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Abstract

The aim of our study was to evaluate the flock sensitivity and specificity of fecal gPCR and
serum ELISA using pooled samples for screening paratuberculosis in French sheep.

Using individual feces with low or high gqPCR Ct values from ewes sampled in 14 infected
flocks, a total of 555 pools of size 5, 10 and 20 were created by diluting individual materials
in negative feces and analysed using a commercial IS900 gPCR kit. The relative perfor-
mances of pooled serum ELISA analysis were evaluated based on the analysis of 181 differ-
ent pools of size 5 and 10, composed of individual serum samples of various individual S/P
values. Results showed that for pools of size 5, 10 or 20, individual fecal samples with low
Ct values were invariably detected. Conversely fecal samples with high Ct values were
associated with a lower detection rate in both pools of size 5 (87.0% to 90.0%), 10 (63.0% to
70.7%) and 20 (46.7% to 60.0%). After lowering the decision threshold to 25% and 15% for
serum pools of size 5 and 10 respectively, the pooled serum ELISA relative sensitivity ran-
ged between 62.2% and 100.0% depending on the composition of the pools.

Finally, a simulation study was carried out to evaluate the performances of 16 screening
strategies at flock level, with varying pool size (5 to 20) and number (5 to 60). The use of
pooled serum ELISA led to very false positive detection rate ranging between 37.6% and
91.8% in paratuberculosis free flocks and prevents its further use in that context. For infec-
tion prevalence < 5%, the flock sensitivity based on pooled fecal gPCR ranged between
39.0% (5 pools of size 10) and 99.9% (300 sampled individuals, with pools of size 5,10
or20), and was always above 93% when the infection prevalence was greater or equal to
15%. We conclude that pooled-fecal gPCR but not pooled-serum ELISA could be a useful
tool to detect sheep flocks infected with paratuberculosis.

Introduction

Paratuberculosis is a chronic infectious disease affecting the digestive tract of ruminants,
caused by Mycobacterium avium subsp. paratuberculosis (Map). Correct classification and esti-
mation of the prevalence in infected herds/flocks are important to provide guidance for con-
trol programs, including vaccination and/or restrictions on animal movements. Flock or herd-
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testing strategies based on individual milk or serum ELISA and fecal culture have been
assessed in several studies but appear expensive [1-3]. Furthermore, the lack of sensitivity of
individual tests, especially for the detection of sub-clinically infected animals [4,5], leads to
inaccurate negative predictive value regarding the individual infectious status. In sheep pro-
duction, the main objective of paratuberculosis surveillance programs is usually to prove free-
dom of disease or to estimate prevalence rather than to identify individual infectious animals.

Pooled sample testing (PST), proposed initially for screening syphilis in US soldiers during
World War II [6], has become increasingly popular to monitor paratuberculosis in herds/
flocks as it allows substantial savings in laboratory costs [7,8]. For detection of Map, PST was
originally applied to faecal culture by physically combining and mixing a number of individual
fecal samples [7,9,10] and has been extended to polymerase chain reaction (qQPCR) testing
[11,12]. Bulk tank milk ELISA [13] or qPCR [14,15] and environmental sampling, including
manure pit [16], have also been proposed, mostly in dairy cattle, and can be viewed as extreme
pooling strategies [17].

However, whatever the approach, combining and mixing individual samples may lead to a
drop in the concentration of Map or antibodies toward Map to a level that cannot be detected
[18], making the sensitivity of the pooled-sample approach lower than the approach based on
individual testing. Therefore, when evaluating the diagnostic accuracy of pooled-sample based
herd/flock-testing, the influence of the dilution effect on pool sensitivity is an essential prereq-
uisite. Furthermore, depending on the surveillance purposes, the best testing strategy (i.e.
number and pool size per herd/flock) may differ and should be evaluated.

The analytical sensitivity of pooled-sample approach based on Map detection may vary
according to sample quality, pooling and mixing methods, culture media [19], DNA extraction
methods, DNA target and qPCR systems [20-22]. Similarly, the accuracy of bulk tank milk
antibody detection may depend on the ELISA kit used or to the decision threshold applied
[13,23]. Finally, it is unwise to simply extrapolate already published estimates to any other
method. Most of all, the intensity level of individual samples composing the pool (i.e. number
of Map or antibody titers) may have a strong influence on the pool result [9,24]. To our knowl-
edge, the detection of antibody response toward Map based on pooled serum samples has not
been published yet. This approach has however already been evaluated for other sheep or por-
cine diseases [25,26] and showed that decision thresholds should be re-evaluated for different
pool sizes to allow a satisfactory detection rate.

