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Abstract

Here we present a study of the thermal inactivation and the refolding of the proteins in Gram

positive Bacillus subtilis. To enable use of bacterial luciferases as the models for protein

thermal inactivation and refolding in B. subtilis cells, we developed a variety of bright lumi-

nescent B. subtilis strains which express luxAB genes encoding luciferases of differing ther-

molability. The kinetics of the thermal inactivation and the refolding of luciferases from

Photorhabdus luminescens and Photobacterium leiognathi were compared in Gram nega-

tive and Gram positive bacteria. In B. subtilis cells, these luciferases are substantially more

thermostable than in Escherichia coli. Thermal inactivation of the thermostable luciferase

P. luminescens in B. subtilis at 48.5˚C behaves as a first-order reaction. In E.coli, the first

order rate constant (Kt) of the thermal inactivation of luciferase in E. coli exceeds that

observed in B. subtilis cells 2.9 times. Incubation time dependence curves for the thermal

inactivation of the thermolabile luciferase of P. leiognathi luciferase in the cells of E. coli and

B. subtilis may be described by first and third order kinetics, respectively. Here we shown

that the levels and the rates of refolding of thermally inactivated luciferases in B. subtilis

cells are substantially lower that that observed in E. coli. In dnaK-negative strains of B. subti-

lis, both the rates of thermal inactivation and the efficiency of refolding are similar to that

observed in wild-type strains. These experiments point that the role that DnaKJE plays in

thermostability of luciferases may be limited to bacterial species resembling E. coli.

Introduction

When exposed to mildly elevated temperatures, eukaryotic and prokaryotic thermolabile pro-

teins transiently undergo partial or complete unfolding, resulting in a loss of their activity [1].

Persistence of the heat stress prevents the proteins from refolding to their native state, while

favoring alternative, beta-sheet enriched conformations. To prevent misfolding, eukaryotic

and prokaryotic cells employ a variety of molecular chaperones, the most abundant and best
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studied of which being Hsp60-Hsp10 (GroEL-GroES), Hsp70-Hsp40-nucleotide exchange fac-

tor (DnaK-DnaJ-GrpE), Hsp100 (ClpA–ClpB–ClpX) and so-called small chaperones sHsp

(IbpA-IbpB) [2–10].

In studies of the folding, misfolding and refolding conditions in Escherichia coli, bacterial

and firefly derived luciferases often serve as model substrates [10–13]. Moreover, luminescent

Gram positives bacteria have their use as biosensors suitable for clinical applications [14–18].

Despite enormous biotechnological importance of Gram positive cells in general, and of B.

subtilis, a workhorse of industrial recombinant protein production in particular, the mecha-

nisms of the folding and the refolding of the proteins in these bacterial cells remain enigmatic.

In present work we use the model bacterial luciferases differing in their thermostability to

investigate the thermal inactivation and the refolding of the proteins in Gram positive B. subti-
lis. A variety of bright luminescent B. subtilis strains which express luxAB genes encoding lucif-

erases from bacteria P. luminescens [14] and P. leiognathi [15], are utilized in the comparative

study of the kinetics of the thermal inactivation and the refolding of the luciferases in Gram

negative and Gram positive bacteria. In particular, we evaluated effects of dnaKJ genes on

luciferase thermostability in cellular environments of B. subtilis and E. coli.

Materials and methods

Bacterial strains, plasmids, and growth conditions

Bacterial strains are presented in Table 1. Plasmids are presented in Table 2.

E. coli and B. subtilis was grown either in LB media, with constant aeration at 200 rpm at

37˚C unless indicated otherwise. Solid media plates were prepared using 1.5% of agar.

For selection, media we made with spectinomycin 150 μg/ml, ampicillin 100 μg/ml and

chloramphenicol 10 μg/ml.

Transformation

B. subtilis cells were transformed according to the protocol of Spizizen [21]. E. coli cells were

transformed using calcium chloride protocol [22].

