
RESEARCH ARTICLE

Designing machine learning workflows with

an application to topological data analysis

Eric Cawi1, Patricio S. La Rosa2, Arye NehoraiID
1‡*

1 Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis,

St. Louis, MO, United States of America, 2 Global IT Analytics, Crop Science Division, Bayer Company, Saint

Louis, MO, United States of America

‡ Senior Author

* nehorai@wustl.edu

Abstract

In this paper we define the concept of the Machine Learning Morphism (MLM) as a funda-

mental building block to express operations performed in machine learning such as data

preprocessing, feature extraction, and model training. Inspired by statistical learning, MLMs

are morphisms whose parameters are minimized via a risk function. We explore operations

such as composition of MLMs and when sets of MLMs form a vector space. These opera-

tions are used to build a machine learning workflow from data preprocessing to final task

completion. We examine the Mapper Algorithm from Topological Data Analysis as an MLM,

and build several workflows for binary classification incorporating Mapper on Hospital Read-

missions and Credit Evaluation datasets. The advantage of this framework lies in the ability

to easily build, organize, and compare multiple workflows, and allows joint optimization of

parameters across multiple steps in an application.

1 Introduction

In this paper, we leverage the concept of morphisms to construct a general structure that repre-

sents all type of data operations including data preparation, feature extraction, and mapping to

outcome of interest. We call these fundamental building blocksMachine Learning Morphisms
(MLMs). We describe an entire workflow, from data preparation to final task evaluation, in a

single equation featuring a composition of MLMs. This allows data scientists to easily keep

track of the workflow, and provides a modular framework for workflow construction and

comparison. Our framework was inspired by the minimization framework in statistical learn-

ing theory [1] and the composition of functions used by artificial neural networks [2]. The

concept of morphisms was referenced in [3] as a mapping between human behavior and

machines. However, to the best of our knowledge, expressing a sequence of data operations as

a single composition of morphims is a novel construction. This construction allows us to easily

build and compare workflows across a data set (or collection of datasets), clearly present and

interpret the end results, and gives interesting possibilities for joint optimization over the

paramters of every step in a workflow.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cawi E, La Rosa PS, Nehorai A (2019)

Designing machine learning workflows with an

application to topological data analysis. PLoS ONE

14(12): e0225577. https://doi.org/10.1371/journal.

pone.0225577

Editor: Paweł Pławiak, Politechnika Krakowska im

Tadeusza Kosciuszki, POLAND

Received: February 4, 2019

Accepted: November 8, 2019

Published: December 2, 2019

Copyright: © 2019 Cawi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data for Hospital

Readmissions cannot be shared publicly because

of HIPPA Regulations. Data transfer requests can

be submitted to the Washington University Joint

Research Office for Contracts (https://research.

wustl.edu/offices/jroc/) and/or the corresponding

author for researchers who meet the criteria for

access to confidential data. German Credit Data is

available at the Open ML Repository: https://www.

openml.org/d/31.

Funding: E.C. was supported by DGE-1745038,

National Science Foundation Graduate Research

http://orcid.org/0000-0002-9055-9865
https://doi.org/10.1371/journal.pone.0225577
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225577&domain=pdf&date_stamp=2019-12-02
https://doi.org/10.1371/journal.pone.0225577
https://doi.org/10.1371/journal.pone.0225577
http://creativecommons.org/licenses/by/4.0/
https://research.wustl.edu/offices/jroc/
https://research.wustl.edu/offices/jroc/
https://www.openml.org/d/31
https://www.openml.org/d/31

To illustrate this framework, we examine the specific case of binary classification, with

imbalanced classes and hybrid continuous-categorical data. We examine the use of the Topo-

logical Data Analysis (TDA) algorithm Mapper [4] as an MLM, and build a workflow using

Mapper to train an ensemble of classifiers. We compare workflows using Mapper to other

workflows in numerical experiments on two real world datasets. Further, Mapper is generally

used for feature selection and qualitative visual analysis, so our approach represents an innova-

tive use of the algorithm.

The rest of this paper is organized as follows. Section II introduces the MLM, and defines

several operations. In Section IV, we build and compare several workflows on two datasets,

and in Section V we present some final thoughts and directions for future work. Table 1 gives

the general form for notation used for spaces, functions, and other structures used in the

paper.

2 Mathematical nomenclature for machine learning workflows

2.1 Statistical learning overview

To provide motivation and set up the class of problems we are interested in, we present a basic

overview of the supervised statistical learning problem. In this problem, measurements, obser-

vations, or data are gathered with the goal of constructing a mathematical relationship

between the data and an outcome of interest. Miescke and Liese [5] define the sample space as

a pair ðS;UÞ where S ¼ X� Y is a space where the dataX and outcomes Y can be observed,

and U is a σ−algebra containing all subsets of S relevant to the problem. Elements s 2 S are

the realizations of a random variable S for some underlying probability space (O, F, PO).

