
RESEARCH ARTICLE

BPRF: Blockchain-based privacy-preserving

reputation framework for participatory

sensing systems

Hyo Jin JoID
1, Wonsuk ChoiID

2*

1 Department of Software, Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea, 2 Graduate

School of Information Security, Korea University, Seoul, Republic of Korea

* wonsuk85.choi@gmail.com

Abstract

Participatory sensing is gaining popularity as a method for collecting and sharing information

from distributed local environments using sensor-rich mobile devices. There are a number

of participatory sensing applications currently in wide use, such as location-based service

applications (e.g., Waze navigation). Usually, these participatory applications collect tre-

mendous amounts of sensing data containing personal information, including user identity

and current location. Due to the high sensitivity of this information, participatory sensing

applications need a privacy-preserving mechanism, such as anonymity, to secure and pro-

tect personal user data. However, using anonymous identifiers for sensing sources proves

difficult when evaluating sensing data trustworthiness. From this perspective, a successful

participatory sensing application must be designed to consider two challenges: (1) user pri-

vacy and (2) data trustworthiness. To date, a number of privacy-preserving reputation tech-

niques have been proposed to satisfy both of these issues, but the protocols contain several

critical drawbacks or are impractical in terms of implementation. In particular, there is no

work that can transparently manage user reputation values while also tracing anonymous

identities. In this work, we present a blockchain-based privacy-preserving reputation frame-

work called BPRF to transparently manage user reputation values and provide a transparent

tracing process for anonymous identities. The performance evaluation and security analysis

show that our solution is both practical and able to satisfy the two requirements for user pri-

vacy and data trustworthiness.

Introduction

With the ever-rapid development of mobile communication technologies in recent years, sen-

sor-rich mobile devices such as smartphones and tablet PCs have become common extensions

of everyday life. By leveraging this mobile environment, participatory sensing systems have

attracted a great deal of attention [1]. In participatory sensing, distributed users with mobile

devices collect data from surrounding environments and upload them to an application server

via mobile communication technologies (e.g., 4G/5G or Wi-Fi). The application server

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jo HJ, Choi W (2019) BPRF: Blockchain-

based privacy-preserving reputation framework for

participatory sensing systems. PLoS ONE 14(12):

e0225688. https://doi.org/10.1371/journal.

pone.0225688

Editor: Gorjan Alagic, University of Maryland,

UNITED STATES

Received: June 29, 2019

Accepted: October 29, 2019

Published: December 5, 2019

Copyright: © 2019 Jo, Choi. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/emsecurity/BPRF.

Funding: This research was supported by Hallym

University Research Fund, 2018 (HRF-201809-

013).

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-3496-7899
http://orcid.org/0000-0003-3253-4827
https://doi.org/10.1371/journal.pone.0225688
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225688&domain=pdf&date_stamp=2019-12-05
https://doi.org/10.1371/journal.pone.0225688
https://doi.org/10.1371/journal.pone.0225688
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/emsecurity/BPRF

aggregates uploaded data from multiple users, then identifies meaningful information by ana-

lyzing the aggregated data. The analyzed results are provided to users who have registered for

the relevant participatory sensing services. Fig 1 shows the basic architecture of a participatory

sensing system.

Participatory sensing architecture can be applied to a variety of applications like location-

based services [2] (e.g., Waze navigation) and item-locating services [3] (e.g., TrackR).

In general, applications for participatory sensing require a high level of participation from

users in order to acquire information that is useful and accurate. However, private user infor-

mation could potentially be leaked as a direct result of the high level of participation. For

example, in Waze, users share information about surrounding road conditions in real time

(e.g., accidents and congestion) via location information (i.e., GPS coordinates) to contribute

to Waze’s services. Thus, it is clear that the Waze server can track drivers who contribute infor-

mation about road conditions to the server by using transmitted location information.

To encourage users to participate in these participatory sensing applications, private user

information such as identity or location information must be protected from unauthorized

access. As one example, anonymity could be guaranteed for users who have registered in a par-

ticipatory sensing system.

However, protection methods for private user information like anonymity could impair

data trustworthiness of a participatory system because malicious users may abuse the anonym-

ity and input fake information, damaging the reliability of these services. To ensure data trust-

worthiness, the participatory sensing system requires a function that is used to evaluate

misleading, i.e. fake, information that has been uploaded by malicious users. Keeping track of

user reputation based on user behavior history could be one way to evaluate the quality and

reliability of sensing information.

From this perspective, a successful participatory sensing application must satisfy two

requirements: (1) user privacy and (2) data trustworthiness. However, meeting these two

requirements simultaneously is not a simple task. User privacy is often supplied by eliminat-

ing links between successive user actions (e.g., successive sensing information from one

user), but such links are usually required to evaluate data trustworthiness. For example, in a

pseudonym-based participatory sensing system, a user may have a set of pseudonyms and

switch between them each session to make their contributions difficult to link. Owing to such

erratic behavior, a participatory sensing system is virtually unable to trace a single user by

analyzing contributed data in the system. (In this paper, “trace” means finding out the real

identity of an anonymous user). On the other hand, using a pseudonym makes influencing

Fig 1. Participatory sensing system.

https://doi.org/10.1371/journal.pone.0225688.g001

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 2 / 23

https://doi.org/10.1371/journal.pone.0225688.g001
https://doi.org/10.1371/journal.pone.0225688

or manipulating user reputation more difficult for any user because user behavior is usually

monitored via a unique identifier, not multiple identities (i.e., pseudonyms). In general, the

management of reputation values is used to ascertain whether or not the data is trustworthy.

Still, even though data trustworthiness is not entirely dependent on user reputation values,

there is a general correlation between a high probability of reported data being trustworthy

and high user reputation values.

Contributions

In this paper, we present a blockchain-based privacy-preserving reputation framework,

BPRF, that takes a practical approach and considers both user privacy and data trustworthi-

ness. BPRF is composed of a potentially large set of participating users, a blockchain, and two

types of servers (application servers (AS) and a tracing server (TS)) that are assumed to not

collude.

In BPRF, a group signature algorithm and a partially blind signature algorithm are used to

protect private user information. AS is responsible for registering users who want to join par-

ticipatory sensing applications offered by itself. During registration, all users are assigned to

the default reputation level by AS and obtain the corresponding group member keys. After

registration, a user can transmit sensing information with a group signature value to AS’s par-

ticipatory application. Successful contribution to AS’s application offers the contributing user

a reward token that is signed by AS via a partially blind signature algorithm. The tokens

issued by AS are then transmitted to a blockchain (i.e., smart contract) charged with manag-

ing user reputation values. During each instance of reputation update, AS assigns each user to

a new reputation level that has been determined by each user’s reputation value. The number

of reputation levels depends on AS’s privacy policy. If there is a dispute regarding fake infor-

mation potentially sent by a malicious user, TS is able to trace the action back to the user by

collaborating with the application server. In summary, this paper makes the following

contributions:

• Reputation values of users are designed to be transparently managed by a blockchain, so that

all entities can audit the history of their own reputation values. Auditing reputation values is

useful for dealing with unauthorized editing, such as cases involving an abnormal increases

or decreases in reputation values by a reputation system.

• BPRF adopts a group signature algorithm to provide anonymity to users. Each group repre-

sents a specific reputation level and not a specific user. In addition, BPRF is designed to

record trace events in the blockchain to prevent unauthorized tracing of anonymous users.

Thus, whenever a group signature value is traced to identify which user transmitted it, infor-

mation related to the trace event is logged as a blockchain transaction.

• By inserting recognizable information, such as that reputation level, to reward tokens issued

by AS, the tokens become nontransferable to other users at different reputation levels.

The remainder of this paper is structured as follows: In the second section, we introduce

related works and the building blocks of our proposed framework. Motivation and architec-

ture of the proposed framework are discussed in the third section. We then present our pri-

vacy-preserving reputation framework (BPRF) in the fourth section. Performance evaluation

and security analysis are described in the fifth section. In the sixth section, we discuss the repu-

tation management policy, the problem of collusion, the blockchain overhead and the response

way to malicious users of the proposed framework, respectively. The paper is concluded in the

seventh section.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 3 / 23

https://doi.org/10.1371/journal.pone.0225688

Related works and building blocks

Related works

To provide privacy-preserving reputation techniques, some studies have been proposed in [4–

12], but these approaches have several drawbacks.