In this context, we aimed at evaluating the flock sensitivity and specificity of pooled fecal
qPCR and pooled serum ELISA for screening ovine paratuberculosis. In an experimental
study, we first evaluated the effect of dilution on the sensitivity and specificity of pooled fecal
or serum testing. Based on this experiment and on the distribution of individual results in
commercial infected and non-infected flocks, we conducted a simulation study in order to
evaluate the sensitivity and specificity of various screening strategies at the flock level. Finally,
we looked at whether a crude estimation of the true within flock prevalence of infection could
be achieved for these different screening strategies.

Material and methods
Flocks, animals and biological samples

The diagnostic test results from a cross-sectional study were previously published by the study
investigators [27]. Briefly, 1197 individual serum and fecal samples were collected from 2- to
3-year-old sheep without clinical signs of paratuberculosis in 14 purebred Causse du Lot closed
meat sheep flocks where paratuberculosis infection was endemic. Fecal excretion was deter-
mined using qPCR based on IS900 sequence detection, and serology was performed using a
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commercial ELISA. Beyond the binary (positive/negative) test results that were analysed in
this study, we also evaluated the distribution of the quantitative responses for serum ELISA (i.e
sample to positive ratio, S/P) and fecal qPCR (i.e. cycle threshold, Ct) across the sampled
population.

Blood and fecal samples were also collected from 387 ewes in three flocks known to be free
from paratuberculosis (closed purebred Lacaune flocks) using the same sampling methods.

Blood and fecal samplings occurred as part of routine veterinary examination within the
local voluntary paratuberculosis surveillance plan and were performed by accredited veteri-
nary practitioners. This study was carried out in strict accordance with the recommendations
established by the European Commission Directive 2010/63/UE. All animals used in this study
were handled in strict accordance with good clinical practices and all efforts were made to
minimize suffering. All animal owners gave written consent for their animals’biological sam-
ples to be used in this study.

Pooled-sample analysis

We hypothesized that pooled-sample testing was sensitive to the quantity of Map DNA or of
antibodies against Map presents in individual fecal / serum samples that composed the pool,
i.e. that the effect of dilution was less detrimental for pooled-sample sensitivity when samples
were strongly test-positive at the individual level. For practical reasons, only a limited number
of serum and fecal samples could be included in the experiment, and simplifications were
made in order to assess the effect of dilution. The continuous test results were therefore discre-
tized in different ordered response categories. Note that for both serum ELISA and fecal
qPCR, these response categories did not rely on established biological knowledge but were
rather driven by practical considerations related to the pooled-sample analysis and the design
of the simulation study.

For serum ELISA the decision threshold of S/P>45% and S/P>55% are defined by the
manufacturer to distinguish between negative, doubtful and positive results, respectively.
Based on these cut-off values, individual S/P results were arbitrarily separated in four response
categories as follows: S/P < 22.5%: negative low (LN); [22.5% - 45.0%]: negative high (NH);
[45.0% - 90.0%]: positive low (PL) and S/P >90.0%: positive high (PH).

For fecal qPCR, two response categories were used, based on the distribution of Ct values of
the samples recovered in the 14 investigated flocks infected with paratuberculosis (see below).
We arbitrarily classified samples with Ct < 30 as “highly contaminated” (HC) with Map and
those with the Ct > 30 as “lowly contaminated” (LC).

Pooled serum ELISA

Pools of size 5 and 10 were manually constituted in duplicate using 20l of each individual
serum sample. Samples with individual S/P value below 22.5% were used as negative diluent.

To evaluate the ability of pooled serum ELISA to correctly retrieve pools containing at least
one individual ELISA positive sample, pools containing either one "positive high (PH)", 1 "pos-
itive low (PL)" and 2 "positive low" individual sample(s) were investigated. Conversely, to eval-
uate whether pooled serum ELISA could yield false positive results, we constructed pools
containing either only "negative low (NL)" and 1 up to 3 "negative high (NH)" individual sam-
ple(s). Overall, using 13 PH, 37 PL, 41 NH, and 156 NL unique individual samples, 181 pools
were created for each pool size.
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Pooled fecal gPCR

Feces from 6 individual ewes with Ct < 30 (range 20.42-28.12) and 9 with Ct > 30 (range
34.8-41.7) from the investigated flocks were used to build the pools. Confirmed qPCR-nega-
tive fecal samples collected from uninfected animals in a research flock known to be free of
paratuberculosis (closed purebred Lacaune flock) were used for creation of pools. Before pool-
ing, positive feces from each individual ewe were mixed thoroughly. Three grams of each posi-
tive fecal sample were mixed manually in a sterile plastic bag until complete homogenization
with either 12, 27 or 57 grams of negative feces. The same was also done using 10 grams of pos-
itive feces and either 40, 90 or 190 grams of negative diluent. Thus, the pools contained positive
and negative feces in a ratio of 1:4, 1:9 or 1:19 which is equivalent to creating pools of size 5, 10
and 20. A total of 195, 210 and 150 pools of size 5, 10 and 20, respectively, were created to eval-
uate the relative sensitivity of pooled fecal gPCR (PRSeypcr). In addition, 40 pools containing
only negative feces were constructed to evaluate the specificity of pooled fecal PCR
(PRSpgpcr)-

Laboratory testing

A commercial serum ELISA (IDEXX paratuberculosis screening kit, batch 5074, IDEXX,
Montpellier, France) was applied to individual or pooled serum samples using an overnight
incubation protocol following the manufacturer’s instructions, as previoulys described [27].

