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Abstract

The use of remote sensing to rapidly and accurately obtain information on the spatiotempo-

ral distribution of large-scale wheat and maize acreage is of great significance for improving

the level of food production management and ensuring food security. We constructed a

MODIS-NDVI time series dataset, combined linear interpolation and the Harmonic Analysis

of Time Series algorithm to smooth the time series data curve, and classified the data with

random forest algorithms. The results show that winter wheat–summer maize planting

areas were mainly distributed in the western plains, southern region, and north-eastern part

of the middle mountainous regions while the eastern hilly regions were less distributed and

scattered. The winter wheat–summer maize planting areas in the study area continued to

grow from 2004–2016, with the most significant growth in the northern part of the western

plains and Yellow River Delta. The spatial planting probability reflected the planting core

area and showed an intensive planting pattern. During the study period, the peak value and

time for the NDVI of the winter wheat were significantly different and showed an increasing

trend, while these parameters for the summer maize were relatively stable with little change.

Therefore, we mapped a spatial distribution of the winter wheat and summer maize, using

the time series data pre-processing synthesis and phenology curve random forest classifica-

tion methods. Through precision analysis, we obtained satisfactory results, which provided

a straightforward and efficient method to monitor the winter wheat and summer maize.

Introduction

Wheat and maize are the main food crops in northern China and key components in food pro-

duction [1, 2]. Satellite remote sensing technology can rapidly and accurately obtain informa-

tion on crop planting areas, monitor planting status, and simultaneously map spatial

distribution patterns, influencing factors, and planting probability while estimating crop
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output, water, fertilizer demand, and other information [3–6]. These data can provide impor-

tant reference information for crop production planning management, making remote sensing

monitoring of wheat and maize an important means to ensure food security by improving pro-

duction management.

In crop remote sensing monitoring, previous studies have investigated area mapping and

change monitoring of crops using higher resolution remote sensing images, such as the landsat

and SPOT images, to map winter groundcover on agricultural fields [7]. RapidEye images

were used to derive training data for the characterization of time-series Landsat data [8]. High

spatial resolution remote sensing data can reduce mixed (boundary) pixels and improve classi-

fication and recognition effects and accuracies [9] but performing out real-time and effective

long-term monitoring of large areas due to small coverage areas, long return-visit periods, low

spectral resolutions, and other effects is difficult. Low-resolution satellite sensors, such as the

Moderate Resolution Imaging Spectroradiometer (MODIS), have 36 bands, higher temporal

resolutions, and longer service cycles, which are suitable for monitoring continuous changes

in crops at large scales and over long time periods [10, 11].

Crop phenology is an appropriate growth and development rhythm formed by an organ-

ism’s long-term adaptation to temperature conditions. Crop phenological information is not

only the basis for agricultural production decisions, but also an important parameter for crop

simulation models [12]. Understanding phenological changes in crop monitoring and ecologi-

cal prediction is highly important. To solve problems associated with low spatial resolution in

MODIS satellite data that affect the classification accuracy, phenological metrics can be intro-

duced to improve the classification accuracy [13]. Descriptive data on crop growth provided by

shorter return-visit satellites are combined into time series datasets to reflect crop phenological

characteristics. Phenological characteristics can provide information other than spatial spectral

characteristics. As different vegetation has unique phenological characteristics, phenological

characteristics are considered a remote sensing method whose application can improve the

accuracy of the vegetation classification [14]. Wardlow and Egbert [15] discussed the curve dif-

ferences in the growth period of six crop types in the Central Plains of the United States based

on NDVI time series data and phenological metrics of different crops, indicating that the NDVI

values of different crop types can be classified according to the time series of the different crop

types. Based on NDVI time series data and the characteristics of two seasonal crops, Li et al.

[16] extracted crops, discussed the spatiotemporal patterns of the crop phenological period/

planting system in north China, and verified that the quantity distribution and spatial distribu-

tion of crop phenological characteristics were significantly different in the different growing

seasons. Based on these phenological differences, remote sensing extraction can resolve the for-

eign body homology problem and improve the classification accuracy. For how to use remote

sensing data to indicate phenological information, the current research is mainly focused on

single satellite data, but less on double satellite data. In addition, for example, to improve the

quality of data set and to better characterize the phenological curve need to be studied.

To improve the accuracy, previous studies have performed a significant amount of research

on the production and processing of time series datasets. Gao et al. [17] produced the Landsat-

MODIS time series dataset, which fused two types of satellite data and mapped crop growth.

Zhou et al. [18] compared the remote sensing time series reconstruction models at different

time intervals, while Liang et al. [19] compared the reconstructed time series data via linear

interpolation and with a smoothing algorithm, which improved the quality of the NDVI time

series dataset. Previous studies have shown that both the Harmonic Analysis of Time Series

(HANTS) and Savitzky–Golay methods are powerful tools to reproduce NDVI time series data

[20, 21]. In the specific classification method, previous studies have also made various attempts

to improve the characteristics of NDVI time series data curves. Atzberger and Rembold [22]
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used a neural network method to map the spatial distribution of winter crops in central Italy.