In [4] and [5], an application server that manages user reputation values can also trace user

behavior. Thus, these studies are not secure against an honest-but-curious server model, in

which a server is assumed to always follow protocol, but may try to glean unauthorized (or pri-

vate) information from protocol logs beyond the permitted parameters. In [6], malicious users

cannot be traced or revoked from anonymous groups because the system provides untraceable

anonymity. In other words, no one is able to uncover the real identity of a malicious user. Like-

wise, the study in [7] is unable to detect or trace abnormal use of a reputation value. For exam-

ple, if a malicious user with a low reputation value were to abuse the high reputation value

made available in partnership with colluding users, the abnormal behavior would neither be

detected nor flagged by the application server.

While the studies of [4–7] cannot address privacy-preserving reputation thoroughly, the

works of [8–12] are also insufficient to be applied to diverse participatory sensing application

environments. Zhai et al. proposed an anonymous reputation system based on the existence

of many pseudonyms generated by collaborations over multiple servers rather than a single

server [8]. However, this approach is inefficient in time-sensitive participatory sensing appli-

cation functions, such as Waze’s time-sensitive information sharing system, due to the length

of time required to generate one pseudonym —around 2,000 seconds when there are 100,000

participating users. This is an unacceptable delay given the nature of time-sensitive applica-

tions. That is, if this work were applied to Waze, a user would have to wait 2,000 seconds to

receive a new pseudonym in order to transmit a new traffic event back to the Waze server.

The work [8] provides a parallel operation option to reduce the time it takes to generate a

new pseudonym. However, since there is a trade-off between the parallel operation option

and privacy, the parallel operation option is still limited. Likewise, the studies in [9–12] are

only applied to online purchasing systems because users in these studies are allowed to share

some information only if they have a previous purchase history. Finally, to the best of our

knowledge, it is important to note that there are no works that transparently manage user

reputation values. Managing the reputation management process and the tracing process

transparently is pertinent for improving the reliability of privacy-preserving reputation

management.

Building blocks

Group signature. In group signature algorithms, a set of users is assigned to one group. A

user included in a group then signs a message anonymously without revealing his/her identity

by using the group identity [13]. In general, group signature algorithms should provide con-

trollable anonymity to cope with potential abuse of anonymity features [14, 15]. For example,

a group manager who managing parameters of group signature algorithms can trace a signer

through its own specific group signature value if there is a dispute related to the signer. The

functions required by the controllable group signature are described as follows.

• GS.Initialize_By_Server(k1)! GPK, GTK, GIK, GLK: With input k1 (a pre-

defined security parameter), this function outputs GPK, GTK, GIK and GLK, which are

a group public key, a group tracing key, a group issuing key, and a group link key,

respectively.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 4 / 23

https://doi.org/10.1371/journal.pone.0225688

• GS.Initialize_By_User(k2)! UPK, USK: With input k2 (a pre-defined security

parameter) this function outputs UPK and USK, which are user’s public key and private key,

respectively.

• GS.Join(UserJoin(GPK, ID, USK),Issue(GPK, GIK, ID, UPK))! GMK: Two algo-

rithms, UserJoin(GPK, ID, USK) (run by a registered user) and Issue(GPK, GIK,

ID, UPK) (run by a group member key issuer), interact to output a group member key

GMK that is only stored and managed on the user side. (ID is the identity of a registered

user).

• GS.Sig ðGPK;GMK;mÞ ! sGS

GMK
ðmÞ: With input GPK, GMK, and the message m, this function

outputs a group signature sGS

GMK
ðmÞ

• GS.Ver ðGPK; sGS

GMK
ðmÞ;mÞ ! 1 or 0: On input GPK, sGS

GMK
ðmÞ, and m, this function outputs

1 (valid) or 0 (invalid).

• GS.Trace ðGPK;GTK; sGS

GMK
ðmÞ;mÞ ! UPK, τ: With input GPK, GTK, σGMK(m), and m, this

function outputs the signer’s public key (UPK) and a proof τ.

• GS.Judge ðGPK;UPK; sGS

GMK
ðmÞ;m; tÞ ! 1 or 0: With input GPK, UPK, sGS

GMK
ðmÞ, m and τ,

this function outputs 1 (meaning that the owner of UPK generates sGS

GMK
ðmÞ) or 0.

• GS.Link ðGPK;GLK;
P
sGS

GMK
ðmÞ;

P
mÞ ! 1 or 0: With input GPK, GLK,

P
sGS

GMK
ðmÞ,

and ∑m, this function outputs 1 if there are more than two signatures generated by one user

and related to the same message. Otherwise, it outputs 0. (
P
sGS

GMK
ðmÞ and ∑m are a set of

group signature values and a set of messages, respectively).

• GS.Revoke(GPK, GIK, Revo_List)! GPKnew, Revo_Info: With input GPK, GIK
and a revocation list (Revo_List), this function outputs a new group public key (GPKnew)

and revocation information (Revo_Info).

• GS.Update(GPK, GPKnew, GMK, Revo_Info)! GMKnew: On input GPK, GPKnew, GMK
and Revo_Info, this function outputs a new group member key (GMKnew) if U is not indi-

cated by Revo_Info.

The functions and terms defined in this section have been used to design the proposed

framework. BPRF can adopt any kind of group signature algorithms providing above

described fucntions. For example, the group signature of [14] can be applied to BPRF.

Partially blind signature. The work [16] introduces the concept of “restrictive blind

signature”, through which verifying parties can derive some identifying information

for authentication. ABE et al. alternatively proposed a method called “partially blind

signature”, which allows a signer to include arbitrary public data in a blind signature [17].

The functions described next are basic features provided by a partially blind signature

algorithm:

• PB.Initialize(k3)! PPK, PSK: With input k3 (a pre-defined security parameter), this

function outputs a public key (PPK) and the corresponding signing key (PSK) for a partially

blind signature.

• PB.Info(common_information)! Info: With input common_information,

this function outputs Info.

• PB.Blind(PPK,rand,m)! blindm: With input PPK, a random value (rand), and a

message m (e.g., an identity), this function outputs a blinded message blindm.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 5 / 23

https://doi.org/10.1371/journal.pone.0225688

• PB.Sig(PPK,PSK,blindm,Info)! sPB

PSK
ðblind

m
;InfoÞ: With input PPK, PSK,

info and blindm, this function outputs a signature, sPB

PSK
ðblind

m
;InfoÞ, on Info and

blindm.

• PB:Unblindðrand; sPB

PSK
ðblind

m
;InfoÞÞ ! sPB

PSK
ðm;InfoÞ: With input rand and

sPB

PB
ðblind

m
;InfoÞ, this function outputs a signature, sPB

PSK
ðm;InfoÞ, on m and Info.

• PB:VerðPPK; sPB

PSK
ðmÞ;mÞ ! 1 or 0: With input PPK, sPB

PSK
ðmÞ and m, this function outputs 1

(valid) or 0 (invalid).

The functions and terms defined in this section have been used to design the proposed

framework.

BPRF can adopt any kind of partially blind signature algorithms providing above described

functions. For example, the partially blind signature of [17] can be applied to BPRF.

Blockchain. A blockchain is a distributed ledger introduced by the Bitcoin protocol in

2008 [18] that is transparently managed by a peer-to-peer network. The blockchain as a secure

and decentralized platform has been widely used for applications that need transparent and

immutable data management without a centralized entity.

In ethereum [19], smart contracts are defined in a high-level, JavaScript-like language called

Solidity (https://solidity.readthedocs.io/en/v0.5.11/) A smart contract that has been formalized

in source code can be executed on ethereum nodes without any downtime, centralization, or

third-party interference. In general, smart contracts are used to implement useful applications

provided by a blockchain. For example, a blockchain with smart contracts can provide a fund-

raising service that automatically refunds contributions unless a certain amount is raised

within a given time frame. In addition to ethereum, other blockchain systems such as Hyperl-

edger [20] and EOS [21] also define their own systems for smart contracts.

Motivation and architecture

This section presents the motivating scenario and architecture of the proposed framework,

BPRF.

Motivation

BPRF is motivated by a participatory sensing services like Waze. Figs 2 and 3 show the moti-

vating application examined for this study, which is also an application that could be sup-

ported by this proposed framework.

