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Abstract

This study aimed at estimating temporal (1989–2018) change in forest cover, carbon stock

and trend in corresponding CO2 emissions/sequestration of a sub-tropical pine forest

(STPF) in AJK, Pakistan. Our field inventory estimation shows an average above ground

biomass (AAGB) accumulation of 0.145 Kt/ha with average carbon stock (ACS) value of

0.072 Kt/ha. Landsat TM, ETM+ and OLI images of 1989, 1993, 1999, 2005, 2010, 2015

and 2018 were used to extract vegetation fractions through Linear Spectral Mixture Analysis

(LSMA) and forest area was calculated for respective years. Based on the forest area and

estimated ACS value, the biomass carbon stock with corresponding CO2 emissions/seques-

tration was worked out for each time and change in forest carbon stock was determined for

different time periods from 1989 to 2018. Our analysis shows net increase of 561 ha in forest

cover and 40.39 Kt of ACS along with increase in corresponding CO2 sequestrations of

147.83 Kt over the study period. The results based on combination of remote sensing and

field inventory provide valuable information and scientific basis to plan and ensure sustain-

able forest management (SFM) through reforestation, protection and conservation to

enhance and maintain adequate forest cover and reduce CO2 emissions.

1. Introduction

The global terrestrial ecosystem encompass forests as major component which cover around

31% of earth’s land surface and the area under forest cover is considered as an important indi-

cator of environmental condition [1]. Forests play a vital role in photosynthetic alleviation of

atmospheric CO2 and its long-term storage as wood biomass [2] which contains approximately

PLOS ONE | https://doi.org/10.1371/journal.pone.0226341 January 23, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Khan IA, Khan MR, Baig MHA, Hussain Z,

Hameed N, Khan JA (2020) Assessment of forest

cover and carbon stock changes in sub-tropical

pine forest of Azad Jammu & Kashmir (AJK),

Pakistan using multi-temporal Landsat satellite

data and field inventory. PLoS ONE 15(1):

e0226341. https://doi.org/10.1371/journal.

pone.0226341

Editor: Arun Jyoti Nath, Assam University, INDIA

Received: April 15, 2019

Accepted: November 25, 2019

Published: January 23, 2020

Copyright: © 2020 Khan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its supporting

information files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-8930-9658
https://doi.org/10.1371/journal.pone.0226341
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226341&domain=pdf&date_stamp=2020-01-23
https://doi.org/10.1371/journal.pone.0226341
https://doi.org/10.1371/journal.pone.0226341
http://creativecommons.org/licenses/by/4.0/


50% of carbon [3]. Conversely, the stored carbon is released into the atmosphere as carbon

dioxide (CO2) when forests are cleared or degraded [4]. Hence, deforestation is responsible

for approximately 20% of anthropogenic emissions worldwide [5, 6] with varying regional

statistics [7]. Globally, a net decrease of 1.7% in the forest area with an annual rate of change

of 0.11% was reported for the period 1990–2005 [8] and it was estimated that during the period

2005–2010 the reduction in global forest area led to decrease in forest biomass carbon stock

by an amount of 0.5 Gt annually [7]. Sustainable forest management (SFM) greatly relies on

the important components like assessments of forest cover, forest carbon stocks and carbon

emissions from deforestation and degradation [9]. Forest resource estimation and its interval-

lic change assessment are important dynamics which drive forest inventories aimed at SFM.

The scientific quantification of forest cover and temporal changes provide valuable informa-

tion to expose deforestation or appreciate successful reforestation programmes at particular

sites and allows for appropriate land use planning along with carbon accounting and monitor-

ing of conservation efforts [10, 11]. Also, accurate and timely information regarding vegetation

changes is a prerequisite to resource managers and policy makers [12] for future planning

and predictions. The technological advancement has enabled scientists to develop different

methods for detecting changes in land and vegetation cover over the last 30 years [13]. Many

forest cover related studies [14, 15, 16, 17, 18, 19] have used satellite images to retrieve frac-

tional information embedded in pixels through a widely used technique called SMA which

helps address mixed pixel problem [20].