Zhu et al. [23] used the spectral angle clustering partition method to estimate the winter wheat

area from MODIS time series data. Manfron et al. [24] proposed a rule-based analysis method

to estimate the interannual sowing date of winter wheat using MODIS time series data. The

application of these studies and methods has achieved good results.

In general, current research on remote sensing monitoring of crops based on phenological

metrics focuses on the construction of high-quality timing datasets, the selective and precise

evaluation of classification models, and the analysis of extraction results. Time series data can

reflect crop phenological characteristics well, but their spatial resolution is generally low, as

well as more mixed pixels. Due to the large time span and noise in the data, we must improve

our method of constructing high-quality time series datasets. In addition, the classification of

time series data differs from traditional data classification. Therefore, we must further explore

more efficient and accurate classification methods and fully exploit the advantages of time

series data classification.

This study uses Terra and Aqua satellite data to construct a MODIS-NDVI time series data-

set, using quality control data and the HANTS method to improve the quality of the time series

data, as well as using the random forest method to extract information about the distribution

of winter wheat–summer maize planting in Shandong Province from 2004 to 2016. Thereafter,

we analyzed the spatiotemporal pattern of wheat planting and its changing motives, revealing

its spatiotemporal patterns, influencing factors, providing basic data, and a scientific basis for

the planting and management of winter wheat in Shandong Province and northern China.

The objective of this study is to be able to quickly draw crop maps with high precision. This

method makes full use of the advantages of time series data to reflect the phenological charac-

teristics. Combined with the wide coverage of MODIS data, this method can better achieve

this objective.

Data and methods

Study area

Shandong Province is located in the North China Plain between the lower reaches of the Yel-

low River and eastern coast (Fig 1). Shandong Province consists of two parts, i.e., the peninsula

and inland region, with a land and cultivated areas of 15.71 of 7.52 Mha, respectively. The

study area can be divided into three landforms: hilly areas of the middle southern region, west-

ern plains, and eastern hilly regions. The province has an average of 2,290–2,890 hours of sun-

shine per year, such that the heating conditions can conform to the needs of two crop

rotations per year. There are currently both double- and single-cropping systems in Shandong

Province [25], where the main grain crops are wheat and maize.

Satellite data

This study used MODIS-NDVI products to construct the time series datasets. The vegetation

index product uses quality-driven, angle-constrained, and maximum-value composites to

ensure data quality. Additionally, through the bidirectional reflectance distribution function

[26, 27] model correction, the observation value of the sensor’s viewing angle is unified as the

observation point of the sub-satellite point. NDVI is the best indicator of vegetation growth

status and vegetation coverage information, which can be calculated with the following expres-

sion:

NDVI ¼
ðNIRÞ � ðRÞ
ðNIRÞ þ ðRÞ

ð1Þ
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where NIR is the reflectance value in the near-infrared (0.84–0.88 μm) range and R is the

reflectance value of the red band (0.62–0.67 μm). The NDVI value is normalized to between –1

and 1, where positive values indicate vegetation coverage and increase with increasing cover-

age [28].

The satellite data used were obtained from Level 1 products and the Atmosphere Archive

and Distribution System (https://ladsweb.modaps.eosdis.nasa.gov). We used the vegetation

indices of 16-day composites from Terra/MODIS (MOD13Q1, h27v05) [29] and Aqua/

MODIS (MYD13Q1, h27v05) [30] at a spatial resolution of 250 m. Each satellite contains 23

phase nodes each year, such that the time series has a total of 46 scene data points. The study

period spans from 2004 to 2016, with a total of 598 scene images.

MODIS time series pre-processing

NDVI time series dataset construction. First, we extracted the NDVI index data in

MYD13Q1 and MOD13Q1 using the MODIS Reprojection Tool, which were projected into a

Universal Transverse Mercator projection. As the double satellite adopts the ‘half-synthetic

period dislocation’ method, each time node is different by eight days, such that we sorted the

NDVI data by the annual day-of-year time and combined it into a MODIS-NDVI time series

dataset. The time series covers the complete growth period of the ground crops (Fig 2). The

composite data can reduce the influence that both clouds and snow have on the data, generat-

ing more detailed timing curves to facilitate the extraction of timing features. We then applied

the Shandong boundary mask to the time series data.

Cloud and snow pixel value processing. MODIS quality control data (QC) include both

pixel reliability and vegetation index quality. The former uses binary numbers to indicate the

quality of the image’s metadata, such as high-quality data (i.e., a value tagged with 0), marginal

data (i.e., a value tagged with 1), and cloud and snow data [31]. We developed the program to

process the MODIS-NDVI time series data using the Interactive Data Language. For pixels

labelled as clouds and snow, the original value was replaced by linearly interpolating the data

Fig 1. Study area and cropland distribution.

https://doi.org/10.1371/journal.pone.0226508.g001
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nodes labelled as high-quality with the adjacent time series data, retaining the corresponding

marks for high quality and marginal data. This can eliminate, as much as possible, the influ-

ence of outliers caused by clouds and snow in the time series data and improve data quality

(Fig 3).

