (Shannon

entropy) but also tells us that there are differences between the energies of these dynamics

(Laplacian energy). This finding agrees with the expected outcome since these two cities are in

different climatic zones and shows that the analysis from the point of view of networks can be

complementary to traditional techniques. This can be understood as a time series being ana-

lyzed using a Fourier transform, wherewe are “seeing” the same data but in the frequency

space. This helps us nalyze properties that cannot be detected in the space of time. In the same

way, when the Lacasa transformation algorithm is applied and we move to the network space,

it allows us to measure properties of the dynamics that are not visible in the space of time.

If, on the one hand, we think of Merida as a city whose temperature dynamics are less com-

plex because it does not have as many factors that affect it as Progreso, a city surrounded by

water and, on the other hand, we observe using NVA that non-coastal cities generate networks

with more connections, higher energy and higher entropy than coastal cities, then we can say

that the complexity of a dynamic system is inversely proportional to the number of connec-

tions and the amount of energy and entropy in the generated network. This is to be expected

Fig 5. Time series of Merida and Progreso, from January 1 to January 5, 2015. The graph shows that Merida has a time series with fewer fluctuations than

that of Progreso, and in this case, the fluctuation or “smoothness” of the data generates greater visibility between the datapoints. The more rugged the time

series is, the lower the visibility and connectivity, and therefore, the mean degree will be lower.

https://doi.org/10.1371/journal.pone.0226598.g005
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since a regular network has more connections than a random network (for example, an Erdos-

Renyi model), so in this study, we showed that by using NVA, we can quantify the complexity

of a dynamic system from the point of view of networks. However, the term complexity must

be used very carefully, and further discussion is necessary in order to establish what complexity

in the network space is.

When the networks are analyzed using HVA, we find that Sierra Papacal has higher magni-

tudes than Merida or Progreso. This result makes us think that this algorithm can detect some-

thing similar to a “phase transition” since Sierra Papacal is in an intermediate climatic zone

between drought and humidity. We can consider Merida as a solid state and Progreso as a liq-

uid state since the former is more regular than the latter and consider Sierra Papacal as the

transition state. However, more studies have to be done to test this hypothesis.

Conclusions

In this study, temperature time series in various cities with different geographies on the Yuca-

tan Peninsula were characterized to further investigate the capabilities of this technique as an

alternative to nonlinear analysis, such as DFA or ApEnt, for characterizing complexity.

We found that DFA and ApEnt cannot distinguish between coastal and non-coastal cities,

although they belong to different climate zones, such Merida and Sierra Papacal, which are

non-coastal cities but are in different climate zones. In contrast, the time series analysis using

the NVA algorithm and characterization of the network through mean degree, entropy, and

energy can distinguish between them. The other measurements showed poor performance.

When the NVA and HVA algorithms are compared, one finds that they generate very dif-

ferent tendencies, which leads to the hypothesis that each algorithm extracts different dynamic

information: HVA extracts more subtle information and can quantify transitions states,

whereas NVA characterizes the structure of the temperature time series, which depends on the

geography of the city in which it was measured, and can be used as a complexity measure.

The findings mentioned in this paper allow us to establish the basis for continued work

towards quantifying the complexity of a dynamic system through the space of networks. In

this work, analysis using NVA and HVA was established as a holistic way of studying a

dynamic system since such a system has the elements of structure and randomness and since

other measurements such as energy can be integrated.

With more in-depth research, complexity quantifiers based on thermodynamics can be

generated, which may be applied to more critical problems than climate classification, such as

anticipating catastrophic events such as a stock market crash, a heart attack, an embolism or

an epileptic attack.

Supporting information

S1 Appendix. Temperature dataset. The document includes the temperatures for all cities

analyzed in this study.
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