Individual and pooled fecal samples were submitted to a commercial QPCR protocol target-
ing the IS900 DNA fragment of Map (Adiafilter and Adiavet ParaTB Real Time, BioX, Roche-
fort, Belgium) using 10 grams as working material, as previously described [27].

Relative accuracy of pooled-sample analysis. The relative sensitivity of pooled serum
ELISA (PRSeg11s4) and pooled fecal gPCR (PRSeqpcr) were defined as the probability of pools
containing at least one test-positive individual sample that yielded a positive result, i.e. Pr(pool
test +| > 1 test positive individual sample). The pool relative specificities PRSpgr 154 and
PRSpgpcr Were defined as the proportion of pools containing only test-negative individual
samples that yielded a negative result, i.e. Pr(pool test —| only test negative individual samples).

For serum ELISA, when determining whether pools are test positive or negative, it can be
beneficial to establish alternative cut-offs that are lower than those recommended by the man-
ufacturer. Indeed, pooling method dilutes test-positive individual samples, causing a lower sig-
nal that requires a lower cut-off to be regarded as positive. However, choosing very low cut-
offs may lead to false positive results in true negative pools, especially when several NH sam-
ples are pooled together. Therefore, PRSegy1s4 and PRSpgr1s4 estimates were computed and
compared for different decision thresholds ranging from S/P>10% to S/P>45%.

For our experiment, we used individual qPCR positive fecal samples coming from a few
number of independent ewes (n = 15) to build numerous fecal pools. These pools may there-
fore be highly correlated. To check whether the ewe effect was influencing, mixed logistic
regression models were fitted with an ewe random term that allowed accounting for the clus-
tering of pools at the ewe level. The response variable was the pool test result (positive/nega-
tive). The amount of indivivual feces used to build the pool (3 or 10 grams), the pool size (5, 10
or 20) and the interaction between the two variables were treated as fixed effects. Separate
models were fitted for pools built with HC and LC samples.

Flock level sensitivity and specificity of pooled-sample testing. An individual-based
simulation study was carried out to estimate the flock-sensitivity (FPSe) and flock-specificity
(FPSp) of pooled fecal qPCR and pooled serum ELISA in sheep in simulated flocks with a
range of infection prevalence levels and under different sampling and pooling scenarios. We
also looked at whether a crude estimation of the true within flock prevalence of infection could
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be achieved for these different screening strategies. For ease, some results from the experimen-
tal study were merged when they were similar.

Paratuberculosis infected and uninfected flocks with 300 sheep were simulated with infec-
tion prevalence ranging from 0% (paratuberculosis free flocks) to 30%. The number of ewes
sampled in each flock was 50 or 100. The sizes of 50 corresponds to the minimal number of
sheep to sample and test each year in France for the national mandatory brucellosis surveil-
lance plan. We also investigated scenarios where all animals within flocks were sampled (i.e
n = 300) and submitted to pooled serum ELISA or pooled fecal gPCR. Although this situation
is unlikely to occur in France due to logistical and cost constraints, it allowed us in estimating
the lowest infection prevalence that could be detected based on pooled-sample analysis for this
flock size.

The simulation program comprised 3 independent compartments, hereafter named the
flock, individual and pool compartments.

In the flock compartment the number of truly infected and truly uninfected sheep within a
flock was determined, given the flock size and the true infection prevalence. For each animal,
the binary (positive/negative) status of its serum or fecal sample was then modelled in the indi-
vidual compartment, given the sensitivity (ISegrisa, ISeqpcr) and specificity (ISpgrisa, ISpqpcr)
of diagnostic tests applied at the individual level. For infected flocks, these estimates were
derived from Mathevon et al. (2017) [27] in which the diagnostic accuracy of the IDEXX
serum ELISA and the ADIAVET fecal qPCR were estimated in sub-clinically infected sheep
using Bayesian modeling. Interested readers are referred to Mathevon et al. (2017) [27] for fur-
ther details about the estimating procedure. For paratuberculosis-free flocks, the specificity of
serum ELISA test at the individual level was computed based on results obtained in the present
study. In contrast to serum ELISA, fecal gPCR at the individual level was assumed to be perfect
in paratuberculosis-free flocks. Given individual binary test results, each individual was then
allocated to a serum ELISA (negative, PL, PH) and fecal qPCR (LC, HC) response category,
based on the probability distribution functions observed in the 14 flocks infected and the 3
paratuberculosis-free flocks investigated in the present study.