In recent times, remote sensing has widely been used to detect temporal changes in land

cover and make it an effective tool on account of its digital data format and consistent coverage

of land cover at varying resolutions. Moreover, it enables to capture continuous, precise and

impartial information about spatial variability of land surface features that becomes quickly

available for use [21, 22]. In present era, remote sensing is an effective mode of collecting forest

cover information [23, 24] for practical and economical study of vegetation cover changes,

particularly over large landscapes [25, 26]. Nevertheless, its usefulness in providing meaningful

data regarding growing stock, forest area and forest land use change is well established for

developing forest inventory [27]. In this context, Landsat provides long history of dataset

archive which is vital in mapping long-term vegetation cover and studying spatiotemporal

changes [28] because Landsat data with fine/high spatial resolutions are recommended for

reliable quantification of forest cover change.

The State of Azad Jammu & Kashmir (AJK) is blessed with high valued natural fauna

stretching along Himalayan mountainous topography classified as Subtropical, Temperate

and Alpine forests. The predominant coniferous species include Pinus roxburghii, Pinus
wallichiana, Abies pindrow and Cedrus deodara. These forests are being managed under

traditional inventories which lack critical scientific information on carbon stock density

and temporal land cover changes. The objective of this case study is the estimation of ACS

per hectare in a subtropical pine forest using field inventory and assessment of historical

stock change patterns through periodic analysis of satellite imageries (1989–2018). The find-

ings will help draw a comparison between deforestation and the overall success of reforesta-

tion programmes implemented in the area over the study period. The study will also enable

forest managers to develop forest inventories on the basis of modern scientific parameters to

ensure SFM.

2. Materials and methods

This section describes the study area, method of field inventory and satellite data acquisition

and processing.

Landsat and inventory based carbon stock change assessment in Sub-tropical pine forest of AJK, Pakistan
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2.1 Study area

The study area (471 km2) lies between 73˚35’45.49"E, 33˚50’14.24"N to 73˚53’44.84"E, 33˚

35’19.03"N in district Sudhnuti AJK, Pakistan (Fig 1). The elevation ranges from 385 m to

2121 m ASL with maximum slope up to 78 degree and mean annual temperature varies from

110C and 250C having 1432 mm average rainfall. The predominant species is Chir Pine (Pinus
roxburghii) with a little mix of Blue Pine (Pinus wallichiana) when approaching temperate for-

est [29]. It is managed by the State Forest Department. Distribution of vegetation is frag-

mented across the landscape.

2.2 Field inventory & forest carbon stock assessment

A pilot survey of the study area accompanied by field staff of the respective forest division

having knowledge of the area and forest distribution was conducted to collect preliminary

data to determine 108 circular sample plots across study area (Fig 2)using the source book for

“Land Use, Land Use Change and Forestry Projects” [30] and detailed inventory was carried

out during January-July, 2017 (S1 Fig and S1 File). Field inventory was carried out with the

permission of Chief Conservator of Forests (CCF), Government of the State of AJK (GoAJK).

The study area did not include any endangered flora. GPS was used to locate each sample plot

of 0.1 ha on ground while slope was determined using clinometer to adjust the plot radius

accordingly (S2 Fig). Sampling was conducted for trees having minimum 15cm diameter at

breast height (dbh) to match the criteria laid down for management plans of the State forests.

The tree height and diameter (dbh) were measured using Abney Level and Caliper respectively

(S2 Fig). The area specific allometric equations developed by Pakistan Forest Institute (PFI)

were retrieved from technical reports to calculate AGB of Pinus roxburghii, Pinus wallichiana
and Quercus incana being the predominant species of the study area. Average below ground

Fig 1. Study area map.

https://doi.org/10.1371/journal.pone.0226341.g001
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biomass (ABGB) was calculated using the relationship between AGB and BGB. A conversion

factor of 0.5 [31, 32] was used to work out the forest biomass carbon while total average bio-

mass (t/ha) was worked out by adding AGB and BGB. Average above ground biomass

(AAGB) value was used for estimation of temporal stock changes and corresponding CO2

emissions/sequestrations.