Enzymes and chemical substances

The substrate for luciferase n-decanal was from Sigma-Aldrich (USA). Enzymes for cloning

were purchased in Promega (USA). Media were from Helicon (Moscow, Russia). Oligonucleo-

tides were made by Syntol (Moscow, Russia).

Constructing the plasmids

Primers utilized for constructing the plasmids are described in Table 3. As a backbone for

assembly of biosensors we selected shuttle plasmid pMWAL-1TPpur with two origins

pMW118 (GenBank: AB005475) and pBS72 [23], which allows teta-type replication, as well as

Table 1. Bacterial strains.

Strain Genotype Source

E. coli K12

BW25113

lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33

ΔrhaBADLD78

obtained from Keio Collection

E. coli K12 JW0013 Derivative of BW25113 ΔdnaK::kan obtained from Keio Collection

B. subtilis 168 trpC2 obtained from VKPM

B. subtilis NBS 2001 Derivative of 168, ΔdnaK-dnaJ::Spcr obtained from H. Yoshikawa.

[19].

https://doi.org/10.1371/journal.pone.0226576.t001
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amplicillin and chloramphenicol resistance gens bla and cat for E. coli and B. subtilis, respec-

tively. With an aid of P1/P2 primers, trimethoprim resistance gene dhfr from B. cereus
ATCC14579 was introduced into the plasmid pMWAL-1TPpur under its Ppur promoter.

With an aid of P3/P4 primers, rrnB terminator T1T2 was introduced to build a promoterless

plasmid pMWAL-1Ppur_dhfr_t1t2_MCS. In turn, with an aid of primers P5/P6, this construct

was modified by inserting constitutive promoter of fructose-1,6-bisphosphate aldolase gene

(PfbaA) [24] into SacI recognition site, thus, resulting in plasmid pPfbaA_MCS. Later, plasmid

pPfbaA_MCS was utilized for cloning of α and β subunits of luciferases from P. luminescens
and P. leiognathi, which were amplified on the pXen5 [14] and pLF22ABleo [15] templates

using P7/P8 and P9/P10 primers, respectively, to obtain pPfbaA_XenAB and pPfbaA_LeoAB

plasmids, respectively. Both subunits of P. luminescens and P. leiognathi luciferases were

cloned into pTZ57R vector to obtain constructs pTZ57R_xenAB (with pair of primers P7/P8)

and pTZ57R_leoAB (with pair of primers P9/P10), respectively.

Table 3. Primers utilized for constructing the plasmids.

P1 5-GTTTCTACCCGGCTGCCGTAATAAAGGAGGTTTACCGATGATTGTTTCATTTATGGTCGCTATG-3

P2 5-TCGGTACCCGGGGATCCTCGATTCTCCTCCTCTTTCTATATTAGT-3

P3 5-GTACTAATATAGAAAGAGGAGGAGAATCGAGCTGATGCAAAAACGAGGCTAGTTTAC-3

P4 5-CGGCCGCTCGAGGGGCCCGGCGCGCCGGATCCCCATGCCGAACTCAGAAGTGAA-3

P5 5-GCCGCGGTACCGAGCTTTTTCTCCATAACTAGGATACCAAC-3

P6 5-AAAGAAGAGCTTTCAGGtATTCGAATCATGTCATTATGTTGCCGATTTG-3

P7 5-ACCGCGGCCGCTCGAGGAAGCAAGAGGAGGACTCTCTATG-3

P8 5-GCCGGGCCCCTCGAGATTTCAACCTGGCCGTTAATAATGAATGA-3

P9 5- ATCGCGGCCGCTCTCAGATCGGAAGGTGGAAGAA -3

P10 5- TCGGGGCCCGTACCTCGCGAATGCATCTA-3

https://doi.org/10.1371/journal.pone.0226576.t003

Table 2. Plasmids used in the work.