Finally, random sampling of individual sheep, random creation of pools and pool analysis
were modelled in the pool compartment of the simulation program. For a given fecal pool
(respectively serum pool), the probability that it yielded a positive gPCR (respectively ELISA)
result was modelled based on the relative diagnostic performances which were estimated in
the experimental part of our study.

For each combination of infection prevalence, number and size of pools, 1000 flocks were
simulated, each being sampled over 1000 iterations. For each iteration, the number of pools
that yielded a positive test result was recorded for each simulated flock and a flock was consid-
ered to be positive when a single pool was found positive. Flock sensitivities of pooled serum
ELISA (FPSeg11sa) and of pooled fecal gPCR (FPSeqpcr) were computed as the proportion of
infected flocks that yielded at least one positive pool result and flock specificities (FPSpgy1sa
and FPSpgpcr) as the proportion of paratuberculosis-free flocks that yielded no positive pool
result at all. Finally, the overall FPSeg; 155, FPSeqpcr, FPSPErisa and FPSpgpcr, number of posi-
tive pools and 95% confidence interval were calculated using the median value and the 2.5%
and 97.5% percentiles of the estimate distributions over the 1000 iterations.

The schematic representation of the simulated sampling approach is summarised in Fig 1
for fecal qPCR and is provided as additional file S1 Fig for serum ELISA. Details on input
parameters are also provided in additional file S2 Table.

Statistics. Data analysis and simulations were performed using the R software [28]. Fre-
quencies and detection rates were compared using the Fisher exact test. Mixed logistic
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regression models were fitted using the glmer function from the Im4 package [29]. Simulations
were performed using package “simulator” [30].

Results
Individual test result distributions

The distributions of quantitative results for individual serum ELISA (S/P values) and fecal
qPCR (Ct) are shown in Fig 2 for the 14 infected and the 3 paratuberculosis-free flocks. More
detailed results are provided at the flock level in S2 Table.

Individual serum ELISA results. Overall, at the S/P > 45% decision threshold, 93 indi-
vidual samples were considered as positive in infected flocks, with 13 samples (14.0%) classi-
fied as “Positive High” (PH, S/P value > 90%). At the flock level, the ELISA-based individual
apparent prevalence ranged between 1.1% and 16.5% (median value 7.2%). PH serum samples
were found in only 7 out of 14 infected flocks. Among the 1104 negative results, 106 (9.6%)
had S/P values between 22.5% and 45.0% and were regarded as “Negative High” (NH). The
proportion of NH samples amongst negative one differed between flocks (range 3.1-26.8%).
Finally, over the 211 individual serum ELISA results available in paratuberculosis-free flocks, 2
“Positive Low” (PL) samples were found in two different flocks while 23 (10.7%) negative
results had NH values.

Individual fecal qPCR results. No positive result was found in the 387 ewes sampled
from the three paratuberculosis free flocks. In infected flocks 105 samples (8.78%) yielded a
positive gPCR response, with intra-flock individual apparent prevalence ranging from 0.0% to
29.1% (first quartile 3.0%, third quartile 12.8%). Among those samples, only 6 (5.7%) with
Ct < 30 were found in 5 different flocks and were classified as “Highly Contaminated” (HC)
(Fig 2).

Relative performances of pooled-sample analysis

Pooled serum ELISA. As expected, pooled-serum ELISA was strongly influenced by both
pool size and pool composition. Results are summarized in Tables 1 and 2 as numbers of pools
that yielded a positive response at different chosen S/P decision thresholds for pools of size 5
and 10, respectively. Retaining the S/P>45% threshold that is applied to individual serum sam-
ples led to poor detection rates, especially when only one PL serum sample was incorporated
(21.6% and 0% for pool size 5 and 10, respectively). Lowering the decision threshold improved
the detection rate, but choosing very low cut-off values led to false positive results. For pools of
size 5, the S/P>25% threshold was associated with only negative results for all investigated
combinations of NL or NH individual samples (PRSpgr1sa = 100.0%) and results were there-
fore merged in a “negative” group for the simulation study.

This decision threshold allowed for moderate to high detection rates (PRSegyjsa = 62.2%
for pools containing one PL sample and PRSeg; 154 = 100% for pools with 2 PL samples or 1
PH sample). For pools of size 10, almost identical performances were obtained when applying
the S/P>15% decision threshold (Table 2). The performances associated to these decision
thresholds were therefore selected for the simulation study and were hereafter assumed to be
equal for both pool sizes.

Pooled fecal qQPCR. None of the 40 truly-negative fecal pools yielded a positive gPCR
result, indicating that the analytical specificity of pooled fecal QPCR was perfect (PRSpgpcr =
100%).