Time series smooth processing. To further remove noise and maintain data consistency,

the MODIS-NDVI time series data were smoothed by HANTS to improve the quality of the

time series data [32, 33]. The HANTS method is a phenological analysis method that time-

interpolates time series values by a Fourier transform and least squares method to obtain a

new, smoother time series. The four main control parameters in the HANTS module opera-

tion include valid data min and max, number of frequencies, fit error tolerance, and degree of

over determinedness. In this study, we set the four parameters to –2,000 to 9,000, 3, 1,000, and

8, respectively, according to the test. We used such a high permissible valid data min and max

because the value of the MODIS NDVI product was multiplied by 10,000. After smoothing,

the influence of noise was removed from the data, such that it better reflects the internal laws

of the crop growth curve.

Mapping winter wheat and summer maize

Based on the MODIS-NDVI time series dataset and phenological characteristics, we extracted

the winter wheat–summer maize planting areas. The extraction steps were as follows. 1) We

established a time series interpretation mark for the study area. Land cover in the study area

was divided into five categories, i.e., winter wheat–summer maize, one-season crop area, built-

up area, forest and grassland area, and water area. Based on these categories, the category sam-

pling points were generated. The data category labels were further determined based on the

high-resolution satellite images from Google Earth. The sampling point used the spatial analy-

sis to extract the timing curve from the MODIS time series. We calculated the mean and stan-

dard deviation of the curve by category and plotted it. The temporal curve shows the

phenology of the vegetation above this category. We used the curve as a sign of interpretation.

2) We established a classification training dataset. Considering the significant differences

between the east and west in Shandong Province (a longitudinal difference of 8˚), as well as

regional differences in the growth environment, the study area was divided into 50,000

m × 50,000 m grids, within which training points were allocated according to the complexity

of the land cover type. Attribute labelling of the training points was mainly based on feature

discrimination of the time series curve. Pixels with mixed-ground objects, were assisted by

high-resolution satellite images. 3) We completed random forest classification [34]. Random

forest classification is a combination classification model composed of numerous decision-tree

Fig 2. Node diagram for the time series data. (DOY: day of year).

https://doi.org/10.1371/journal.pone.0226508.g002
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classification models. This model has a good anti-interference ability for over-fitting and train-

ing data outliers. The first RF Classification (RFC) model was parameterized using training

points (i.e., the phenological features of ground objects) for training and internal validation.

The value for the number of trees used was 100. The function to determine the number of ran-

domly selected features was the square root of the number of all features. In a second step, the

phenology model was used to perform the MODIS time series. This study used the random

forest module provided by ENMAP Box V2.2 to classify the time series data of the study area

[35].

Accuracy assessment

To evaluate the comprehensiveness and objectivity of the winter wheat–summer maize extrac-

tion results, the accuracy evaluation was divided into classification and mapping accuracy and

area accuracy. We generated validation datasets and used statistical data from the planting

area to evaluate the respective accuracy of the methods. The validation dataset was based on

the land use status data of the study area and high spatial resolution images from Google

Fig 3. A comparison of the temporal data processing. Note: (a) and (b) are handled by QA comparisons with the raw data while (c) and (d) are

handled by HANTS comparisons with raw data.

https://doi.org/10.1371/journal.pone.0226508.g003
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Earth. The area accuracy assessment data were obtained from the statistical data on the wheat

and maize sown area in the Shandong Statistical Yearbook [36] from 2004 to 2016. The data

were evaluated with a regression analysis of the remotely sensed wheat and maize area. To fur-

ther evaluate the area extraction accuracy, the consistency index of the extraction results were

calculated with the following expression:

c ¼ 1 �
jx � yj

y

� �

� 100 ð2Þ

where x is the remote sensing extraction area, y is the statistical area from the Shandong Statis-

tical Yearbook, and c is the consistency index. We then compared the differences in the consis-

tency indices between the study area and each city to determine the parameters that influenced

the extraction accuracy.

Spatiotemporal analysis

Statistical results of the area extraction at different time phases were used to analyze the inter-

annual variation in the winter wheat–summer maize area. The wheat distribution maps from

13 years were compared, analyzing their spatial distribution patterns and dynamic characteris-

tics. Based on the distribution map, the planting probability can be calculated by counting the

amount of wheat and maize during the statistical time period. The probability map of the win-

ter wheat–summer maize planting from 2004 to 2016 allowed us to analyze the spatial stability

of the planting area. Furthermore, by comparing the peak differences in the NDVI time series

curves in each year, we analyzed the dynamic changes in the status of winter wheat and sum-

mer maize growth.

Results

NDVI time series data profile

The solid black line in Fig 4 is the mean value of the NDVI time series curve at the sampling

points of winter wheat and summer maize. This line shows that the NDVI time series curve of

the winter wheat–summer maize area has a typical bimodal curve. The first peak occurs

between days 60 and 170 during the winter wheat growth cycle while the second peak appears

between days 180 and 270 during the summer maize growth cycle, which is consistent with the

growth cycle of winter wheat–summer maize.

The dotted line in Fig 4 represents the standard deviation of the NDVI values for the nodes

of the winter-summer maize, which reflects the uncertainty in the variation of the local classes

at the time nodes. The annual standard deviation of winter wheat and summer maize is char-

acterized by a low state, which indicates that the curve characteristics are stable.