Plasmid Description Source

pMWAL-1TPpur pMWAL-1 [20] based shuttle vector made by cloning of the promoter Ppur from Bacillus
amyloliquefaciens. Includes pMW118 and pBS72 replicons along with chloramphenicol (Cmr)

and ampicillin (Apr) resistance genes.

Obtained from V.A. Lifshits

(GosNIIgenetika)

pXen5 Integrative shuttle vector with two replicons: pE194 for B. subtilis and pMB9 oriC for E. coli, a

lux-operon cassette ABCDE lux from P. luminescens with modified SD sequences, transposase

and IR repeats as well erythromycin (Ermr) and kanamycin (Kmr) resistance genes.

[14]

pLF22ABleo Includes α and β subunits of P. leiognathi luciferase expressed from promoter Prep in plasmid

pLF22 (Cmr).

[15]

pMWAL-1Ppur-dhfr-t1t2-MCS

(изменить название)

pMWAL-1TPpur–based shuttle vector made by the cloning of multiple cloning site sequence

and dihydrofolate reductase encoding gene which confers resistance to trimethoprim (Tpr).

Plasmid also contains Cmr and Apr.

Present work

pPfbaA-MCS pMWAL-1Ppur_dhfr_t1t2_MCS based shuttle vector made by adding promoter of fructose-

1,6-bisphosphate aldolase gene (PfbaA). (Tpr, Cmr and Apr).

Present work

pPfbaA-XenAB Plasmid resulting from the cloning of α and β subunits of the luciferase from P. luminescens
into pPfbaA_MCS (Tpr, Cmr and Apr).

Present work

pPfbaA_LeoAB Plasmid resulting from the cloning of α and β subunits of the luciferase from P. leiognathi into

pPfbaA_MCS (Tpr, Cmr and Apr).

Present work

pTZ57R-xenAB Plasmid resulting from the cloning of α and β subunits of the luciferase from P. luminescens
under promoter Plac into vector pTZ57R (Apr).

Present work

pTZ57R-leoAB As pTZ57R-xenAB but lux gene of luciferase take from P. leiognathi. Present work

https://doi.org/10.1371/journal.pone.0226576.t002
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Measurement of the intensity of bioluminescence

Cell were prepared by overnight cultivation at 30˚C with aeration at 200 rpm in LB media with

chloramphenicol or ampicillin, then diluted 1:100 in LB media with chloramphenicol, grown

till reaching OD = 0.4–0.5, then incubated at a certain temperature. To eliminate de novo pro-

tein synthesis, incubation media was supplemented with following antibiotics: chlorampheni-

col (167 μg/ml) for E. coli and tetracycline (60 μg/ml) for B. subtilis.
To measure the intensity of bioluminescence the cells were sampled into the 200-μl test

tubes like in [25]. Two μl of 0.1% n-decanal dissolved in ethanol were added to final concentra-

tion of 0.001%. Cells are placed in the luminometer without shaking at room temperature

(~20˚C), with direct measurements of total bioluminescence (in RLU, relative light units)

using “Biotox-7” (LLC EKON, Russia). In five seconds timeframe, luciferase substrate n-

decanal enters the cells and participates in light producing reaction.

Results

Hybrid plasmid with PfbaA or Plac controlled luxAB-genes were introduced to B. subtilis and

E. coli cells, respectively. The levels of resultant strain bioluminescence in cultures sampled at

varying OD are shown in Table 4. As could be seen form Table 4, bioluminescence intensities

observed for B. subtilis and for E. coli cultures are approximately the same.

To quantify relative thermostability of luciferases in vivo, the luxAB gene expressing cells of

B. subtilis 168 and E. coli BW25113 were grown at 28˚C and 37˚C for cells with luciferase from

P. leiognathi and P. luminescens, respectively, until OD = 0.4–0.6 was reached. Then the tetra-

cycline or chloramphenicol was added, and incubation was continued at elevated tempera-

tures. In this experiment, addition of antibiotics prevented protein synthesis de novo.
Fig 1 shows the luminescence of B. subtilis 168 (with pFba-xenAB or pFba-leoAB) and

E. coli BW25113 cells (with pTZ57R-xenAB or pTZ57R-leoAB) at various temperatures.

As could be seen at Fig 1, in B. subtilis the luciferases display higher thermostability than in

E. coli. When expressed in B. subtilis, each luciferase reached inactivated state at the tempera-

ture of 3–5˚C higher than in E. coli. In course of subsequent experimentation with thermal

inactivation of luciferase in B. subtilis and E.coli cells in vivo, the differences in luciferase ther-

mostabilities were taken into account.