The mixed logistic regression models fitted to pools containing one Highly Contaminated
(HC) sample did not converge because all pools except one gave a positive gPCR result (see
below). When fitted to pools built with one Lowly Contaminated (LC) sample, the ewe random
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Fig 1. Schematic representation of the simulation study approach for pooled-fecal qPCR. ISe pcr: individual sensitivity; ISpgpcr: individual
specificity; PRSeqpcr: pooled-sample relative sensitivity for fecal QPCR; PRSpgpcr; pooled-sample relative specificity for fecal qPCR; LC sample:
Low Contaminated (Ct > 30) fecal sample; HC sample: Highly Contaminated (Ct < 30) fecal sample.

https://doi.org/10.1371/journal.pone.0226246.9001

effect was not significant (based on the likelihood ratio test), and the PRSegpcr estimates were
only marginally modified (results not shown). So for simplicity and ease of comprehension,
the crude PRSe pcr estimates, assuming no ewe effect, are presented.

All except one of the 367 pools constructed by including a HC sample were detected by
qPCR, whatever the pool size (5, 10 or 20) or the amount of feces (3 or 10 grams) used to con-
struct the pools (Table 3). Conversely, 20/23 (87.0%) and 45/50 (90.0%) pools of size 5 contain-
ing one LC sample and constructed with 3 and 10 grams of positive feces were detected,
respectively. Pools of size 10 and 20 containing one LC sample were even less frequently
detected, with 46.7% to 70.7% of positive results (Table 3). For pools containing one LC sam-
ple, increasing the pool size from 5 to 10 or 20 lead to a significant decrease in detection rate
(p=0.0019 and p = 0.0001, respectively), which was not the case for pools containing one HC
sample (p = 0.4939 and p = 1, respectively). The detection rates between pools of size 10 and
20 did not differ significantly (p = 0.1839). Finally, it is noteworthy that detection rates were
not statistically different (Fisher exact test, all p > 0.05) whatever the individual fecal amount
(3 or 10 grams) used to construct the pools, indicating that pooling higher amounts of feces
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Fig 2. Distribution of individual serum ELISA S/P values and fecal qPCR Ct results in 14 paratuberculosis infected and 2 paratuberculosis-free sheep flocks. A:
fecal gPCR Ct in infected flocks; B: ELISA S/P values in infected flocks; C: ELISA S/P values in paratuberculosis-free flocks.

https://doi.org/10.1371/journal.pone.0226246.9002

did not lead to substantial improvement of sensitivity. Results obtained whith 3 and 10 grams

were therefore merged for the simulation study.

Flock level sensitivity and specificity of pooled-sample testing. The proportion of flocks
that yield at least one positive pool result given the infection prevalence is shown in Fig 3 for
different screening strategies. Not surprisingly, the flock sensitivity of pooled serum or pooled
fecal screening strategies increased with the within-herd prevalence of infection and the

Table 1. Pooled-serum ELISA results for pools of size 5.

Pool composition*

5NL
1 NH
2 NH
3 NH
1PL
2PL
1 PH

# tested

30
41
21
10
37
21
21

>20%

28
21
21

# positive for different S/P (%) decision thresholds

>25%

0

0

0

0
23
21
21

>30%

0
0
0
0
21
21
20

>35

0

0

0

0
19
20
20

% >45%

o |© |©o |O

* pool composed with serum samples of various S/P values at the individual level. NL: Negative Low: S/P < 22.5%; NH: Negative High: 22.5% < S/P < 45.0%; PL:

Positive Low: 45.0% < S/P < 90.0% and PH: Positive High: S/P > 90.0%.

Number of pools that were deemed to be positive given the S/P decision threshold.

https://doi.org/10.1371/journal.pone.0226246.t001
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Table 2. Pooled-serum ELISA results for pools of size 10.

Pool composition* # tested # positive for different S/P (%) decision thresholds
>10% >15% >20% >25% >45%
10 NL 21 1 0 0 0 0
1 NH 38 7 0 0 0 0
2 NH 27 5 0 0 0 0
3NH 16 3 0 0 0 0
1PL 37 32 24 17 14 0
2 PL 21 21 21 20 20 8
1 PH 21 21 21 19 19 11

* pool composed with serum samples of various S/P values at the individual level. NL: Negative Low: S/P < 22.5%; NH: Negative High: 22.5% < S/P < 45.0%; PL:
Positive Low: 45.0% < S/P < 90.0% and PH: Positive High: S/P > 90.0%.
Number of pools that were deemed to be positive given the S/P decision threshold.

https://doi.org/10.1371/journal.pone.0226246.1002

number of animals sampled. Whatever the sampling strategy, very high detection sensitivities
(> 93.0%) were found for both pooled-serum ELISA and pooled-fecal qPCR for infection
prevalence greater or equal to 15%. For low infection prevalence (< 5%), the flock sensitivity
of pooled-sample serum ELISA (FPSeg;1s4) was still high (point estimates from 88.2% to
100.0%) and greater than the one associated with pooled-sample fecal qPCR (FPSegpcr
between 39.0% and 99.9%). These very high detection rates for serum ELISA based screening
strategies were however partially due to a lack in specificity, as shown by false positive detec-
tion rate in paratuberculosis-free flocks, ranging from 37.6% (5 pools of 10 samples) to 91.8%
(60 pools of 5 samples). By construction, assuming a perfect specificity of fecal qPCR at the
individual and pool level in paratuberculosis free flocks led to no false positive result.