2.3 Satellite data collection and pre-processing

The study involved Level-1 Precision and Terrain (L1TP) corrected Landsat data that are

considered suitable for time series analysis (www.landsat.usgs.gov). Landsat 5 Thematic

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Opera-

tional Land Imager (OLI) sensors data corresponding to the study area were downloaded

from earthexplorer.usgs.gov (Table 1).

Fig 2. Distribution of sample locations.

https://doi.org/10.1371/journal.pone.0226341.g002

Table 1. Landsat satellite images used in the study.

Path/Row Sensor Acquisition Date Scene Cloud Cover (%age) Scene Quality

149/037 TM 26 December 1989 20 9�

TM 05 December 1993 1 9

ETM+ 28 November 1999 1 9

ETM+ 30 December 2005 2 9

TM 20 December 2010 3 9

OLI 18 December 2015 4.49 9

OLI 24 November 2018 7.71 9

According to lta.cr.usgs.gov Acquisition Quality 9� = Excellent (no quality issues or errors detected)

https://doi.org/10.1371/journal.pone.0226341.t001
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Since appropriate selection of imagery acquisition dates is crucial to minimize chances of

encountering unwanted changes induced by differences in sun angles or seasons, images

with close anniversary dates with minimal/no cloud cover were chosen for this study.

Particularly, presence of healthy green grasses along the patches of targeted evergreen vege-

tation feature widely intermingled across the landscape during summer thus making the

two spectrally alike land cover features hard to delineate. The selection of winter season

imagery was expected to improve discrimination of targeted vegetation from soil which

becomes exposed due to recession of healthy green grasses and deciduous trees during this

time of the year.

All the images were co-registered to ensure sub-pixel geometric alignment to minimize

errors produced by miss registration of images during time series analysis. The radiometric

calibration was performed to compute radiance images which served as input to Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) module used for atmospheric correc-

tion of downloaded data in ENVI 5.3. Later on, spatial sub setting was applied to resultant geo-

metrically and atmospherically preprocessed multi-temporal surface reflectance data to limit

the subsequent analysis within study area extent.

2.4 Image processing & Spectral Mixture Analysis

Spectral Mixture Analysis (SMA) is one of the most widely used remote sensing methods

employed to derive fraction covers from mixed pixels [33]. It helps in accurate extraction of

quantitative subpixel information [34]. Spectral “unmixing” can be a linear or nonlinear

approach. Linear mixture model assumes that every pixel in the image is a mixture of different

spectra (known as endmembers) and sensor recorded spectrum is a linear combination of

these spectra [35]. The SMA model assumes that image spectra are formed by linear combina-

tions of n pure spectra [36] and expressed as;

Rb ¼
Xn

i¼1

Fi Ri;b þ εb

Xn

i¼1

Fi ¼ 1

Rb is the reflectance in band b, Ri,b is the reflectance for endmember i, in band b, Fi is the

fraction of endmember i, and εb is the residual error for each band. The SMA model error is

estimated for each image pixel by computing the Root Mean Square (RMS).

The endmembers used for spectral unmixing may be reference or library endmembers

measured in a laboratory or in field conditions or derived from image itself as image endmem-

bers [37]. As the radiometric and atmospheric correction of the images reduces potential

noise, therefore, extraction of endmembers from the calibrated data is preferred [38]. On the

contrary, endmembers derived from the laboratory spectra requires a great deal of effort [19].

In this study, soil and vegetation were defined as two endmembers [39]. Then samples of

these endmembers were visually selected from the scene by identifying the representative areas

of each component based on the knowledge of study area [16]. Vegetation and soil fraction

images were derived through independent Linear Spectral Unmixing of Landsat scenes

involved in the study. The output composite RGB images, each containing fractional cover of

soil, vegetation and associated RMS error image, were visually interpreted to ascertain optimal

threshold for separation of pure pixels representing targeted vegetation from soil and other

features. The RMS error image provides information about areas of missing or incorrect

endmembers.