In Fig 2, vehicles A, B, and C transmit reports on nearby road conditions, such as car acci-

dents or construction site updates to AS. Based on the reports, AS posts road events. Other

vehicles are allowed to give positive or negative feedback on the posted events when they pass

through the areas reportedly affected by the posted events. In general, all vehicles transmitting

reports or feedback must do so via a unique, individual identifier specifically for report/feed-

back message handling processes, such as message authentication or identification of fake

information. These unique identifiers are also used to evaluate the reputation of users who

have contributed to the participatory sensing system.

However, using unique identifiers means that AS can also monitor and track the location

of any vehicle participating in the application. Even when a user does not directly transmit

reports about surrounding road conditions to AS, location information of the vehicle can still

be leaked to AS if the vehicle transmits feedback of any kind about the reported messages. This

unavoidable leakage of private information negatively impacts the popularity and public per-

ception of participatory sensing applications.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 6 / 23

https://solidity.readthedocs.io/en/v0.5.11/
https://doi.org/10.1371/journal.pone.0225688

Even though all vehicles use pseudonyms as shown in Fig 3, it is still possible to trace some

vehicles by linking together a path of reputation values included in reports or feedback mes-

sages. For example, the path of vehicle A could be linked by its own reputation value of 850.

Architecture of BPRF

The proposed BPRF framework consists of a potentially large number of users that represent a

user (U), a small number of application servers (AS), a tracing server (TS), and a blockchain.

Fig 2. Event sharing system using real identities.

https://doi.org/10.1371/journal.pone.0225688.g002

Fig 3. Event sharing system using anonymous identities.

https://doi.org/10.1371/journal.pone.0225688.g003

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 7 / 23

https://doi.org/10.1371/journal.pone.0225688.g002
https://doi.org/10.1371/journal.pone.0225688.g003
https://doi.org/10.1371/journal.pone.0225688

In practice, while each application server has its own applications that are independent from

those provided by other application servers, a user can sign up for multiple applications if they

wish to subscribe to a variety of services. BPRF allows users to anonymously upload reports or

feedback messages to AS. However, if fake reports or feedback messages are detected, a mali-

cious user can be traced through the collaboration of AS and TS. A blockchain is also used to

transparently manage reputation values and trace user information. Fig 4 shows the architec-

ture of BPRF.

Adversary model and assumptions. While an honest entity in BPRF (a server or a user)

follows the BPRF protocol, there are still dishonest users or servers that do not follow the spec-

ified BPRF protocol.

On the server side (AS or TS), we consider a honest-but-curious model in which the server

is assumed to always follow the protocol, but may try to learn information from the protocol

transcript beyond what is intended to be shared [22]. For example, if there is no evidence

about an attack attempting to acquire private user information, the honest-but-curious server

might use private user information that has been obtained by unauthorized user monitoring

without the user’s approval. In addition, the server might try to tamper with reputation values

of specific users by assigning a unique reputation value to each, such that the server tracks

them by linking together the tampered reputation values. However, some functions such as

user registration and the key-issuing process are considered to be honestly performed, as these

functions are needed for AS and TS to provide customers with their own services.

On the user side, a malicious user might want to gain access to sensitive information of a

specific user by analyzing the user’s reputation value, report messages, or feedback messages.

The malicious user can transmit fake sensing reports or fake feedback messages to AS to

tamper with the reputation values of other users or itself (e.g., by unfairly increasing or

decreasing reputation values). Moreover, multiple malicious users may also collude to track

sensitive information of other users, transmit fake messages, or tamper with reputation values.

We assume that each entity has its own public key and the corresponding private key that

has been certified by the certified authority (CA). Users and applications are assumed to be

connected by anonymous communication channels (e.g., Tor [23], or traffic analysis resistant

networks like Dissent [24] and Vuvuzela [25]). Users could also be connected to application

servers through a virtual private network (VPN) for efficient communication. We assume that

AS and TS do not collude, and that the majority of users are assumed to behave with integrity.

Fig 4. The architecture of BPRF.

https://doi.org/10.1371/journal.pone.0225688.g004

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 8 / 23

https://doi.org/10.1371/journal.pone.0225688.g004
https://doi.org/10.1371/journal.pone.0225688

Requirements. The requirements of BPRF can be classified into three categories as

follows:

Conditional Privacy: User contributions to a participatory system should not disclose any

private information, therefore effectively ensuring anonymity and unlinkability. Additionally,

traceability is provided to identify misbehaving or otherwise troublesome users. In particular,

tracing processes should be audited publicly by all entities.

• Anonymity: We define three types of anonymity: weak, semi-strong, and strong. If weak

anonymity is achieved, only third parties are restricted from private user information. Weak

anonymity allows one server, such as an application server or a tracing server, to trace anon-

ymous users. Anonymity is semi-strong when anonymous users are only traced if more than

two servers collaborate. To clarify, if semi-strong anonymity is achieved, anonymous users

cannot be traced by one server as well as a third party. Lastly, strong anonymity is achieved

when there are absolutely no entities that can trace anonymous users.

• Unlinkability: No entities should be able to link together user’s report/feedback messages if

these messages are valid. Reputation values should also not be used to link an entity to a par-

ticular event or events.

• Transparent traceability: If anonymous users misbehave, they should be traced. In addition,

tracing processes should be also managed transparently by allowing all entities to audit trace

events so that a honest-but-curious server does not attempt to perform a tracing process

without valid reasons.

Reputation management: Reputation of users should be accurately managed with transpar-

ency, and be updated periodically.

• Correctness: Increase the reputation of users who have contributed to the system in a reliable

manner, and decrease the reputation of malicious users via a penalty system. For example,

an application server should be able to check whether multiple feedback messages have been

transmitted on the same subject, so that reputation does not increase unfairly.

• Transparency: Reputation values should be managed transparently so that all entities can

audit their own reputation.

• Update: Reputation values should be updated periodically.

Practicality: In order to apply a privacy-preserving reputation system in real life, system

design should be efficient and practical.

Design of BPRF

Overview

BPRF is composed of six processes: 1) initialization, 2) registration, 3) report/feedback, 4) rep-

utation update, 5) revocation, and 6) tracing. The notations used in BPRF are explained in

Table 1.

During initialization, TS selects a group signature algorithm that can separately produce

and manage a group tracing key, a group issuing key, and a group link key respectively used to

trace real identities of malicious users, issue a group member key for every user, and link

group signatures. After initializing parameters for the selected group signature algorithm, TS
generates a set of group public keys (GPK), group tracing keys (GTK), group issuing keys

(GIK), and group link keys (GLK). TS and AS then authenticate each other. If authentication

is successful, AS receives all GPKs, GIKs, and GLKs from TS. Every tuple of GPK, GIK, and

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 9 / 23

https://doi.org/10.1371/journal.pone.0225688

GLK is mapped to a specific reputation group representing a specific reputation level i (RLi).
For example, if AS has three reputation levels from low, medium, and high, each tuple of GPK,

GIK, and GLK is assigned to all three reputation levels.

During registration, a user Ux registers with AS for the subscription services provided by

AS. The user is then assigned to a default reputation group representing a reputation level and

generates a corresponding group member key (GMKx) through collaboration with AS.

In the report/feedback process, a registered user can post reports (e.g., an accident) or feed-

back of any kind on reports posted by other users along with their own blinded real identities

that have been produced by mixing random values with their real identities. Before posting the

report or feedback, messages are signed by a group signature algorithm BPRF adopts. If the

reports or feedback are successfully verified, each user who has contributed to AS’s application

receives a blinded reward token from AS. Each blinded reward token is issued by applying a

blind signature algorithm on a blinded real identity (blind
IDx

). The users who received

blinded reward tokens acquire the tokens (Reward_Token) by eliminating random values,

that were used for generation of the blinded real identity, from the blinded reward tokens.

During reputation update, each user that has received the Reward_Tokens, transmits all

tokens to a blockchain, i.e., the AS smart contract, which implements the reputation manage-

ment policy for AS. The smart contract updates reputation values for all users according to the

reputation management policy of AS after validation of reward tokens. Through updated repu-

tation values stored in the blockchain, AS can update reputation levels of users. AS then

Table 1. Notations.