For a given number of sampled animals (i.e. 50, 100 or 300), pooled-serum ELISA yielded
virtually the same results whatever the pool size (5 or 10). For pooled-fecal qPCR, the same
conclusion was drawn when infection prevalence was above 10% and/or when all animals
within the flock were sampled. Conversely, when infection prevalence was below 10% and

Table 3. Pooled-fecal qQPCR results for the detection of Map DNA.

Pool composition* Individual fecal amount (g) Pool size # positive / # tested % positive

1 HC 3 5 62 /62 100.0
10 65/ 65 100.0

20 60/ 60 100.0

10 5 59 /60 98.3

10 60/ 60 100.0

20 60/ 60 100.0

1LC 3 5 20/23 87.0
10 17 /27 63.0

20 9/15 60.0

10 5 45/ 50 90.0

10 41/58 70.7

20 7/15 46.7

*HC: Highly Contaminated fecal sample, qPCR Ct < 30; LC: Lowly Contaminated fecal sample, gPCR Ct > 30.

https://doi.org/10.1371/journal.pone.0226246.t003
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Fig 3. Proportion of flocks with at least one test-positive pool, according to number and size of tested pools and simulated
infection prevalence. A (top): screening strategies based on pooled-fecal gPCR; B (bottom): screening strategies based on pooled-serum

ELISA. Red: 50 sampled animals; green: 100 sampled animals; blue: 300 sampled animals.

https://doi.org/10.1371/journal.pone.0226246.9003

only 50 or 100 animals were sampled, testing small pools was associated with a better flock sen-

sitivity (difference range for FPSeqpcg: 4.5% to 17.2%).

Estimation of within flock infection prevalence using pooled-sample testing. The num-
ber of test-positive pools was also recorded for each screening strategy. Results are shown in
Fig 4 for pooled fecal gPCR (pools of size 5 and 10 up to 100 sampled sheep). Results for other
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screening strategies (i.e. 5 pools of size 20, 15 pools of size 20, 30 pools of size 10 or 60 pools of
size 5) are provided in S2 and S3 Figs for pooled-fecal qPCR. Clearly screening strategies based
on the analysis of 50 animals were not informative enough to distinguish between the different
simulated intra-flock infection prevalences. For instance, 1 fecal qQPCR test-positive over 5
pools of 10 samples could be obtained for infection prevalence of 1% to 20% with probability
ranging from 14% to 41% (Fig 4 panel B). Increasing the number of sampled animals (10 pools
of 10 samples, Fig 4 panel D) led to slightly more precise estimation of the within flock infec-
tion prevalence. Under this screening strategy, getting no test-positive result only ensured with
a high confidence level that the true infection prevalence is less than 10%, while when 5 test-
positive pools over 10 were observed, the infection prevalence was likely to be higher than 5%.
Finally testing 30 pools of 10 fecal samples or 60 pools of 5 fecal samples (S2 and S3 Figs) was
expectedly associated with the more precised within-flock infection prevalence estimates. In
these settings, getting no or only one test-positive pool associated with a within-flock infection
prevalence lower or equal to 3% in most cases.

Discussion

The main objective of our study was to evaluate the performances of screening strategies based
on serum or fecal pooled samples for detection of sheep flocks infected with paratuberculosis.
In the absence of available estimates from the literature, it was appropriate to perform a labora-
tory evaluation of pooled-sample analysis for both serum ELISA serology and fecal qCPR.

Our estimates of the pool relative sensitivity (PRSe) and specificity (PRSp) are different
from the diagnostic pool sensitivity (PSe) and specificity (PSp) defined by Christensen and
Gardner (2000) [31] as PSe = Pr(pool test + | pool I+) and PSp = Pr(pool test —| pool I-)
respectively. In the foregoing, “pool I+” means that a pool contains at least one individual sam-
ple collected from a truly infected animal, and “pool I-” means that a pool contains individual
samples coming only from uninfected animals. In the meaning of these authors, PSe and PSp
refer to the ability of pooled-sample testing to correctly detect individual animals of a given
infectious status (infected, uninfected) [5] within a pool. In fact, due to the long and complex
physiopathology of the disease, some infected or infectious individuals may not shed a detect-
able amount of Map in their feces or have mounted a detectable antibody response toward
Map at the time of sampling. Conversely some truly uninfected animals may yield positive
individual test results, for instance due to an imperfect analytical specificity or because the
presence of passively shed MAP in their feces [32,33]. Our estimates PRSe and PRSp only refer
to the ability of pooled-sample analysis to correctly classify pools containing individually tested
positive or negative samples (whatever the true status of the animal they are coming from). In
other words, we evaluated the probability of positive and negative agreement between individ-
ual and pooled-sample testing for different pool compositions and sizes.