Precision validation

Accuracy assessment. Table 1 lists the statistical results of the classification accuracy from

2016. The overall accuracy was 90.75%, with a Kappa coefficient of 0.88. Among these values,

the classification and mapping accuracy of water areas was the highest at 96.43%. The user’s

accuracy for the winter wheat–summer maize was 95.80% while the producer’s accuracy was

88.37%. The classification accuracy of the winter wheat–summer maize was higher in all land

categories. The classification results show that the random forest classifier had higher classifi-

cation accuracy for the representations by time series features, such that clearer time series

curve features resulted in increased classification accuracy.

Area extraction and spatiotemporal characteristics using NDVI time series
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Table 2 lists the classification accuracy of the winter wheat–summer maize from 2004 to

2016. The results show that the user’s accuracy for winter wheat–summer maize land ranged

from 91.8 (2014) to 96.4% (2006) while the producer’s accuracy ranged from 84.1 (2007) to

93.3% (2015). The 13-year average user’s accuracy was 94.5%, while the average producer’s

accuracy was 90.2%. Overall, the distribution of the classification accuracy for the winter

wheat–summer maize in each year was relatively balanced, resulting in higher average classifi-

cation accuracy.

Fig 4. NDVI temporal curves of the winter–summer maize. (DOY: day of year).

https://doi.org/10.1371/journal.pone.0226508.g004

Table 1. Classification accuracy in 2016.

Map class User’s accuracy (%) Producer’s accuracy (%)

Winter wheat–summer maize 95.80 88.37

Forest and grass 86.84 89.19

Water 96.43 96.43

Built-up land 92.31 93.75

One-season crop 80.82 89.39

Overall accuracy 90.75% Kappa accuracy 0.88

https://doi.org/10.1371/journal.pone.0226508.t001
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Accuracy verification based on area statistics. Fig 5 shows a scatter plot of the remote

sensing extracted and statistical areas from the Yearbook for Shandong Province and other cit-

ies from 2004 to 2016. Based on the provincial analysis in Fig 5(a), the area point pairs have an

average distribution around the 1:1 line, where half the points are close to the 1:1 line. The

slope of the regression equation is 1.02, yielding a coefficient of determination of 0.96. From

Fig 5(b), according to the analysis of the city, most area point pairs also have a distribution

around the 1:1 line. However, compared with the provincial statistical results, the accuracy in

each city is lower. The slope of the regression equation is 1.17, yielding a coefficient of determi-

nation of 0.83.

Table 3 lists the statistics of the consistency indices for all years in each city. The results

show that the classification accuracies of De Zhou, He Ze, Ji Nan, and Liao Cheng are high,

such that, over the eight year period, they have consistency indices > 80%. Five years were

characterized by a consistency index < 40% in Lai Wu, Dong Ying, Wei Hai, and Ri Zhao. The

results show that there are numerous plain areas in the city with high classification accuracy

while the cities with lower precision are mostly hilly areas and coastal saline areas. Larger areas

of wheat and maize planting, result in higher classification result accuracies, whereas smaller

planting areas yield more dispersion and lower accuracy classification results. Overall, the

areas with lower precision were not the main wheat and maize production areas, indicating

that this method can extract the winter wheat–summer maize planting area with high

precision.

Spatiotemporal change analysis of winter wheat–summer maize

Area change analysis. Fig 6 shows the area statistics of the wheat and maize in Shandong

Province over the study period. The minimum planting area of the winter wheat–summer

Table 2. Accuracy rating table.

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

User’s accuracy (%) 94.7 93.8 96.4 93.9 93.2 93.7 94.1 93.2 96.1 95.7 91.8 95.9 95.8

Producer’s accuracy (%) 86.1 92.1 92.9 84.1 92.8 91.6 91.3 92.2 91.7 92.2 84.4 93.3 88.4

https://doi.org/10.1371/journal.pone.0226508.t002

Fig 5. A comparison of the winter wheat planting area between the remote sensing monitoring data and agricultural statistics data. (a) Statistics

by province and (b) statistics by city.

https://doi.org/10.1371/journal.pone.0226508.g005
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maize was 3.14 Mha (2004) while the maximum was 3.83 Mha (2015), with an average area of

3.55 Mha. From 2004 to 2016, the planting area of winter wheat and summer maize in Shan-

dong Province showed a sustained growth trend. The planting area of wheat and maize

increased the fastest from 2006 to 2008, with an average growth rate of 4.93%, followed by an

average growth rate of 2.7% from 2014 to 2015. From 2009 to 2013, the growth of the planting

area slowed, with an average growth rate of only 0.5%. Compared with 2004, the wheat and

maize planting area increased by 0.69 Mha in 2016, with an average growth rate of 1.99%.

Spatiotemporal patterns in the winter wheat–summer maize. Fig 7 shows a distribution

map of the winter wheat–summer maize planting in Shandong Province for 2016. Fig 7 shows

that the spatial distribution of the winter wheat–summer maize planting area is quite different.