Landsat and inventory based carbon stock change assessment in Sub-tropical pine forest of AJK, Pakistan
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The pixel value of fraction raster derived by SMA provided essential information about

fraction of pixel that contains the endmember material related to the image. When individually

added, pixels with brighter tone denote higher fraction values, while darker pixels correspond

smaller fraction values of endmember material within each pixel. For example, a pixel value of

0.65 indicates that 65% of the pixel contains endmember material. We used thresholding

approach for classification of extracted vegetation fractions (VFs) and classification was

refined through iterative process [35]. The threshold values of>0.82, >0.73, >0.72, >0.80,

>0.81, >0.83 and>0.82were used for classification of VF images of 1989, 1993, 1999, 2005,

2010, 2015 and 2018 respectively. A false color RGB fraction image corresponding to each frac-

tion image was produced with Red color assigned to inherent vegetation fraction and Green

and Blue colors were designated to soil fraction band. Resultantly, targeted vegetation pixels

with unique red color became apparent and easily distinguishable from rest of the features,

specifically surrounding soil (which included bare soil, and built-up).

The false color fraction image considerably facilitated better identification of pixels with

abundance of vegetation and assisted in effective selection of representative threshold for its

separation from distinct soil feature. An associated false color Landsat image was also pro-

duced to further assist the interpretability of the fractional cover. For Landsat TM and ETM+,

a band combination of 5,4,3 for Red, Green and Blue color guns respectively, helped highlight-

ing vegetation feature present within the image. While, corresponding band combination for

Landsat OLI (6,5,4) was chosen to create false color image to serve the same purpose (Fig 3).

This approach facilitated the thresholding process a great deal and it was further refined

iteratively. Following this method, all the derived vegetation fractions were categorized into

forest and non-forest cover classes. The reclassified VFs were converted into binary raster for-

mat A pixel value of 1 was assigned to forest while a value of 0 was allotted to non-forest areas

(Fig 4).

Different change detection approaches were applied to produce multiple change maps.

These change detection approaches and resultant maps helped better analyze landscape

changes from different aspects (Fig 5).

Fig 3. (a). A subset of false color (6,5,4) Landsat 8 OLI image (2018) highlights vegetative areas in green. (b). A composite false color

vegetation fraction raster (2108) with customized band combination highlights vegetation in red. (c) Vegetation fraction derived after

assigning threshold value through visual interpretation of LSMA raster overlaid on false color composite of corresponding Landsat image.

https://doi.org/10.1371/journal.pone.0226341.g003
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Fig 4. A subset of raster derived from image overlay analysis indicates changes in vegetation cover (1989–2018).

https://doi.org/10.1371/journal.pone.0226341.g004

Fig 5. A subset of raster derived from cross tabulation analysis indicates class-class change (1989–2018).

https://doi.org/10.1371/journal.pone.0226341.g005
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A simple band combination applied to stacked images of TM-1989 and OLI-2018 revealed

areas with abrupt changes in the vegetation cover. The stacked/composite image containing

bands from both dates were used to produce qualitative information about changes in the

landscape. The six TM bands (excluding TM band No. 6 i.e. Thermal band) were placed over

top of the seven OLI bands spanned over visible and infrared portion of the spectrum. In the

composite RGB stacked imaged, red color was assigned to band No. 13 (OLI SWIR 2), Green

and Blue colors were designated to band no. 5 (TM SWIR 1) and band no. 8 (OLI Blue),

respectively. The areas with increase in vegetation can be observed from distinct bright green

color, while areas where vegetation has been removed and characterized by bare soil can be

discerned as brighter shades of pink and magenta color. The analysis was performed in Arc

GIS 10.5.

A cross tabulation of vegetation fractions derived from corresponding earlier and later date

imagery (1989 and 2018) was performed to produce a composite change map. Earlier prepared

binary rasters of vegetation fractions from both dates were compared through hard cross-clas-

sification approach to identify areas where change in the vegetation cover has occurred. The

resultant composite change map enabled to categorize the type of change and provided addi-

tional information with respect to the change map produced from overlay of binary vegetation

fraction rasters from earlier and later dates. The area and descriptive statistics were computed

from quantifiable change maps as well as from fraction rasters to analyze land cover dynamics

and associated biomass variations during the period.