Our assumption was confirmed that the individual level of response had an influence on
the pool detection rate for both ELISA and fecal qPCR. Indeed, the detection was close or
equal to 100% for pools containing a strongly positive serum or fecal sample, while it was
lower, but still acceptable (between 46.7% and 89.0%), when only one low positive sample was
included. The detection sensitivity for gPCR applied to 5 to 20-feces pools containing a low
positive sample (Ct > 30) was similar or greater than the one obtained for pooled fecal culture
(PFC) using BACTEC 12B or 7H10 media in sheep with the paucibacillary form of paratuber-
culosis (sensitivity between 15% and 60%) [9,24] or Herrold’s egg yolk (HEY) agar of liquid
media in low shedder cattle (sensitivity between 20% and 63%) [34,35]. However, comparison
between these PFC relative sensitivity estimates and those obtained for pooled fecal gPCR is
difficult because fecal culture was not performed in our study and the classification of our fecal
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Fig 4. Number of qPCR-positive fecal pools detected, according to number and size of tested pools and simulated infection
prevalence. A: 10 pools of size 5; B: 5 pools of size 10; C: 20 pools of size 5; D: 10 pools of size 10. For a given simulated infection
prevalence, figures in cells give the mean proportion of flocks that yield a given number of gPCR-positive fecal pools.

https://doi.org/10.1371/journal.pone.0226246.9004

samples as originating from paucibacillary/low shedder or multibacillary/ high shedder sheep
was therefore not possible. In accordance to other studies [12] our results however show that
pooled fecal qPCR might be a useful alternative to fecal culture, because of its rapid turn-
around time for test results and lower susceptibility to sample freezing. Note, however, that the
extrapolation of our results to other gPCR methods should be done with caution, as
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performances of sample preparation, DNA extraction and amplification steps may highly vary
between qPCR kits [22,36]. In particular, the use of a microfiltration and concentration step
for fecal samples preparation and the use of magnetic bead isolation before DNA extraction
might may be recommended to enhance detection sensitivity [37,38]. One other practical issue
that may be encountered is the quality of fecal homogenate than is submitted to culture or
qPCR analysis. Map is known to aggregate in clusters within feces [39] and, for stochastic rea-
sons, this lack of homogeneity of distribution could explain the lower detection rate generally
observed with lowly contaminated fecal samples from both cattle and sheep [9,24,34,35].
Moreover, compared to cattle, sheep feces are excreted in dry and firm pellets that are difficult
to manually break apart and homogenize. Several approaches could be used to tackle this
issue, including the use of a stomacher system with added saline [40] or applying pooling
methods that allow for higher feces volumes submitted to DNA extraction [20]. In our experi-
ments we did not find any difference between pools built with 3 or 10 grams of individuals
fecal samples, indicating that pooling 3 grams of individual feces, which is easier from a practi-
cal point of view, would be efficient enough.

To evaluate the relative performances of pooled serum ELISA, we lowered the cut-off value
to compensate the dilution of positive samples. This approach has already been proposed for
other disease in ruminants [25,41] or pigs [26] to improve sensitivity. As the lack of specificity
is the main concern when screening a large population for a low-prevalence disease, we rede-
fined the S/P decision threshold to maximise the relative sensitivity of pooled serum ELISA
while keeping the pool relative specificity to 100%. This increase in sensitivity was mainly
observed for pools containing only one lowly positive (PL) individual sample. Using the newly
defined decision thresholds, the relative performances of pooled serum ELISA were compara-
ble to those obtained for pooled fecal gPCR and satisfactory enough from an epidemiological
point of view. As for qPCR, the extrapolation of our results to other ELISA commercial kits
should be done with caution.