Wheat and maize were mainly distributed in the plains areas of Shandong Province. The

Northwest Plain of the Shandong Province, such as in De Zhou, Liao Cheng, and He Ze, was

the main winter wheat–summer maize planting area. In this region, the planted area in 2016

accounted for 62.61% of the province, such that the wheat planting area was large and continu-

ous, which was suitable for large-scale centralized planting production. Second, the north-east-

ern plains of the middle mountainous area, such as in Ji Nan, northern Zi Bo, southern Bin

zhou, and northeast of Wei Fang, also had a large area for wheat and maize planting, account-

ing for 29.18% of the area. In addition, in the southern portion of the middle mountainous

area at the junction of Shandong and Jiangsu Provinces, several wheat and maize areas were

also distributed, accounting for 4.75% of the area. The eastern hilly regions and middle moun-

tainous area are dominated by hills and mountains, with plains basins interlaced among them.

The distribution of wheat and maize in this area was small and scattered.

Spatiotemporal dynamic analysis. Figs 7 and 8 show time series of the winter wheat–

summer maize spatial distribution from 2004 to 2016. The spatial pattern of the main period

of wheat and maize planting from 2004 to 2016 was generally stable. Concentrated planting

areas were stable in both the northwest plain of Shandong and the southern and north-eastern

parts of the middle mountainous area, which is consistent with the crop planting topographical

Table 3. Each city’s statistical consistency for all years.

City Cropland percentage Terrain Consistency index

> 80% 60–80% 40–60% 20–40% < 20%

De Zhou 14.05% Plains 9 3 1 0 0

He Ze 13.69% Plains 7 6 0 0 0

Liao Cheng 12.20% Plains 8 5 0 0 0

Wei Fang 9.50% Plains 1 7 3 2 0

Ji Ning 9.37% Plains 4 5 4 0 0

Bin Zhou 9.19% Plains 1 3 3 1 5

Ji Nan 6.03% Plains and hills 9 3 1 0 0

Tai’an 4.66% Plains and hills 8 5 0 0 0

Lin Yi 3.68% Plains and hills 4 6 2 1 0

Qing Dao 3.61% Plains and hills 1 4 4 2 2

Zibo 3.42% Plains and hills 8 4 1 0 0

Dong Ying 2.99% Plains 1 1 5 6 0

Yan Tai 2.29% Hills 0 1 3 2 7

Zao Zhuang 2.71% Plains and hills 0 6 6 0 1

Wei Hai 1.04% Hills 0 0 2 2 9

Ri Zhao 0.83 Hills 0 1 2 3 7

Lai Wu 0.74 Hills 0 1 1 3 7

https://doi.org/10.1371/journal.pone.0226508.t003
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constraints in Shandong Province. In addition, other winter wheat–summer maize planting

areas were smaller, causing more fragmented plots. Fig 9 shows the spatial distribution of

wheat and maize in the three selected periods. During the period from 2004–2008, there was a

relative balance in the expansion of winter wheat–summer maize area. The north-western

plains, southern region, and eastern area of the middle mountainous area had clear increases

in their plantings, while areas had a decrease in their planting areas are scattered. From 2008–

2012, the growth area for the winter wheat–summer maize was mainly located in the western

plains of Shandong, especially in the northern region, while there were relatively noticeable

decreases in the southern part of the middle mountainous areas. From 2012–2016, the winter

wheat–summer maize area growth trend slowed, such that area expansion became concen-

trated in the northern part of De Zhou, the Yellow River Delta, and other regions. The areas

with decreasing trends were scattered. Overall, the increase in the winter wheat–summer

maize area mainly included the northern Shandong plain and Yellow River Delta region, while

the areas that decreased had a relatively small, scattered distribution.

Winter wheat–summer maize planting probability. For the selection of crops affected

by soil conditions, economics, government policies, and other factors, replacement sowing is

commonly used during production. Crop planting on specific plots can have large interannual

uncertainties. Fig 10 shows the number and area of winter wheat–summer maize planting

throughout the 13-year period. The proportion of areas that planted winter wheat–summer

Fig 6. The area and growth rate of the winter wheat–summer maize in Shandong from 2004 to 2016.

https://doi.org/10.1371/journal.pone.0226508.g006
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maize with a 100% frequency was much larger than that of other planting frequencies. More

than 70% of the total study area planted winter wheat–summer maize with a greater than 80%

frequency. Fig 11 shows the spatial distribution of different planting probabilities for the win-

ter wheat–summer maize. The area that had a planting frequency greater than 85% was mainly

distributed in the western plains and plains surrounding the middle mountainous area, i.e., a

distribution area that was large and contiguous. Considering that the winter wheat–summer

maize planting area increased by 23.3% over the past 13 years, the actual planting probability

in the region is even higher. These regions with high planting frequencies are the core crop-

land areas in Shandong Province, which provides a stable guarantee for grain production. The

areas with low planting probability are mainly located around cities and hilly areas, as well as

in regions with recent increases in their areas. These are limited by urban expansion, transpor-

tation costs, and high cultivated land fragmentation.