Notations Explanations

TS A tracing server

AS An application server

Ux A user x
IDx The identity of a user x
blind

IDx
The blinded-identity of a user x

Time_Info The time information of AS

UPKx The public key of a user x
USKx The signing key of a user x
PPKAS AS’s public key used for a partially blind signature

PSKAS AS’s signing key used for a partially blind signature

sPB

PSKAS
ðmÞ The blind signature value of message m signed by PSKAS

NRL The number of pre-defined reputation levels

RLi A reputation level i
GPK

RLi
The group public key for RLi

GTK
RLi

The group tracing key for RLi

GIK
RLi

The group issuing key for RLi

GLK
RLi

The group link key for RLi

GMKx The group member key of a user x
sGS

GMKx
ðmÞ The group signature value on message m signed by GMKx

Revo List
RLi

The revocation list including all revoked users for each reputation level RLi

Revo Info
RLi

The information of users whose privileges have been revoked from RLi

Token_Type The type of tokens: 1) Token_Report, 2) Token_Feedback, 3) Token_Trace

Reward_Token A reward token is one of two types, i.e., Token_Report or Token_Feedback

Penalty_Token A penalty token is one type, i.e., Token_Trace

https://doi.org/10.1371/journal.pone.0225688.t001

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 10 / 23

https://doi.org/10.1371/journal.pone.0225688.t001
https://doi.org/10.1371/journal.pone.0225688

updates public parameters for reputation levels (i.e., reputation groups) to consider member-

ship changes, such as a group member being added or removed. The updated information is

also transmitted to all users. The duration of the reputation update period differs from applica-

tion to application, ranging from a few minutes to a few hours, or even days.

If there is a user that has been assigned to a new reputation level (that is, a new group)

after the reputation update, this user is removed from the previous reputation level during

revocation.

Whenever AS detects a fake message that could negatively impact the reliability of AS’s ser-

vices, tracing for the message in question is performed. In this process, the real identity of a

fake message sender is traced by collaboration between AS and TS, and then the reputation

value of the fake message sender decreases according to the AS reputation management policy.

Fig 5 shows the overview of BPRF.

Initialization

TS selects a group signature algorithm that can separately produce and manage a group

tracing key, a group issuing key, and a group link key. AS and TS authenticate each other

using a public key infrastructure (PKI). AS sets the number of reputation levels (NRL),

which is pre-defined in its own reputation policy. AS requests TS to generate NRL tuples of

GPK, GTK, GIK, and GLK for its own services. TS then generates the NRL tuples by using

GS.Initialize_By_Server(k1), where k1 is a pre-defined security parameter. While

GTKs are stored in TS, GIKs and GLKs are transmitted to AS through a secure channel,

like the transport layer security (TLS) channel. GPKs are then publicly announced. In addi-

tion, user (Ux) produces a pair of public keys (UPKx) and a private key (USKx) through

GS.Initialize_By_Server(k2), where k2 is a pre-defined security parameter.

Fig 5. The overview of BPRF.

https://doi.org/10.1371/journal.pone.0225688.g005

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 11 / 23

https://doi.org/10.1371/journal.pone.0225688.g005
https://doi.org/10.1371/journal.pone.0225688

In order to award a blinded token to users, AS initializes a public key (PPKAS) and a signing

key (PSKAS) via PB.Initialize(k3) after selecting a partially blind signature algorithm.

(k3 is a pre-defined security parameter).

Registration

During registration, Ux and AS authenticate each other using PKI. AS then assigns the user to

a default reputation level (e.g., a medium reputation level) that has been determined by its own

reputation policy.

The user and AS then perform registration. In other words,

UserJoinðGPK
RLi
;IDx;USKxÞ, and IssueðGPK

RLi
;GIK

RLi
;IDx;UPKxÞ are interactively

performed by Ux and AS. IDx is the identity of Ux, and GPK
RLi

and GIK
RLi

are, respectively,

the group public key and group issuing key for the reputation level RLi in which Ux is involved.

If registration is successful, Ux obtains GMKx, and AS stores a pair of IDx and UPKx in its own

storage.

Report and feedback

When a user wants to send an alert about an event that could assist other users, it can upload

this event to AS by transmitting a report. The uploaded report consists of three parts: 1) an

event message (event), 2) a blinded identity (blind
IDx

), and 3) a group signature value.

The blind
IDx

of Ux is generated by PB.Blind(PPKAS, rand, IDx) after selecting

random value (rand), which is used to hide IDx from AS. The group signature value,

sGS

GMKx
ðevent k blind

IDx
Þ, are produced by GS.Sig (GPK

RLi
, GMKi, event k blindIDx

),

where k is concatenation.

When the uploaded report is transmitted to AS, sGS

GMKx
ðevent k blind

IDx
Þ is verified

through GS:VerðGPK
RLi
; sGS

GMKx
ðevent k blind

IDx
Þ;event k blind

IDx
Þ. Since GPK

RLi
rep-

resents a specific reputation level, AS can determine whether this report should be posted or

not through its own posting rules. For example, AS has a rule allowing reports to be posted

only when the report is verified by a group public key representing a reputation level higher

than medium level.

If a report uploaded by Ux is successfully posted, the user receives a blinded reward

token from AS. The blinded token, sPB

PSKAS
ðblind

IDx
;InfoÞ, is produced by function

PB.sig (PPKAS, PSKAS, blind
IDx

, Info). Function PB.Info (Time_Info kRLik

Token_Report) is then used to generate Info.

The user can subsequently retrieve the Reward_Token, sPB

PSKAS
ðIDx;InfoÞ, from their

blinded token through the function PB.Unblind (rand, sPB

PSKAS
ðblind

IDx
;InfoÞ) which

eliminates random value (rand), which was used to produce the blinded identity.

Likewise, all users can upload feedback on a report to update the situation, or offer a

positive or negative personal opinion. The feedback consists of three parts: 1) feedback on a

posted report (feedback), 2) a blind identity (blind
IDx

), and 3) a group signature value

(sGS

GMKx
ðfeedback k blind

IDx
Þ). The group signature value is also verified by the corre-

sponding GPK
RLi

. The feedback can be used to evaluate the posted report. It should be noted

that designing a report evaluation algorithm using feedback messages such as EigenTrust [26]

is out of the scope of this paper.

Users who contribute feedback also receive blinded reward tokens, sPB

PSKAS
ðblind

IDx
;InfoÞ,

from AS. Function PB.Info (Time_Info kRLik Token_Feedback) is used to generate

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 12 / 23

https://doi.org/10.1371/journal.pone.0225688

Info. The reward token, sPB

PSKAS
ðIDx;InfoÞ, can also be retrieved from the blinded tokens

through function PB.Unblind (rand, s
PSKAS
ðblind

IDx
;InfoÞ).

Additionally, AS is required to check duplicate report messages or feedback messages

to prevent its own service from becoming biased due to duplicate messages. By using

function GS.Link (GPK
RLi

, GLK
RLi

, group signatures, messages), AS in BPRF

can detect duplicate reports and feedback messages representing the same event or

feedback content that have also been generated by one user. Thus, users that have generated

duplicate report messages or feedback messages receive Reward_Token only once from

AS.

Algorithm 1: Reputation Update
Input: a token (Reward_token or Penalty_token)

// e.g., sPB

PSKAS
ðIDx;InfoÞ, PPKAS, (IDx, Info)

Output: 0 or 1
1
/� This is a (key, value) structure like Solidity mapping �/

2 Map (string ! int) ID_Map // ID ! reputation_value
3 Map (int ! int) Token_Map // Token ! a flag
4
/� This is a verification step using PB.Ver(. . .) �/

5 if Token verification using PB.Ver(. . .) then
6

/� This is a parsing step using Info that is the result
of PB.Info(. . .) �/

7 String ID = ID // from the token
8 int time_info = Time_Info // from the token
9 int RL = RLi // from the token
10 int token_type = Token_Type // from the token
11

/� This is a step to check whether or not time_info is valid
and the token is unused �/

12 if (time_info is not expired) and (the token is unused) then
13 int reputation = ID_Map(ID) // ID’s reputation_value
14 Token_Map(the token) = 1 //Setting flags to check for

token usage
15

/� This is one reputation update step �/

16 if Reputation is in the range of RL then
17 if token_type == Token_Report then
18 ID_Map(ID) = reputation + report_point
19 return 1
20 else if token_type == Token_Feedback then
21 ID_Map(ID) = reputation + feedback_point
22 return 1
23 else if token_type == Token_Trace then
24 ID_Map(ID) = reputation—penalty_point
25 return 1
26 else
27 return 0
28 else
29 return 0
30 else
31 return 0
32 else
33 return 0

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 13 / 23

https://doi.org/10.1371/journal.pone.0225688

Reputation update

Users can upload the reward tokens they earned to AS’s smart contract that manages reputa-

tion update when they wish to use them. According to the pre-defined reward policy of AS,

the smart contract can increase reputation values for any user who has transmitted reward

tokens. Algorithm 1 is the pseudo code of AS’s smart contract for reputation update. However,

if a user interacts with AS’s smart contract for the reputation update directly after receiving a

reward token for a submitted report or feedback, there is a possibility that the user’s identity

will become associated with the event message sent. To handle this issue, we have introduced a

random delay-based token transmission process. In this random delay-based token transmis-

sion process, the user must wait a random amount of time to send his/her own reward tokens.