According to data obtained in vitro [26] and in vivo in E. coli cells [11], P. leiognathi lucifer-

ase is significantly more thermolabile than luciferase from P. luminescense. The data in Fig 1

show that the same difference persists in the cells of B. subtilis.
Kinetics of luciferase thermal inactivation in vivo in B. subtilis cells were compared to that

observed in cells of E. coli. Fig 2 presents inactivation kinetics at 41˚C or 48,5˚C for luciferases

from P. leiognathi (Fig 2A), and P. luminescens (Fig 2B), respectively.

Table 4. A comparison of the levels of bioluminescence observed in B. subtilis 168 and E. coli cells transformed by plasmids with luxAB-genes.

Strains� OD = 0.1 OD = 0.2 OD = 0.5 OD = 1,0

B.s. pFba-leoAB 4500±600�� 12000±1000 100000±15000 300000±50000

B.s. pFba-xenAB 3000±500 10000±1000 45000±6000 110000±15000

E.c. pTZ57R-leoAB 12000±2000 28000±3300 75000±7000 160000±45000

E.c. pTZ57R-xenAB 10000±1250 19000±2050 41000±5200 90000±17000

� B.s.—B. subtilis 168; E.c.—E. coli K12 BW25113

�� Levels of luminescence are shown in RLU, relative light units, with background luminescence levels at 50 RLUs.

https://doi.org/10.1371/journal.pone.0226576.t004
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As could be seen from the data presented at Fig 2A, in all strains the bioluminescence inten-

sity drops observed for P. luminescens luciferase are well described by a semi-logarithmic

graph (lg A–time), and, therefore, thermal inactivation of this luciferasae is a first-order reac-

tion. Table 5 shows respecitive first order rate constants (Kt).

As could be seen from Table 5, for luciferase of P. luminescens the ratio of the rate constants

for wild type strains of E. coli and B. subtilis was 2.9, while for ΔdnaKmutant strains of same

bacteria this ratio was 4.3.

As could be seen from the data presented at Fig 2B, for luciferase of P. leiognathi expressed

in E. coli cells the bioluminescence intensity drops are also well described by a semi-logarith-

mic graph (lg A–time), while in B. subtilis cells respective kinetics are substantially more com-

plex. To find out the order of this reaction, Rakovsky techniques was employed [27, §301

p. 466] by linearizing it in coordinates ln t1/2 Vs. ln A0, where A0 –initial activity, t1/2 –time to

semi-inactivation (Fig 3A).

As could be seen from Fig 3A, for both lines the slope is close to 2, indicating that the kinet-

ics of this reaction is of a third-order. These data were linearized in coordinates ½�A-2 Vs. t
and approximated by lines shown on Fig 3B. Table 6 shows rate constants for P. leiognathi
thermal inactivation at 41˚C in E. coli and B. subtilis cells.

Fig 1. A plot reflecting relative drops in the levels of bioluminescence during 15 minutes of incubation at various

temperatures. BsLeo—B. subtilis 168 (pFba-leoAB). EcLeo- E. coli BW25113 (pTZ57R_leoAB). BsXen—B. subtilis 168

(pFba-xenAB). EcXen—E. coli BW25113 (pTZ57R_xenAB).

https://doi.org/10.1371/journal.pone.0226576.g001
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Fig 2. Plots of relative luminescence of B. subtilis and E. coli cells expressing luciferases P. luminescens (A) and P. leiognathi (B), and exposed to

48,5˚C and 41˚C, respectively. Приведены средние значения шести экспериментов.Bc—B. subtilis 168; BcΔ—B. subtilisNBS2001 ΔdnaKJ::spc; Ec–

E. coli BW25113; EcΔ—E. coli JW0013 ΔdnaK::kan;.

https://doi.org/10.1371/journal.pone.0226576.g002

Table 5. First order rate constants (Kt) for P. luminescens luciferase inactivation at 48.5˚C.