Analysis of NDVI variations in wheat and maize. Fig 12(a) shows the NDVI time series

curve and its peak winter wheat–summer maize changes from 2004–2016. The figure shows

that the NDVI curve of winter wheat during its growth period is generally scattered. The node

of the growth period changed significantly in different years, such that the maximum NDVI

value and peak time were also different. The peak winter wheat range was between the days

108 and 123 in the year, i.e., from mid–late March to early April. The time series curve of the

maize was relatively concentrated, such that the growth period and maximum NDVI value for

Fig 7. Distribution map of the winter wheat–summer maize planting in 2016.

https://doi.org/10.1371/journal.pone.0226508.g007
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different years were relatively close. The peak area of the maize NDVI was between the days

221 and 228 of the year (i.e., mid-July), which indicates that environmental factors signifi-

cantly affect the growth of wheat in the winter and spring while the growth of maize in the

summer and autumn has less of an environmental impact. Fig 12(b) shows the NDVI time

Fig 8. The spatial distribution of the winter wheat–summer maize in Shandong from 2004 to 2015.

https://doi.org/10.1371/journal.pone.0226508.g008

Fig 9. Changes in the spatial distribution of the winter wheat–summer maize during different time periods.

https://doi.org/10.1371/journal.pone.0226508.g009
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series curve profiles of winter wheat and summer maize. The figure shows that the peak NDVI

of winter wheat increased significantly from 2004 to 2008 and continued to rise after a decline

in 2009, showing an overall increasing NDVI peak trend. The NDVI peak value of the maize

was relatively stable, such that the overall change was not significant, showing a steady and

slightly rising trend. This may suggest that the production level of the winter wheat in Shan-

dong Province has increased, while that of the summer maize has remained relatively stable

during the study period.

Discussion

This study extracted spatiotemporal distribution information from large-scale winter wheat–

summer maize planting from the MODIS-NDVI time series dataset. The results showed that

the extracted planting area of winter wheat and summer maize was in good agreement with

field and consistent with results from previous studies that used remote sensing data or land

statistical data [37]. The results show that the phenological characteristic of the winter wheat–

summer maize was significantly different from that of other land cover, which can be used as a

significant indicator in crop remote sensing monitoring. Considering the demand for large-

Fig 10. Frequency area statistics in Shandong from 2004 to 2016.

https://doi.org/10.1371/journal.pone.0226508.g010
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Fig 11. Winter wheat–summer maize planting probability in Shandong from 2004 to 2016.

https://doi.org/10.1371/journal.pone.0226508.g011

Fig 12. Time series (a) and the curve profile (b) of winter wheat and summer maize from 2004 to 2016. (DOY: day of year).

https://doi.org/10.1371/journal.pone.0226508.g012
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scale wheat–maize double-cropping rotation and other crop planting management in northern

China, this method can be applied to a wider area of northern China, such that we can further

subdivide other crops with unique phenological indicators, such as cotton, rice, and sweet

potatoes. With the support of high-resolution remote sensing and ground data, we are able to

obtain more accurate results [38, 39].

Three main factors affect the accuracy of winter wheat–summer maize area extractions

from the time series within the remote sensing data. The first factor is the construction of

high-quality time series datasets. In this study, the use of data from two satellites can guarantee

more time nodes in a phenological period, which yields improved fault tolerance for time

series data construction. At the same time, the image is pre-processed with quality data to

avoid influences from abnormal values, which are marked as aberration metadata, thereby sig-

nificantly improving the quality of the data smoothing. Second, the data smoothing (HANTS)

method can reduce spectral complexity caused by different agroclimatic conditions and crop

phenology, highlight phenological characteristics, and simplify curve clustering. At the same

time, the time series data contains not only the spatial distribution characteristics of crops, but

also the temporal characteristic, which is equivalent to adding a significant phenological indi-

cator in the extraction. More information means higher classification accuracy. With the accu-

mulation of remote sensing data, temporal features should be taken as the basic important

parameters to participate in remote sensing crop monitoring. Third, the use of efficient classi-

fiers improved the data accuracy. RF has high prediction accuracy, good tolerance to outliers

and noise, a faster training speed and an improved classification effect as compared with other

algorithms [40].

Based on an analysis of the area classification accuracy, we found that the crop area advance

accuracy of the MODIS-NDVI data is related to the study scale, such that the accuracy of the

provincial scale was significantly higher than that of the prefecture and city scale. In addition,

for the relatively complex topography of the eastern hilly and middle mountainous areas, the

land use heterogeneity was higher, resulting in more mixed pixels and lower classification reli-

ability. Therefore, this data method is suitable for large-scale areas above the provincial level.

To improve the classification accuracy, future studies can be done from a mixed-pixel decom-

position perspective [41].

This study has shown that, from 2004 to 2016, the planting area of winter wheat–summer

maize in Shandong Province continuously increased while gradually and decreasing. The

northern part of the western plains and Yellow River Delta were the main areas of growth.

Improvements to saline–alkali land in the region should be one of the important driving forces

of this increase in area. The NDVI index value of the wheat and maize growth period indicated

an upward trend, whereas the cultivated land area in Shandong Province decreased during this

period [42]. This reflects the importance of grain production in the region. In the future, Shan-

dong Province should scientifically perform grain production planning, further stabilize the

western plains where winter wheat–summer maize are spatially concentrated at large scales

with high planting probability, improve the agricultural intensity level, promote new technolo-

gies such as precision fertilization and water-saving irrigation, maintain the quality of the culti-

vated land, and protect the agricultural ecological environment.