A random delay is determined by random number r chosen between 0 and K, where K is a sys-

tem parameter for this random delay. When the number of reputation update requests that

can be checked through algorithm 1 transactions reaches random number r, the user sends

his/her own reward tokens accumulated while waiting for r reputation update requests to AS’s

smart contract for reputation update. Thus, all tokens a user earned can be processed as a

batch. If K is large enough, the possibility of information leakage is minimized.

For each predetermined reputation update period, AS updates reputation levels of all users

by reading reputation values stored in the permanent storage of its own smart contract.

Revocation

If there are users who have been assigned to new reputation levels after the reputation

update process, AS generates revocation lists (e.g., Revo List
RLi

) that include all users

whose reputation levels have changed. In the revocation process, AS performs GS.Revoke
ðGPK

RLi
;GTK

RLi
;Revo List

RLi
Þ to generate GPKnew

RLi
and Revoke Info

RLi
. AS then broad-

casts GPKnew
RLi

and Revoke Info
RLi

to all users involved in the reputation level i (RLi) to trigger

the update of group member keys. For example, a user (Ux) can update its own group member

key though GS.Update (GPK
RLi

, GPKnew
RLi
; GMKx, Revoke Info

RLi
) that outputs GMKnew

x .

In order to compromise with the time-sensitive nature of the report and feedback process

while performing GS.Update (GPK
RLi

, GPKnew
RLi
; GMKx, Revoke Info

RLi
), BPRF sets a

grace period for the amount of time that a user continues to retain or use its own group param-

eters after these parameters expire. The grace period as a system parameter is set longer than

the time required to perform GS.Update (GPK
RLi

, GPKnew
RLi
; GMKx, Revoke Info

RLi
). If a

user (Ux) has been revoked from reputation level i and the grace period is over, the user can no

longer use the previous GMKx because it is not verifiable by GPK
new
RLi

anymore.

Tracing

The tracing process is triggered when AS detects a malicious report. The detection of a mali-

cious report can be done through predefined abnormal conditions, such as a flood of negative

feedback on a single posted report or a flood of reports that are inconsistent with other posted

reports. The definition of abnormal conditions varies from application to application. If AS
detects a malicious report, AS sends the report to TS. Then, TS executes the tracing function,

GS.trace (GPK
RLi
; GTK

RLi
; sGS

GMKx
ðevent k blind

IDx
Þ, event k blind

IDx
), which out-

puts UPKx of a malicious user and the corresponding τ, which can be used to prove that

sGS

GMKx
ðevent k blind

IDx
Þ is related to UPKx. After finding UPKx from the malicious report,

TS sends sGS

GMKx
ðevent k blind

IDx
Þ, UPKx, and τ to AS’s smart contract that is managing

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 14 / 23

https://doi.org/10.1371/journal.pone.0225688

trace events. This contract validates whether sGS

GMKx
ðevent k blind

IDx
Þ is correlated with

UPKx by using τ. The information in this tracing process, sGS

GMKx
ðevent k blind

IDx
Þ, UPKx,

and τ, is stored as transactions of AS’s smart contract for trace management.

Algorithm 2: Tracing
Input: Trace information

// i.e., GPKRLi
, UPKx, sGS

GMKx
ðmÞ, m, τ

Output: 0 or 1
/� This is a (key, value) structure similar to Solidity mapping �/

1 Map (byte[] ! int) UPK_Map //UPKx ! counter
2
/� This is a validation step using GS.Judge(. . .) �/

3 if Validation of proof(τ) using GS.Judge(. . .) then
4 int counter = UPK_Map(UPKx)
5 UPK_Map(UPKx) = counter + 1
6 return 1
7 else
8 return 0

Algorithm 2 is pseudo code for AS’s smart contract for trace management. Whenever the

algorithm 2 is called up by AS, the counter value of a traced user increases by 1 if trace proof τ
has been validated successfully. If the counter value manged by algorithm 2 is greater than the

threshold, a penalty token (Penalty_Token), i.e., sPB

PSKAS
ðIDx;InfoÞ, is issued by AS, in

which Info is generated by PB.Info (Time_Info kRLik Token_Trace). Then,

Penalty_Token is transmitted to algorithm 1 to decrease reputation value as per

Penalty_Token.

Through this tracing process, the reputation level of a user who has sent a malicious report

to AS can be reevaluated.

Evaluation and analysis

In this section, we evaluate the performance of and analyze BPRF to verify whether or not it

satisfies the requirements set out in the third section of this paper.

Evaluation

For evaluation, we assume that BPRF adopts a group signature and a partially blind signature,

as proposed in [14] and [17], respectively. These algorithms were chosen exclusively to mea-

sure the performance of BPRF, but the selection of eligible BPRF algorithms is not limited to

these two alone. In other words, BPRF can adopt any kind of group signature or partially blind

signature algorithm that has its functions outlined in the building blocks section.

We do not evaluate the performance of algorithm 1 or algorithm 2 because the performance

of these is dependent on blockchain types (e.g., Ethereum, Hyperledger, EOS). However, we

expect that these algorithms can still be implemented practically. For example, in Ethereum,

the algorithms can be implemented via a Solidity-based pairing library [27].

Implementation. For evaluation of BPRF, we implemented two basic cryptographic oper-

ations, exponentiation and pairing [28], which are required for the execution of [15] and [17]

schemes. Lightweight operations such as the cryptographic hash function are ignored because

they are negligible compared to the basic operations we implemented. We used the Java Pair-

ing-Based Cryptography Library (jPBC) library [29] for implementation of exponentiation

and pairing operations. During implementation, d159 parameters provided by the jPBC

library were used. (A type D curve is defined over a given field Fq and has an order h × r
where r is a prime and h is a small constant. Over the field F6

q , its order is a multiple of r2.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 15 / 23

https://doi.org/10.1371/journal.pone.0225688

https://crypto.stanford.edu/pbc/manual/ch08s06.html) The implemented code can be found

in the following link (https://github.com/emsecurity/BPRF).

Our implementation was tested on two devices: an Intel Processor i7-8700 @ 3.20 GHz and

a Xiaomi POCO F1 smartphone. After each operation was executed 1000 times from each

device, the average execution time was obtained. Table 2 shows the average execution time for

each operation.

Evaluation of cryptographic functions. Table 3 illustrates evaluation results for GS.
Sig(), GS.Ver(), GS.Trace(), GS.Judge(), GS.Link(), GS.Revoke(), GS.
Update(), and PB.Info(), PB.Blind(), PB.Sig(), PB.Unblind(), PB.Ver()
when BPRF adopts the algorithms [14] and [17]. Since initialization and registration are only

performed once per user in BPRF, we did not evaluate the functions required in these processes,

which are: GS.Initialize_By_server(), GS.Initialize_By_Client(), GS.
Join(), and PB.Initialize().

A number of basic operations required for executing each function of [14] and [17] are

described as follows.

• GS.Sig(): The signing process requires no pairing computation and only 10

exponentiations.

• GS.Ver(): The verifying process requires 11 exponentiations and one pairing

computation.

• GS.Trace(): The tracing process requires 5 exponentiations.

• GS.Judge(): The judging process requires 4 exponentiations and two pairing

computations.

• GS.Link(): The linking algorithm requires 2 pairing computations.