Strain Rate constant, Kt, min-1 Correlation coefficient, R2

B. subtilis 0.0254 0.957

B. subtilis ΔdnaKJ 0.031 0.976

E. coli 0.074 0.992

E. coli ΔdnaK 0.132 0.993

https://doi.org/10.1371/journal.pone.0226576.t005

Fig 3. Dependence of initial bioluminescence and the time to semi-inactivation at 41˚C (A) and linearization of data describing inactivation in

coordinates ½�A-2 Vs. t (B) for B. subtilis cells expressing luciferase P. leiognathi. Bc—B. subtilis 168; BcΔ—B. subtilisNBS2001 ΔdnaKJ::spc; A–units

of activity.

https://doi.org/10.1371/journal.pone.0226576.g003
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Notably, the difference in the rates of P. leiognathi luciferase thermal inactivation at 41˚C in

the cells of E. coli and B. subtilis, which are described by first order and third order kinetics,

respectively, leads to a prominent, orders-of magnitude difference in the levels of cell biolumi-

nescence at 20 minutes post thermal inactivation onset.

When the luciferase of P. leiognathi undergoes thermal inactivation in E. coli, similar kinet-

ics are observed at lower temperatures, which is explained by the presence of active bichaper-

one system DnaKJE-ClpB, which actively aids refolding [11]. However, as could be seen at Fig

2, in B. subtilis dnaK+ and dnaK-, kinetics of luciferase inactivation remain the same, while in

E. coli the ratio of rate constants was at 1.8. This observation indicates that DnaKJE chaperone

does not properly function in B. subtilis, as it is unable to support the refolding of luciferase.

Fig 4 depicts the data describing the refolding of luciferases from P. leiognathi and P. lumi-
nescens after thermal inactivation in vivo in E. coli or B. subtilis cells. Bacterial cells were incu-

bated at 47˚C or 51˚C for E. coli or B. subtilis, respectively. In both cases, the luminescence

levels gradually decreased across approximately 2–3 orders of magnitude till reaching the

Table 6. Rate constants (Kt) of P. leiognathi luciferase thermal inactivation.

Strain Order of the reaction Rate constant (Kt) Correlation coefficient, R2

E. coli 1 0,427 min-1 0,986

E. coli ΔdnaK 1 0,735 min-1 0,972

B. subtilis 3 1,06•10−4•min-1•A-2� 0,983

B. subtilis ΔdnaKJ 3 1,07•10−4•min-1•A-2 0,927

� A -–units of activity

https://doi.org/10.1371/journal.pone.0226576.t006

Fig 4. The kinetics of luminescence of E. coli and B. subtilis cells with thermal inactivated luciferases from P. leiognathi (A) and P. luminescens
(B), which regained their activity after cell cultures were moved to room temperature. Luciferases were thermal inactivated in vivo by exposure of

carrier cells at either 47˚C (E. coli) or 51˚C (B. subtilis). Relative luminescence shown on vertical axis is proportional to percent of refolded luciferase

molecules. The cells of B. subtilis were pPfbaA-LeoAB (luciferase P. leiognathi) and pPfbaA-XenAB (P. luminescens), while the cells of E. coli were

transformed with plasmids pTZ57R-LeoAB (P. leiognathi) and pTZ57R-XenAB (P. luminescens). Bs—B. subtilis 168. BsΔ—B. subtilisNBS2001 ΔdnaKJ.
Ec—E. coli BW25113. EcΔ—E. coli JW0013 ΔdnaK::kan.

https://doi.org/10.1371/journal.pone.0226576.g004
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background levels, at which point the translation inhibitors, chloramphenicol for E. coli and

tetracycline for B. subtilis, were added to media followed by incubating bacterial cultures at

room temperature under continuous monitoring of their luminescence. Thermal inactivation

time was about 15–25 minutes.