2.5 Accuracy assessment

The classification results of latest Landsat 8 OLI scene (November, 2018) were assessed using

the sample points collected during field survey. In order to analyze classification performance

eighty points from forest and 60 points from non-forest cover classes were tested as referenced

points to calculate producer’s accuracy, user’s accuracy, overall classification accuracy and

Kappa statistics [40, 41, 42].

2.6 Assessment of forest carbon stock changes & CO2 emissions/

sequestrations

The inventory approach [43] was adopted to measure the difference in carbon stocks averaged

between two points in time. In order to convert biomass carbon to CO2, the tons of carbon

were multiplied by a factor of 44/12 [44]. Forest area for each time was calculated from classi-

fied images and associated carbon stock was then estimated for all time periods accordingly.

As the past forest inventory data (reflecting carbon stock density) was not available for the

study area, the carbon stock difference between the intervals was calculated and according to

the nature of stock change (positive or negative) corresponding CO2 emission /sequestration

was estimated using the ACS value converted from inventory based AGB [45]. Flow chart of

the process is illustrated in Fig 6.

3. Results

The estimated average above ground biomass (AAGB) was 0.145 Kt/ha with 0.072 Kt/ha corre-

sponding carbon stock while average below ground biomass (ABGB) was 0.037 Kt/ha. The

calculated producer’s accuracy for forest and non-forest classes was 97% and 95% respectively

whereas 96% and 97% were the user’s accuracy values for these classes. Overall classification

accuracy was 96% with Kappa coefficient value of 0.92 (S1 Table). Figs 7 and 8 exhibit classi-

fied vegetation fraction images while Fig 9 reflects increase or decrease in vegetation. Fig 10

illustrates change between classes over the study period (1989–2018).

Landsat and inventory based carbon stock change assessment in Sub-tropical pine forest of AJK, Pakistan
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The year wise findings regarding forested area along with corresponding cover percentage

and carbon stock is given in Table 2 while Fig 11 illustrates the changing trend of forest cover

over the study period.

The periodic analysis revealed (Table 3) that major reduction in forest area (1178 ha)

occurred during 1989–1999 imposing a negative change in forest cover from 41.82% to 39.32%

followed by 949 ha during 1993–1999 with a decrease in forest cover from 39.32% to 37.31%.

The minimum and maximum change in forest area over the study period is 218 ha and 1247

ha respectively with mean change of 802.5 ha (Table 4). For first two periods decrease in forest

area resulted into decline in forest carbon stock by 84.81 Kt and 68.32 Kt with corresponding

CO2 emissions by 310.40 Kt and 250.05 Kt, respectively (Table 3). However, a net gain of 2688

ha in forest area was observed during 1999–2018 which resulted into an increase in forest

cover by 5.71% with 193.54 Kt increase in carbon stock leading to 708.34 Kt of corresponding

CO2 sequestrations (Table 3). The changing trend in forest carbon stock resulting from change

in forest area is depicted in Fig 12 while Fig 13 illustrates the changing trend in corresponding

CO2 from emissions/sequestrations over the study period. Minimum and maximum change in

forest carbon stock is represented by 15.69 Kt and 89.78 Kt with mean stock difference of

57.77 Kt (Table 4). Overall, the increase in forest area accounted for 561 ha resulting into 40.39

Kt increase in corresponding ACS during the study period. Net CO2 sequestrations (147.84

Kt) surpassed its emissions over a duration of about 25 years (Table 3).