The simulation study carried out allowed us to evaluate the performances of different
screening strategies based on pooled-sample testing, varying according to the number and size
of tested pools. Unlike Dhand et al. [24] who evaluated the sensitivity of pooled faecal culture
to detect Map excretion at the flock level, our target condition was animals infected with Map.
Indeed, samples entering the pools may come from infected sheep that have not yet mounted a
detectable antibody response towards Map or that do not shed enough bacteria in their feces
to potentially test positive on fecal qPCR at the timing of sampling. Thus, the true infection
prevalence is always higher than the apparent shedding prevalence or seroprevalence and the
probability that an individual fecal or serum sample (that may be incorporated in a pool) yields
a positive or negative test result needed to be estimated. To this end, the parameter estimates
for sensitivity were those evaluated in a previous study performed in the same infected flocks
[27]. Conversely, the input parameters used for the serum ELISA and fecal qPCR specificity at
the individual level, were different between infected and uninfected flocks. Although this
approach may appear unusual, it relies on several biological and epidemiological arguments.
Indeed, while the analytical specificity of qPCR was considered to be perfect in free flocks
based on results from Plain et al. [38], its epidemiological specificity was estimated to be 99.0%
[97.6-99.6] in infected flocks [27]. This lack of perfect specificity regarding the actually true
infected status of animals might reflect the potential of pass through of orally ingested organ-
isms by uninfected individuals in infected flocks [32,33]. Similarly, some animals exposed to
Map could develop a detectable serological response, without becoming permanently infected
[42]. For both fecal qPCR or for ELISA serology, these "false-positive" results reveal an actual
exposure to Map and the infection of the flock. In addition, the analytical specificity of the
ELISA serology is known not to be perfect because of possible cross-reactions with other
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environmental Mycobacteria [43-45], even if an absorption step with M. phlei is now com-
monly incorporated in commercial serum ELISA kits. This is also reinforced by the observa-
tion of 2 serum ELISA positive results in the paratuberculosis-free flocks investigated in the
present study. As a result, it seemed appropriate to use different specificity parameters for
infected and uninfected farms.

Applying a test with an imperfect specificity at the individual level (ISp) to numerous indi-
viduals leads to very low specificity at the flock level (FSp), because FSp = ISp”, with n the
number of animals tested [31,46]. Similar results would be obtained for serum pools, as shown
by the results of the simulations we performed. Therefore, to our point of view, the use of
pooled serum ELISA in a large-scale screening plan, is not recommendable in the absence of
confirmation analysis using more specific methods such as culture or faecal PCR [47]. These
confirmatory analyzes, however, would increase the overall cost of these screening strategies.

According to our simulation results, the use of QPCR on faecal mixtures appears very prom-
ising. Even if the detection sensitivity for farms with a low prevalence of infection (between 1
and 5%) is far from perfect (39-75%) when only 50 animals are tested, it increases very rapidly
when the number tested animals and / or the prevalence of infection increase. In addition, the
analysis of pools of size 20 or 10 instead of pools of size 5 would reduce the analytical costs of
screening strategies and would yield for similar or slightly lower performances when infection
prevalence is greater of equal to 10%. The only advantage of 5-fecal pools analyze would be the
opportunity of getting a more refined, albeit still crude, assessment of the prevalence of infec-
tion. Finally, the proportion of highly contaminated (HC) individual fecal samples was low in
our study (5.7% of qPCR-positive samples). Such a low prevalence of high-shedding animals
might reduce the flock-sensitivity of screening strategies based on pool fecal QPCR when the
infection prevalence is low, as those animals are the only one that can be invariably detected
using pooled fecal analysis. Proportion of high-shedding animals ranging from 20% to 30%
have be used in simulation studies by other authors [24,46], which might led to higher flock-
sentivity estimates.

Nevertheless, establishing a Johne’s Disease free status with a high confidence level
(> 95%), based on the analysis of fecal pools would require the sampling of a very large num-
ber of animals (all the animals present for a 300 sheep flock). The costs of analysis to be
incurred can therefore appear prohibitive. However, the accumulation of negative results in
the context of a longitudinal monitoring of smaller scale (50 to 100 animals tested per year)
but carried out over several years (3 to 6), could allow to achieve this goal, if the actual status of
the flock does not change.

Supporting information

S1 Fig. ELISA work flow: Schematic representation of the simulation study approach for
pooled serum ELISA. ISeg; 1s4: individual sensitivity; ISpgrsa: individual specificity; PSegy 1sa:
pooled-sample relative sensitivity for ELISA; PRSpg;1sa. pooled-sample relative specificity for
ELISA; LP: lowly positive serum: sample (45% < S/P < 90%); HP: highly positive serum sam-
ple (S/P > 90%).

(TTF)

S2 Fig. PCR all: Number of qPCR-positive fecal pools detected, according to number and
size of tested pools and simulated infection prevalence (all animals sampled, pool size 5
and 10). A: 30 pools of size 10; B: 60 pools of size 5. For a given simulated infection prevalence,
figures in cells give the mean proportion of flocks that yield a given number of qPCR-positive
tecal pools.

(TTF)
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S3 Fig. Pools size 20: Number of qPCR-positive fecal pools detected, according to number
of tested pools and simulated infection prevalence (pools of size 20). A: 5 pools of size 20; B:
15 pools of size 20. For a given simulated infection prevalence, figures in cells give the mean
proportion of flocks that yield a given number of gPCR-positive fecal pools.
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S1 Table. Simulation model: Assumptions and input parameters used for the simulation
study aiming at estimating the flock sensitivity and specificity of screening strategies based
on pooled fecal or pooled serum testing.
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$2 Table. Flock level distribution: Flock level distribution of serum ELISA S/P values and
fecal qPCR Ct in 14 sheep flocks infected with paratuberculosis and in 3 paratuberculosis
free flocks, France.
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