Conclusions

In this study, we used time series remote sensing data to extract the winter wheat–summer

maize planting area in Shandong Province using a random forest classification method and

analyzed the spatiotemporal changes in the planting areas from 2004–2016. The results of our

study provide the following conclusions.
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Using a combination of MODIS data from two satellites to construct a time series dataset

and linearly interpolate quality data with the HANTS smoothing method, we can remove the

abnormal fluctuation of pixel values caused by a satellite sensor’s own performance or clouds,

snow, and atmospheric conditions, such that the smoothing curve can highlight the phenologi-

cal characteristics of the winter wheat–summer maize.

A method based on the MODIS-NDVI time series data was developed to extract the winter

wheat–summer maize with the random forest classification based on the phenological charac-

teristics of the surface cover. The average user’s accuracy when using this method was 94.5%

while the producer’s accuracy was 90.2%. The area determination coefficient from the remote

sensing extraction and city statistical yearbooks was 0.96, such that the area distribution was

consistent with reality. This method can provide a pattern for remote sensing monitoring of

grain crops in northern China.

The spatial distribution of winter wheat–summer maize in Shandong Province was gener-

ally stable and relatively concentrated, with predominant distribution in the western plains

and north-eastern and southern plains of the middle mountainous areas. The average planting

area of winter wheat–summer maize was 3.55 Mha, which increased steadily and continuously.

The most noticeable growth areas were mainly located in the northern area of the western

plains and Yellow River Delta. The planting probability map better reflects the core area of

winter wheat–summer maize in Shandong Province. During the study period, the peak time of

winter wheat significantly varied. The peak NDVI value for summer maize was relatively stable

while the peak NDVI value for winter wheat showed an upward trend.

In this study, we proposed an effective method of wheat- and maize-area extraction based

on NDVI time series data. We were able to sufficiently define the area of winter wheat and

summer maize in Shandong Province, as well as the temporal and spatial changes over the past

13 years, which provides a scientific basis for wheat and maize planting management. Future

studies, must further improve the accuracy of the winter wheat–summer maize area by

enhancing mixed-pixel recognition, obtaining more ground data verification, and introducing

more quantitative models to analyze and predict spatiotemporal distribution patterns.
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13. Jacquin A, Sheeren D, Lacombe JP, Woldai T, Annegarn H. Vegetation cover degradation assessment

in Madagascar savanna based on trend analysis of MODIS NDVI time series. International Journal of

Applied Earth Observations & Geoinformation. 2010; 12(13):S3–S10.

14. Townshend JRG, Justice CO, Kalb V. Characterization and classification of South American land cover

types using satellite data. Int J Remote Sens. 1987; 8(8):1189–207. https://doi.org/10.1080/

01431168708954764

15. Wardlow BD, Egbert SL. Large-area crop mapping using time-series MODIS 250m NDVI data: An

assessment for the U.S. Central Great Plains. Remote Sensing of Environment. 2008; 112(3):1096–

116.

16. Li Z, Yang P, Zhou Q, Wang Y, Wu W, Zhang L, et al. Research on spatiotemporal pattern of crop phe-

nological characteristics and cropping system in North China based on NDVI time series data. ACTA

ECOLOGICA SINICA. 2009; 29(11):6216–26.

17. Gao F, Anderson MC, Zhang XY, Yang ZW, Alfieri JG, Kustas WP, et al. Toward mapping crop prog-

ress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ. 2017; 188:9–

25. https://doi.org/10.1016/j.rse.2016.11.004

18. Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic

ANalysis of Time Series (HANTS). Remote Sens Environ. 2015; 163:217–28. https://doi.org/10.1016/j.

rse.2015.03.018

19. Liang SZ, Ma WD, Sui XY, Yao HM, Li HZ, Liu T, et al. Extracting the Spatiotemporal Pattern of Crop-

ping Systems From NDVI Time Series Using a Combination of the Spline and HANTS Algorithms: A

Case Study for Shandong Province. Can J Remote Sens. 2017; 43(1):1–15. https://doi.org/10.1080/

07038992.2017.1252906

Area extraction and spatiotemporal characteristics using NDVI time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0226508 December 12, 2019 18 / 19

https://doi.org/10.1016/j.rse.2015.04.021
https://doi.org/10.1016/j.agwat.2017.04.017
https://doi.org/10.3390/rs10101659
https://doi.org/10.2489/jswc.70.6.340
https://doi.org/10.2489/jswc.70.6.340
https://doi.org/10.3390/rs10040489
https://doi.org/10.1016/j.rse.2015.03.028
https://doi.org/10.3390/rs6032473
https://doi.org/10.1080/01431168708954764
https://doi.org/10.1080/01431168708954764
https://doi.org/10.1016/j.rse.2016.11.004
https://doi.org/10.1016/j.rse.2015.03.018
https://doi.org/10.1016/j.rse.2015.03.018
https://doi.org/10.1080/07038992.2017.1252906
https://doi.org/10.1080/07038992.2017.1252906
https://doi.org/10.1371/journal.pone.0226508


20. Roerink GJ, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis

of time series. Int J Remote Sens. 2000; 21(9):1911–7. https://doi.org/10.1080/014311600209814

21. Jönsson P, Eklundh L. TIMESAT—a program for analyzing time-series of satellite sensor data. Com-

puters & Geosciences. 2004; 30(8):833–45. https://doi.org/10.1016/j.cageo.2004.05.006.