4. Discussion

This study provides a comprehensive assessment of forest land cover and biomass carbon

stock changes in a subtropical pine forest in AJK. Our estimation for overall average biomass

for both components (AGB + BGB) resulted into 0.182 Kt/ha having 0.091 Kt/ha of carbon,

over the study period. These results are in line with some studies conducted in close vicinity or

same region. For example, Shaheen et al. [46] have reported an average biomass value of 0.192

Fig 6. Process flow diagram.

https://doi.org/10.1371/journal.pone.0226341.g006
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Kt/ha from subtropical forest in Kashmir Himalaya. Similarly, biomass values of 0.237 Kt/ha

and 0.186 Kt/ha have been reported by Nizami [47] for Ghoragali and Lehtrar Subtropical

Pine (Pinus roxburghii) forests from Punjab, Pakistan, respectively. The forest condition /

health may also have an impact on biomass outcome. For example, Jina et al. [48] have

reported the carbon stock values ranging from 0.081–0.115 Kt/ha and 0.018–0.034 Kt/ha for

non-degraded and degraded Chir pine (Pinus roxburghii) forest from Kuman Central Hima-

laya, respectively. However, it is well documented that forest carbon stock values are generally

site specific and depend on geographic location, type of flora and age of tree stand [49, 50]. For

example, in a study of similar nature conducted in sub-tropical to temperate zones of Garhwal

Himalaya, Sharma et al. [51] have estimated significantly varying biomass stock values of

0.159 ± 0.016 Kt/ha and 0.298 ± 0.056 Kt/ha for Siwalik Chir Pine (Pinus roxburghii) and

Himalayan Chir Pine (Pinus roxburghii) respectively.

Fig 7. Classified vegetation fraction (VF) images (1989–2015).

https://doi.org/10.1371/journal.pone.0226341.g007
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Overall, there has been a net increase of 561 ha in forest area with increase of 40.39 Kt in

corresponding biomass carbon stock. The sharp reduction in forest area by 2127 ha (11%)

during 1989–1999 may be attributed to legalized commercial exploitation of mature trees by

the GoAJK to earn revenue coupled with huge dependency of rural communities for timber

and fuelwood to meet their needs for construction and heat /cooking at household level. The

increase in population also led to increased built up areas in town and villages while forest

land encroachment may had a negative impact on forest area and land cover. The land cover

changes have been reported to be influenced by the increase in human population [52] such

as in Ethiopia, population growth has been reported a dominant cause of land cover change in

comparison to other factors [53]. However, regain in forest cover during 1999–2018 can be

attributed to a complete ban imposed by the GoAJK on cutting of green trees and launching of

reforestation and social forestry programmes/projects in the State. During the study period,

State forest department established plantations on 20,442 ha under different development

projects with significant success. This not only enhanced protection of existing forests /regen-

eration but planting on communal and private lands was encouraged through community

organizations and mass awareness. Moreover, from response to a questionnaire distributed

Fig 8. Classified vegetation fraction (VF) image (2018).

https://doi.org/10.1371/journal.pone.0226341.g008
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among the local dwellers as a part of social survey, it was evident that many other social and

economic factors have played a notable role in restoring deforestation losses and improving

the forest cover. It indicates that family income has increased during last two decades and it

has resulted into uplift of living standards. It was revealed that migration trend from villages to

big cities like Rawalpindi/Islamabad in seek of quality health and education increased over last

two decades and it helped reduce burden on fuel wood and timber consumption. Majority

of the respondents were of the view that provision of electricity lead to reduced usage of fuel

wood and access to fuel wood and timber alternatives became very convenient with the exten-

sion of link roads network. It is believed by 68% of respondents that lowering trend in livestock

rearing that declined during last two decades has contributed significantly towards forest

cover improvement and that growing trees on private lands in order to meet fuel wood and

fodder requirements has increased too over this period. The gain in forest cover substantiates

the success of these projects which have been able to convince the local forest dependent

communities to promote social/farm forestry and to switch over to alternate sources or substi-

tutes of fuel wood and timber. The areas of vegetation gain and loss can be seen highlighted in

geo-linked Landsat images of 1989 and 2018 (Fig 14) and a spectral change image produced

through a band composite of Landsat images (Landsat TM -1989 and Landsat OLI -2018)

Fig 9. Vegetation cover change map produced using image overlay technique.

https://doi.org/10.1371/journal.pone.0226341.g009
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enables to view the places of vegetation gain, loss and no change (Fig 15) during the study

period.