Table 2. Implementation of basic crypto operations.

i7-8700 (at 3.20 GHz) Xiaomi POCO F1

Pairing 14.24 ms 368 ms
Exponentiation 1.78 ms 13.5 ms

https://doi.org/10.1371/journal.pone.0225688.t002

Table 3. Evaluation (r: Number of revoked users, neg: Negligible time, −: The function is not executed on the target

device). †: This can be implemented faster by using multi-exponentiation and Java Native Interface (JNI) [30].

Server (e.g., AS, TS) (i7-8700 at 3.20GHz) Client (e.g., Ux) (Xiaomi POCO F1)

GS.Sig() − 135 ms
GS.Ver() 33.82 ms −
GS.Trace() 8.9 ms −
GS.Judge() 35.6 ms −
GS.Link() 28.48 ms −
GS.Revoke() 8.9 ms −
GS.Update() − 135,000 ms†

(If r = 10,000)

PB.Info() neg −
PB.Blind() − 27 ms
PB.Sig() 3.56 ms −
PB.Unblind() − neg
PB.Ver() 1.78 ms 13.5 ms

https://doi.org/10.1371/journal.pone.0225688.t003

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 16 / 23

https://crypto.stanford.edu/pbc/manual/ch08s06.html
https://github.com/emsecurity/BPRF
https://doi.org/10.1371/journal.pone.0225688.t002
https://doi.org/10.1371/journal.pone.0225688.t003
https://doi.org/10.1371/journal.pone.0225688

• GS.Revoke(): The revocation process requires requires 5 exponentiations.

• GS.Update(): If the number of revoked users is r, the revocation process requires 3 � r
exponentiations.

• PB.Info(): The setting process of common information does not require any basic

operations.

• PB.Blind(): The blinding process requires 2 exponentiations.

• PB.Sig(): The signing process requires 2 exponentiations.

• PB.Unblind(): The unblinding process does not require any basic operations. It simply

requires arithmetic operations with small numbers like square operations that are also negli-

gible compared to basic operations.

• PB.Ver(): The verifying process requires 1 exponentiation.

In addition, the performance of BPRF is only compared with the work [8], as it provides

semi-strong anonymity like our framework. In this comparison, a preparation step (i.e., update

of a pseudo-identity or update of a group member key), report generation and verification

steps, feedback generation and verification steps, and token generation and verification steps

are compared, as shown in Table 4.

Through this comparison, we found that BPRF is more efficient than [8], which performs

an additional preparation step (i.e., update of a pseudo-identity) per message to provide

unlinkability between successive reports or feedback uploaded by a user.

Security analysis

BPRF is analyzed in terms of the following requirements.

Conditional privacy.

• Anonymity: When a user (Ux) wants to send a report message or feedback message to AS, it

signs the message using its group member key that represents a reputation level (i.e., a repu-

tation group). Since a group signature value does not correspond to any one particular user,

AS cannot know precisely which user transmitted the message. TS is also unable to trace a

Table 4. Overhead comparison between BPRF and the work of [8]. |R|: Number of members in a ring signature group †: The result was measured in AMAZON EC2

c4.8xlarge virtual machines when five servers are used for the preparation step. ‡: ELGamal.Sig() and ELGamal.Ver() require 1 exponentiation and 3 exponentiations,

respectively. §: Linkable.Ring.Sig() and Linkable.Ring.Vig() of [31] require 7 exponentiations and 4 exponentiations, respectively.

Zhai et al. [8] BPRF

Preparation 1,000 s†

(Performed every time per message, N = 100,000)

135 s

(Performed periodically, N = 100,000)

Report Generation

(by a user)

13.5 ms

(= ELGamal.Sig()‡)

135 ms

(= PB.Blind() + GS.Sig())

Verification

(by a server)

40.5 ms

(= ELGamal.Ver()‡)

33.82 ms

(= GS.Ver())

Feedback Generation

(by a user)

94.5 ms

(= Linkable.Ring.Sig()§)

135 ms

(= PB.Blind() + GS.Sig())

Verification

(by a server)

7.12 ms × |R|

(= Linkable.Ring.Ver()§)

33.82 ms

(= GS.Ver())

Reward Token Generation

(by a server)

- 3.56 ms

(PB.Sig() + PB.Unblind())

Verification

(by a user)

- 13.5 ms

(= PB.Ver())

https://doi.org/10.1371/journal.pone.0225688.t004

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 17 / 23

https://doi.org/10.1371/journal.pone.0225688.t004
https://doi.org/10.1371/journal.pone.0225688

group signature value without help from AS because the group signature value is only trans-

mitted to AS, and the transmission channel between Ux and AS is assumed to be protected

by TLS. The corresponding group signature value is transmitted to TS from AS only when

there is a dispute related to a report message. After that, the signature value is traced by TS.

Thus, BPRF provides semi-strong anonymity according to the categories outlined in third

section.

• Unlinkability: BPRF is assumed to use an anonymous network channel, like Tor. This

means that AS cannot link Ux using a network identifier (e.g., IP addresses). Additionally, a

group signature value represents not a specific reputation value, but a reputation level. Since

each reputation level is set to include a large number of users, AS cannot link activities from

a user (Ux) using group signature values.

• Transparent traceability: The presence of a malicious report message can be traced via col-

laboration between AS and TS.

In addition, the traced information is also included in the blockchain’s immutable storage by

means of algorithm 2. Thus, a honest-but-curious AS is not able to send a tracing request to

TS without a valid tracing reason because TS records all tracing requests in the blockchain

to provide transparent audits.

Reputation management.

• Correctness: BPRF is designed to protect the reputation values of all users from attacks that

influence, alter, or manipulate reputation values. By adopting the blockchain’s transparent

and immutable storage, no one including AS or TS can intentionally modify user reputation

values.

The only way to update reputation values is to send reward tokens (by users) or trace tokens

(by TS) to the smart contract, which manages reputation values. When AS issues reward

tokens to users who have contributed to its own service, a check for other identical report

messages or feedback messages by any one user is performed in order to protect reputation

values from self-increasing attempts, in which a user deliberately generates duplicate mes-

sages to improve its own reputation value.

In addition, reward tokens are designed to include contributing user reputation information

(i.e., reputation levels), meaning that they cannot be transferred to other users belonging to

different reputation levels. For example, a user assigned to the highest reputation level can-

not transfer any of its own reward tokens to a user assigned to the lowest reputation level.

This feature prevents an attacker with the low reputation value from collecting reward

tokens from other accomplice belonging to the highest reputation level. Lastly, as described

in algorithm 1, time information and double spending of tokens are also checked.

• Transparency: Reputation values of all users are managed by a smart contract described in

algorithm 1, and these are stored in the blockchain. In addition, the information stored by

algorithm 2 can be used to audit trace events. Thus, all users can audit their own reputation

values managed in the blockchain storage.

• Update: The reputation values for all users are refreshed every predefined update interval.

For example, users who have contributed to AS’s service are eligible to receive a

Reward_Token. The reputation values of users that have adversely affected the service

of AS by sharing fake messages are decreased via a Penalty_Token.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 18 / 23

https://doi.org/10.1371/journal.pone.0225688

Practicality. BPRF is based on a group signature algorithm, a partially blind signature

algorithm, and a blockchain that can be practically implemented with the jPBC library and

Ethereum’s Solidity. Implementation and evaluation results in Tables 2 and 3 illustrate the

practicality of BPRF.

Table 5 compares BPRF and related works in terms of conditional privacy and reputation

management requirements.

Discussion

Reputation management policy

Although every participatory application has its own reputation management policy, it is pos-

sible to apply BPRF to a number of such applications. In this section, we give one example

(i.e., Waze) to show how BPRF can be applied to real-life applications. As shown in Fig 6,

Waze has a policy for user-earned points and ranking levels. If a Waze user sends a report

about road conditions, the user is awarded six points, and the top one percent of high scorers

in a given region are classified as Waze Royalty.

In this example, we present two BPRF policies: policy A and policy B. In policy A, five

Waze ranking levels and five levels of BPRF directly correspond to each other as shown in Fig

6. However, since the number of users belonging to Waze Royalty (the top one percent of high

scorers) is small, the behavior of users belonging to this very high reputation level could be eas-

ily linked to specific areas. Therefore, in policy B, Waze Knight and Waze Royalty levels are

combined to form the highest reputation level. As such, BPRF policies can be defined and cus-

tomized for participatory application environments.