22. Atzberger C, Rembold F. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using

AVHRR NDVI Time Series and Neural Nets. Remote Sens. 2013; 5(3):1335–54. https://doi.org/10.

3390/rs5031335

23. Zaichun Z, Lianqun C, Jinshui Z, Yaozhong P, Wenquan Z, Tanshui H. Division of Winter Wheat Yield

Estimation by Remote Sensing Based on MODIS EVI Time Series Data and Spectral Angle Clusering.

Spectroscopy and Spectral Analysis. 2012;(07):1899–904.

24. Manfron G, Delmotte S, Busetto L, Hossard L, Ranghetti L, Brivio PA, et al. Estimating inter-annual vari-

ability in winter wheat sowing dates from satellite time series in Camargue, France. Int J Appl Earth Obs

Geoinf. 2017; 57:190–201. https://doi.org/10.1016/j.jag.2017.01.001

25. Sui X, Zhu Z, Li S, Ming B, Zhang X, Sun X. Extracting winter wheat planting area based on cropping

system with MODIS data. Transactions of the CSAE. 2010; 26(S1):225–9.

26. Vermote EF, Saleous NZE, Justice CO. Atmospheric correction of MODIS data in the visible to middle

infrared: first results. Remote Sens Environ. 2002; 83(1):97–111.

27. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, et al. First operational BRDF, albedo nadir

reflectance products from MODIS. Remote Sens Environ. 2002; 83(1):135–48.

28. Fensholt R, Proud SR. Evaluation of Earth Observation based global long term vegetation trends—

Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ. 2012; 119:131–47.

https://doi.org/10.1016/j.rse.2011.12.015

29. Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid. V006 ed.

NASA EOSDIS Land Processes DAAC2015.

30. Didan K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid. In: DAAC

NELP, editor. 2015.

31. Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J. The MODIS Land product quality

assessment approach. Remote Sens Environ. 2002; 83(1):62–76. https://doi.org/10.1016/S0034-4257

(02)00087-1.

32. Jia L, Shang H, Hu G, Menenti M. Phenological response of vegetation to upstream river flow in the

Heihe Rive basin by time series analysis of MODIS data. Hydrol Earth Syst Sci. 2011; 15(3):1047–64.

https://doi.org/10.5194/hess-15-1047-2011

33. Menenti M, Azzali S, Verhoef W, Swol RV. Mapping agroecological zones and time lag in vegetation

growth by means of fourier analysis of time series of NDVI images. Advances in Space Research.

1993; 13(5):233–7.

34. Breiman L. Random Forests. Machine Learning. 2001; 45(1):5–32.

35. Van der Linden S, Rabe A, Held M, Jakimow B, Leitão PJ, Okujeni A, et al. The EnMAP-Box—A

Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015; 7

(9):11249–66. https://doi.org/10.3390/rs70911249

36. Statistics SPBo, team Nbosss. Shandong statistical yearbook. China statistics press2004~2016.

37. Dong X, Li S, Shi Z, Qiu C. Change characteristics of agricultural climate resources in recent 50 years in

Shandong Province Chinese Journal of Applied Ecology. 2015; 26(01):269–77.

38. Alcantara C, Kuemmerle T, Baumann M, Bragina EV, Griffiths P, Hostert P, et al. Mapping the extent of

abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Econstor

Open Access Articles. 2013; 8(3):1345–6.

39. Gu X, Han L, Wang J, Huang W, He X. Estimation of maize planting area based on wavelet fusion of

multi-resolution images. Transactions of the CSAE. 2012; 28(03):203–9.

40. Gislason PO, Benediktsson JA, Sveinsson JR. Random Forests for land cover classification. Pattern

Recognition Letters. 2006; 27(4):294–300.

41. Gu X, Pan Y, Zhu X, Zhang J, Han L, Wang S. Consistency Study between MODIS and TM on Winter

Wheat Plant Area Monitoring-A Case in Small Area. JOURNALOFREMOTESENSING. 2007;(03):350–

8.

42. Han L. Analysis on the change of cultivated land quantity and protection measures in Shandong Prov-

ince [Master’s thesis]: Qufu Normal University; 2015.

Area extraction and spatiotemporal characteristics using NDVI time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0226508 December 12, 2019 19 / 19

https://doi.org/10.1080/014311600209814
https://doi.org/10.1016/j.cageo.2004.05.006
https://doi.org/10.3390/rs5031335
https://doi.org/10.3390/rs5031335
https://doi.org/10.1016/j.jag.2017.01.001
https://doi.org/10.1016/j.rse.2011.12.015
https://doi.org/10.1016/S0034-4257(02)00087-1
https://doi.org/10.1016/S0034-4257(02)00087-1
https://doi.org/10.5194/hess-15-1047-2011
https://doi.org/10.3390/rs70911249
https://doi.org/10.1371/journal.pone.0226508