It was encouraging to find that this also follows the recently revealed global trend through

the Global Forest Resources Assessment 2015 that during 1990–2015 deforestation has slowed

and afforestation has increased globally [54]. Moreover, it is recognized now that the involve-

ment of local stakeholders towards owning and managing forests is increasing [55] and the

importance of forest management as a source for combating climate change is also realized

worldwide [56].

Fig 10. Class-class change map (1989–2018) produced using cross tabulation technique.

https://doi.org/10.1371/journal.pone.0226341.g010

Table 2. Calculated forest area, forest cover % age and carbon stock.

Year Forest Area (ha) Cover (%age) Total Carbon Stock (Kt)

1989 19701 41.82 1418.47

1993 18523 39.32 1333.56

1999 17574 37.31 1265.32

2005 17792 37.77 1281.02

2010 18447 39.16 1328.18

2015 19015 40.37 1369.08

2018 20262 43.01 1458.86

https://doi.org/10.1371/journal.pone.0226341.t002
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5. Conclusion

Remote sensing is a dynamic technological advancement which provides fast, economical

and reliable information necessary for spatiotemporal assessment, planning and manage-

ment of complex natural resources, especially forests. Our endeavor to estimate intervallic

forest cover and carbon stock changes for a Subtropical Pine Forest in AJK confirmed

an average biomass of 0.181 Kt/ha with corresponding carbon value of 0.091 Kt/ha. Our

assessment shows a drastic reduction in forest area by 2127 ha (11%) over a period of one

decade (1989–1999) attributed to commercial exploitation of forests at State level, urban

built up, heavy dependency of rural communities on forests for timber and fuelwood

along with increase in population and forest land encroachment. However, a net gain of

2688 ha in forest area was observed during 1999–2018 attributed to ban on cutting of

Fig 11. Trend of change in forest area from 1989–2018.

https://doi.org/10.1371/journal.pone.0226341.g011

Table 3. Carbon stock changes and corresponding emissions/sequestrations.

Time period Change in Forest Area (ha) Stock Difference (Kt) Nature of Stock Change Average.CO2 Emissions/Sequestrations (Kt)

1989–1993 1178 84.81 -ve 310.40

1993–1999 949 68.32 -ve 250.05

1999–2005 218 15.69 +ve 57.42

2005–2010 655 47.16 +ve 172.60

2010–2015 568 40.89 +ve 149.65

2015–2018 1247 89.78 +ve 328.59

https://doi.org/10.1371/journal.pone.0226341.t003

Table 4. Descriptive statistics min, max, range, mean, Std. Error and Std. deviation of change in forest area and forest carbon stock.

N Range Minimum Maximum Mean Std. Deviation

Statistic Std. Error

Change in Forest Area 6 1029.00 218.00 1247.00 802.5 161.08 394.57053

Stock Difference 6 74.09 15.69 89.78 57.7750 11.59790 28.40893

Valid N (list wise) 6

https://doi.org/10.1371/journal.pone.0226341.t004
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green trees, mass awareness and planting of 20,442 ha under different reforestation and

social forestry programmes/projects. We recommend the State forest department to

incorporate information regarding carbon stock and CO2 emissions/sequestrations in

future inventories through assessment using remote sensing especially Landsat data

archive. This information can prove to be very useful while preparing, implementing and

monitoring the forest resources development projects intended to protect and conserve

forests, check encroachments on forest land and enhance forest carbon stocks with ulti-

mate aim of reducing emissions and increasing sequestrations. We also stress to further

promote reforestation and social forestry projects and minimize communities’ depen-

dency on forests through increase in provision of wood substitutes especially for construc-

tion and fuelwood.

Fig 12. Changing trend in forest carbon stock from 1989–2018.

https://doi.org/10.1371/journal.pone.0226341.g012

Fig 13. Changing trend in CO2 emissions & sequestrations from 1989–2018 with associated changes in forest

carbon stock.

https://doi.org/10.1371/journal.pone.0226341.g013
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