Table 5. Comparison (W: Weak, SS: Semi-Strong, S: Strong).

[4] [5] [6] [7] [8] BPRF

Conditional Privacy Anonymity W W S S SS SS

Unlinkability X X O O O O

Transparent Traceability X X X X X O

Reputation Management Correctness O O O X O O

Transparency X X O X X O

Update O O O O O O

https://doi.org/10.1371/journal.pone.0225688.t005

Fig 6. An example of reputation management policy.

https://doi.org/10.1371/journal.pone.0225688.g006

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 19 / 23

https://doi.org/10.1371/journal.pone.0225688.t005
https://doi.org/10.1371/journal.pone.0225688.g006
https://doi.org/10.1371/journal.pone.0225688

Collusion between AS and TS
We assume that AS and TS do not collude with each other to infringe on user privacy. How-

ever, if AS and TS were to collude to maliciously trace a user without logging the correspond-

ing trace event in a blockchain, BPRF would not provide user privacy.

To cope with this potential collusion problem, BPRF can be modified as follows. First, a

pseudo-identity generation process is added between BPRF initialization and registration, and

then registration for BPRF itself is changed. For this process, a set of pseudonym servers is

needed to issue pseudo-identities to users. First, a user (Ux) sends its own identity (IDx) to the

set of servers. Then, the servers encrypt IDx to generate the pseudo-identity (PIDx) via a

threshold public-key encryption [32, 33], whereupon, if performed successfully, PIDx is

securely transmitted to Ux. After PIDx passes through this additional process, Ux performs a

modified registration process. In this modified process, UserJoin(GPK
RLi

, PIDx, USKx) and

Issue(GPK
RLi

, GIK
RLi

, PIDx, UPKx) are interactively performed by Ux and AS instead of

UserJoin(GPK
RLi

, IDx, USKx) and Issue(GPK
RLi

, GIK
RLi

, IDx, UPKx) as described in the

original registration process.

Thus, in the modified version of BPRF, AS and TS cannot trace a user even if they collude

because the user has been registered in AS by using its own pseudo-identity. To trace a mali-

cious user in the modified version of BPRF, TS stores the corresponding trace event including

PIDx in a blockchain and then the pseudonym servers cooperatively decrypt PIDx stored in

the corresponding trace event. Since a threshold public-key encryption is designed to decrypt

a ciphertext only if at least t pseudonym servers cooperate, a system parameter t is set to handle

collusion problems among pseudonym servers or failures of pseudonym servers.

In addition, since the pseudo-identity generation process by the pseudonym servers is per-

formed only once before registration, the pseudonym servers do not incur processing over-

head like the work of [8]. In other words, a user does not need to generate a pseudo-identity

from the pseudonym servers each time, as the process only need be performed at the time of

registration, and BPRF is designed to use a group member key to send reports or feedback.

If the work of [8] were designed to allow a user to use one pseudo-identity, the process of

issuing a pseudo-identity in the study could be streamlined to one time. However, in [8], if a

user used only one pseudo-identity, any other users could link the behavior of that specific

pseudo-identity. In other words, the use of one pseudo-identity does not provide unlinkability

in [8]. On the other hand, in the modified version of BPRF, even if a user uses one pseudo-

identity, the behavior of a specific pseudo-identity is linked only when AS and TS collude.

This means that the modified version of BPRF only allows for the colluding servers to link the

behavior of a specific pseudo-identity, not any and all users. This linkability issue among col-

luding servers will be addressed in future work.

Blockchain overhead

The use of a blockchain could affect performance of BPRF. However, the report/feedback gen-

eration processes can be performed without a blockchain, as shown in the Fig 4. In other

words, processes associated with blockchain—reputation updates, revocation, and traces are

executed periodically rather than each time. Thus, they do not significantly affect the time-sen-

sitive report/feedback process for information sharing.

In addition, a blockchain such as Ethereum requires the user or a server to pay a fee (i.e.,

Ethereum gas payments) for the execution of the smart contract codes, such as algorithms 1

and 2. As such, the cost of using a blockchain could be a burden on both the user and the

server. To handle this issue, users and servers can have blockchain transactions processed in

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 20 / 23

https://doi.org/10.1371/journal.pone.0225688

batches by using a scalability solution like Plasma [34] that allows for decentralized applica-

tions to move transactions off of a root blockchain. BPRF could also consider using EOS or

Hyperledger, which allows for free and fast execution of smart contract codes.

Response to malicious users

In a participatory sensing system, abnormal behavior (e.g., fake reports) of a malicious user

can be detected by a “flood of negative feedback”. However, the system should also consider a

cautious adversary who deliberately generates duplicate messages that only slightly deviate

from what may be considered normal behavior to improve its own reputation value.

For example, in Waze, a malicious user can upload multiple reports with slightly varied

GPS information to unfairly earn more reward tokens. To prevent malicious users from poten-

tially generating multiple reports under different identities, the Waze server divides a region

into several report domains. This subsequently enables the server to set a policy that does not

allow multiple reports of the same type in one domain to curb malicious user behavior. For

example, in Waze, there are 10 types of reports: Traffic, Police, Crash, Hazard, Map chat, Map

issue, Place, Roadside help, Camera, and Closure reports. Implementation of this policy could

manifest into actions such as not giving reward tokens to delayed report submissions of the

same type, or reducing reputation points accumulated by reward tokens received for delayed

report submissions.

It should be noted that response methods vary from application to application. In line with

this, participatory sensing systems should be able to handle the behavior of malicious users in

their own way.

Conclusion

A privacy-preserving reputation system is needed for participatory sensing applications in

order to protect user privacy and to evaluate the reputation of contributors who relay infor-

mation about their environments to the system. However, building a privacy-preserving rep-

utation system that guarantees the two requirements of user privacy and data trustworthiness

is not a simple task. It seems natural that such a participatory sensing system dealing with

these two requirements would be highly demanded, as it would simultaneously provide user

privacy and data trustworthiness. As such, in this paper, we proposed a blockchain-based pri-

vacy-preserving reputation framework (BPRF) for participatory sensing applications. In

BPRF, user reputation values can be publicly audited through a blockchain-based reputation

system. In addition, our framework includes an auditable tracing process, in which trace

events of anonymous users are logged in the immutable storage of the blockchain. Thus,

under BPRF, a honest-but-curious server is unable to trace an anonymous user without any

valid grounds for doing so. This paper includes our analysis of the proposed framework and

evaluation results of its performance. For future research, we aim to develop a smart contract

for BPRF that would be distributed over a blockchain network, such as Ehtereum, EOS, or

Hyperledger.

Acknowledgments

This research was supported by Hallym University Research Fund, 2018 (HRF-201809-013).

Author Contributions

Conceptualization: Hyo Jin Jo, Wonsuk Choi.

Formal analysis: Hyo Jin Jo.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 21 / 23

https://doi.org/10.1371/journal.pone.0225688

Investigation: Hyo Jin Jo, Wonsuk Choi.

Methodology: Hyo Jin Jo.

Software: Hyo Jin Jo, Wonsuk Choi.

Validation: Hyo Jin Jo, Wonsuk Choi.

Writing – original draft: Hyo Jin Jo.

Writing – review & editing: Hyo Jin Jo, Wonsuk Choi.

References
1. Burke J, Estrin D, Hansen M, Parker A, Ramanathan N, Reddy S, et al. Participatory sensing. In: Work-

shop on World-Sensor-Web (WSW’06): Mobile Device Centric Sensor Networks and Applications;

2006. p. 117–134.

2. Méndez D, Pérez AJ, Labrador MA, Marrón JJ. P-Sense: A participatory sensing system for air pollution

monitoring and control. In: 2011 IEEE International Conference on Pervasive Computing and Communi-

cations Workshops (PERCOM Workshops); 2011. p. 344–347.

3. Agadakos I, Polakis J, Portokalidis G. Techu: Open and Privacy-Preserving Crowdsourced GPS for the

Masses. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications,

and Services. MobiSys’17. New York, NY, USA: ACM; 2017. p. 475–487. Available from: http://doi.

acm.org/10.1145/3081333.3081345.

4. Huang KL, Kanhere SS, Hu W. A privacy-preserving reputation system for participatory sensing. In:

37th Annual IEEE Conference on Local Computer Networks; 2012. p. 10–18.