As could be seen from the data presented on Fig 4A after thermal inactivation, the lumines-

cence of E. coli cells expressing the P. leiognathi luciferase could be restored almost to its pre-

inactivation levels. Evidently, this restoration is dependent on DnaK, as E. coli ΔdnaK cells are

not able to restore their levels of luminescence after exposure to high temperatures.

In curves describing of the reactivation of thermally inactivated luciferases, both lag-period

and inflection are unremarkable, thus, being indicative of possible multiples stages of reactiva-

tion reaction limited by some rate-limiting. Analysis of relatively fast refolding steps provides

some difficulty due to rapid cooling down of the sample within the first few minutes after its

return to the room temperature.

Analysis of slower steps of P. leiognathi luciferase refolding in E. coli cells, most parts of the

kinetic curve are well approximated by exponential dependence of an accumulation of the

product resulting from the first-order reaction with lag-period A = Amax×(1-ek×(t-tlag)), where

Amax is the level of maximal degree of reactivation, k–first-order reaction rate constant and

tlag–the time required for completion of fast steps of the refolding (Fig 5).

Kinetics curve parameters Amax, k and tlag were derived by non-linear approximation using

SciDAVis software (Amax = 57,11±0,85%, k = 0,035±0,002 min-1 and tlag = 3,42±0,44 min).

Refolding kinetics analysis of other strains showed that thermal inactivated cells of B. subti-
lis wild-type strain 168 are substantially less capable of luciferase refolding than E. coli, and

Fig 5. Non-linear approximation of a time-dependent increase of the activity of P. leiognathi luciferase in E. coli
cells is described by first-order reaction kinetics with a lag-period.

https://doi.org/10.1371/journal.pone.0226576.g005
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successfully refold just approximately one percent of available denatured enzymes. In B. subti-
lis, the success of the refolding does not require the presence of DnaK chaperone. As opposed

to E. coli, the cells of B. subtilis refold luciferases of P. leiognathi and P. luminescens to about

the same levels, and with similar kinetics.

Discussion

A comparison of thermal inactivation kinetics of luciferases in E.coli and B. subtilis strains

transformed with lux-biosensor plasmids demonstrated that the thermostability of these

model proteins in Gram positive bacteria B. subtilis is higher than that in Gram negative

E. coli, with the difference in tolerated temperatures reaching 4–5˚C (Figs 1 and 2).

Earlier works demonstrated that luciferase activity in E. coli cells depend on ability of par-

ticular luciferase to refold [10]. According to date presented above, in Gram positive bacteria

B. subtilis, enhanced thermostability of bacterial luciferases is not because of better refolding.

In fact, native B. subtilis cells do not support luciferase refolding well. After incubation of B.

subtilis cells with luciferase-bearing constructs on elevated temperatures, bioluminescience

drops 3–4 orders of magnitude; the transfer of these cells back to the room temperature

results in restoring luciferase activity up to approximately 1% of its initial levels either in

presence or in absence of DnaKJ chaperone. In conclusion, our experiments point that the

role that DnaKJE plays in termostability of luciferases in E. coli is limited to this models sys-

tem. In fact, in B. subtilis cells this chaperone is not involved in improving the thermostability

of luciferase.

Possibly, activity of thermal inactivated luciferases in B. subtilismay be rescued by other

ATP-dependent chaperones, which are yet to be investigated. A set of biosensors plasmids

incorporating luciferases of varying intrinsic thermostability, which we presented above, may

facilitate further molecular and genetic dissection of the factors which govern the denaturing

and the refolding of recombinant proteins in Gram positive cells.
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