5. Garms L, Martin K, Ng SL. Reputation Schemes for Pervasive Social Networks with Anonymity. In: Pro-

ceedings of the fifteenth International Conference on Privacy, Security and Trust (PST 2017). IEEE;

2017.

6. Kokoschka A, Petrlic R, Sorge C. A Reputation System Supporting Unlinkable, Yet Authorized Expert

Ratings. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing. SAC’15. New

York, NY, USA: ACM; 2015. p. 2320–2327. Available from: http://doi.acm.org/10.1145/2695664.

2695892.

7. Wang XO, Cheng W, Mohapatra P, Abdelzaher T. ARTSense: Anonymous reputation and trust in par-

ticipatory sensing. In: 2013 Proceedings IEEE INFOCOM; 2013. p. 2517–2525.

8. Zhai E, Wolinsky DI, Chen R, Syta E, Teng C, Ford B. AnonRep: Towards Tracking-Resistant Anony-

mous Reputation. In: 13th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 16). Santa Clara, CA: USENIX Association; 2016. p. 583–596. Available from: https://www.

usenix.org/conference/nsdi16/technical-sessions/presentation/zhai.

9. Blömer J, Juhnke J, Kolb C. In: Böhme R, Okamoto T, editors. Anonymous and Publicly Linkable Repu-

tation Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 478–488. Available from:

https://doi.org/10.1007/978-3-662-47854-7_29.

10. Busom N, Petrlic R, Sebé F, Sorge C, Valls M. A privacy-preserving reputation system with user

rewards. Journal of Network and Computer Applications. 2017; 80(Supplement C):58–66. https://doi.

org/10.1016/j.jnca.2016.12.023

11. Azad MA, Bag S, Hao F. PrivBox: Verifiable decentralized reputation system for online marketplaces.

Future Generation Computer Systems. 2018; 89:44–57. https://doi.org/10.1016/j.future.2018.05.069

12. Bag S, Azad MA, Hao F. A privacy-aware decentralized and personalized reputation system. Comput-

ers & Security. 2018; 77:514–530. https://doi.org/10.1016/j.cose.2018.05.005

13. Chaum D, van Heyst E. Group Signatures. In: Davies DW, editor. Advances in Cryptology—EURO-

CRYPT’91. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 257–265.

14. Hwang JY, Lee S, Chung BH, Cho HS, Nyang D. Group signatures with controllable linkability for

dynamic membership. Information Sciences. 2013; 222:761–778. https://doi.org/10.1016/j.ins.2012.07.

065

15. Hwang JY, Chen L, Cho HS, Nyang D. Short Dynamic Group Signature Scheme Supporting Controlla-

ble Linkability. IEEE Transactions on Information Forensics and Security. 2015; 10(6):1109–1124.

https://doi.org/10.1109/TIFS.2015.2390497

16. Brands S. Untraceable Off-line Cash in Wallet with Observers. In: Proceedings of the 13th Annual Inter-

national Cryptology Conference on Advances in Cryptology. CRYPTO’93. Berlin, Heidelberg: Springer-

Verlag; 1994. p. 302–318. Available from: http://dl.acm.org/citation.cfm?id=188105.188172.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 22 / 23

http://doi.acm.org/10.1145/3081333.3081345
http://doi.acm.org/10.1145/3081333.3081345
http://doi.acm.org/10.1145/2695664.2695892
http://doi.acm.org/10.1145/2695664.2695892
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai
https://doi.org/10.1007/978-3-662-47854-7_29
https://doi.org/10.1016/j.jnca.2016.12.023
https://doi.org/10.1016/j.jnca.2016.12.023
https://doi.org/10.1016/j.future.2018.05.069
https://doi.org/10.1016/j.cose.2018.05.005
https://doi.org/10.1016/j.ins.2012.07.065
https://doi.org/10.1016/j.ins.2012.07.065
https://doi.org/10.1109/TIFS.2015.2390497
http://dl.acm.org/citation.cfm?id=188105.188172
https://doi.org/10.1371/journal.pone.0225688

17. Abe M, Fujisaki E. How to date blind signatures. In: Kim K, Matsumoto T, editors. Advances in Cryptol-

ogy—ASIACRYPT’96. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. p. 244–251.

18. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2008. Available from: https://bitcoin.org/

bitcoin.pdf.

19. Wood G. Ethereum: A Secure Decentralised Generalised Transaction Ledger-EIP-150 Revision;. Avail-

able from: https://gavwood.com/paper.pdf.

20. Hyperledger;. Available from: https://www.hyperledger.org/.

21. EOS.IO Technical White Paper v2;. Available from: https://github.com/EOSIO/Documentation/blob/

master/TechnicalWhitePaper.md.

22. Huang Y, Katz J, Evans D. Quid-Pro-Quo-tocols: Strengthening Semi-honest Protocols with Dual Exe-

cution. In: 2012 IEEE Symposium on Security and Privacy; 2012. p. 272–284.

23. Dingledine R, Mathewson N, Syverson P. Tor: The Second-generation Onion Router. In: Proceedings

of the 13th Conference on USENIX Security Symposium—Volume 13. SSYM’04. Berkeley, CA, USA:

USENIX Association; 2004. p. 21–21. Available from: http://dl.acm.org/citation.cfm?id=1251375.

1251396.

24. Wolinsky DI, Corrigan-Gibbs H, Ford B, Johnson A. Dissent in Numbers: Making Strong Anonymity

Scale. In: Presented as part of the 10th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 12). Hollywood, CA: USENIX; 2012. p. 179–182. Available from: https://www.usenix.

org/conference/osdi12/technical-sessions/presentation/wolinsky.

25. van den Hooff J, Lazar D, Zaharia M, Zeldovich N. Vuvuzela: Scalable Private Messaging Resistant to

Traffic Analysis. In: Proceedings of the 25th Symposium on Operating Systems Principles. SOSP’15.

New York, NY, USA: ACM; 2015. p. 137–152. Available from: http://doi.acm.org/10.1145/2815400.

2815417.

26. Kamvar SD, Schlosser MT, Garcia-Molina H. The Eigentrust Algorithm for Reputation Management in

P2P Networks. In: Proceedings of the 12th International Conference on World Wide Web. WWW’03.

New York, NY, USA: ACM; 2003. p. 640–651. Available from: http://doi.acm.org/10.1145/775152.

775242.

27. Optimal ate pairing over Barreto-Naehrig curves;. Available from: https://github.com/adjoint-io/pairing.

28. Menezes A. In: An introduction to pairing-based cryptography; 1991.

29. The Java Pairing Based Cryptography Library (JPBC);. Available from: http://gas.dia.unisa.it/projects/

jpbc/.

30. Paik JH, Seo SC, Kim Y, Lee HJ, Jung H, Lee DH. An Efficient Implementation of Block Cipher in

Android Platform. In: 2011 Fifth FTRA International Conference on Multimedia and Ubiquitous Engi-

neering; 2011. p. 173–176.

31. Liu JK, Wong DS. Linkable Ring Signatures: Security Models and New Schemes. In: Gervasi O, Gavri-

lova ML, Kumar V, Laganà A, Lee HP, Mun Y, et al., editors. Computational Science and Its Applica-

tions—ICCSA 2005. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 614–623.

32. Shoup V, Gennaro R. Securing Threshold Cryptosystems against Chosen Ciphertext Attack. Journal of

Cryptology. 2002; 15(2):75–96. https://doi.org/10.1007/s00145-001-0020-9

33. Delerablée C, Pointcheval D. Dynamic Threshold Public-Key Encryption. In: Wagner D, editor.

Advances in Cryptology—CRYPTO 2008. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008.

p. 317–334.

34. Poon J, Buterin V. Plasma: Scalable autonomous smart contracts; 2017. Available from: https://plasma.

io/plasma.pdf.

BPRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0225688 December 5, 2019 23 / 23

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf
https://www.hyperledger.org/
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky
http://doi.acm.org/10.1145/2815400.2815417
http://doi.acm.org/10.1145/2815400.2815417
http://doi.acm.org/10.1145/775152.775242
http://doi.acm.org/10.1145/775152.775242
https://github.com/adjoint-io/pairing
http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/
https://doi.org/10.1007/s00145-001-0020-9
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://doi.org/10.1371/journal.pone.0225688