Here PO is a probability measure on a set O and σ-algebra F, and the mapping S : Ω! S is

measurable [5]. Let the set of n realizations of S be denoted as S 2 S� S� � � � � S, where we

call S� S� � � � � S the statistical space. The elements of S are data points or samples.
We will denote the realizations of the outcome of interest as Y 2 Y� Y� � � � � Y ¼ Yn,

and we will call the realizations of the features as X 2 X� X� � � � � X ¼ Xn. In [1], Vapnik

et al. give three criterion for a supervised learning problem. The first is the underlying distribu-

tion of the features, P(X = x). Next is the unknown conditional distribution P(Y = y|X = x).

Finally, given a parameter space Θ with elements p, denote the function

F : X! Y; ŷ ¼ Fðx; pÞ ð1Þ

used to approximate P(Y = y|X = x) as a learning machine. The parameters p are learned using

a loss function

L : Y� FðXÞ ! R; l ¼ Lðy; Fðx; pÞÞ ð2Þ

as a measure of discrepancy between the predictions F(x;p) and the observed values y.

Table 1. Notation for sets, spaces, functions, etc used throughout the paper.

Notation Meaning Example

Script Capital Space S
Bold, Non-Italic Set X

Bold, Italic, Lower Case, Index Array x, x1, y

Capital Italic Function P(�)

Italic, lower case Scalar n

https://doi.org/10.1371/journal.pone.0225577.t001

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 2 / 26

Fellowship Program, nsf.gov, The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. P.S. La Rosa is supported by Bayer

Company in St. Louis, MO. The funder provided

support in the form of for author P.S. La Rosa, but

did not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

this author are articulated in the “author

contributions” section.

Competing interests: P.S. La Rosa has an

affiliation to Bayer Company in St. Louis, MO. This

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0225577.t001
https://doi.org/10.1371/journal.pone.0225577

Then define the expected risk function as:

R : Y! R; r ¼ Rðp;X;Y; FÞ ¼
Z

S
LðY; FðX; pÞÞdPðX;YÞ ð3Þ

where P(X = x, Y = y) = P(Y = y|X = x)P(X = x) is the potentially unknown probability measure

on X and Y. This represents the expected value of the lost function across all realizations, and

the optimal parameters are defined as:

p� ¼ arg min
p2Y

Rðp;X;Y; FÞ ð4Þ

Statistical learning theory has a rich history, and the properties of learning machines are widely

studied and researched [6]. For example, Linear Regression [7], Support Vector Machines

(SVMs) [8], and Neural Networks [9] all use this optimization framework with different

choices of learning machine, loss, and risk functions to train their parameters. In practice the

parameters are learned by approximating Eq 3 with an empirical risk function [10] defined on

the realizations:

�R : Y! R; �r ¼
1

n

Xn

i¼1

Lðyi; Fðxi; pÞÞ ð5Þ

and the optimal parameters are given by:

�p� ¼ arg min
p2Y

�Rðp;X;Y; FÞ ð6Þ

Empirical risk is a valid approximation for the expected risk when Eq 5 converges to Eq 3 in

probability as n goes to1. The conditions for this convergence are discussed thoroughly in

[10], [7], and [1].

Learning workflows consist of a sequence of operations acting on the realizations in the sta-

tistical space. We distinguish two types of operations in these workflows. The first set consists

of processes such as standardization and sampling, which help guarantee the convergence of

the empirical risk function to the continuous risk function defined in Eq 3. The second set of

operations learn the parameters of the learning machine F, which can itself be defined as a

composition of operations acting on the sample space. These operations are often separated

into stages such as preprocessing, feature extraction/selection, model training, etc., and it can

be difficult to understand what is actually happening to the original data or if one has built the

best workflow for the task at hand.

The field of Automated Machine Learning seeks to address this challenge by algorithmically

finding the best workflow. Packages such as TPOT [11] and auto-sklearn [12] create wrappers

around the popular scikit-learn package in python, while Auto-WEKA [13] performs hyper-

parameter optimization over the WEKA platform [14]. TPOT constructs a graphical model of

a workflow, and then uses a genetic algorithm to search the space of possible workflows [11],

Auto-WEKA uses a bayesian framework to iteratively optimize model hyperparameters. Auto-

sklearn builds off of Auto-WEKA, but also incorporates model performance on past datasets

and creates ensemble models out 15 classifiers available in scikit-learn [12].

In our approach, we define a fundamental building block based off the idea of learning

machines and risk minimization in statistical learning theory called theMachine Learning
Morphism (MLM), that can be used to systematically build and analyze each step in a machine

learning application, and keep track of the data at each step in the process. Since some data

operations do not necessarily fit the mathematical definition of functions, for example splitting

the data into multiple training and hold-out sets for cross-validation, we use morphisms as the

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0225577

building block rather than functions. This approach allows us to define a workflow as a com-

position of morphisms acting on the sample space, whose parameters are learned using a risk

function acting on the statistical space.

2.2 The Machine Learning Morphism

Definition 1. Let:

• X be an input space, whereX is part of a sample space fS;Ug as defined in section 2.1,

• Y be an output space,

• F : X! Y a morphism from input to output spaces, with parameters p 2Θ, and

• P(p) a probability distribution on p representing prior knowledge of the parameters

• �R : Θ! R an empirical risk function.

Then theMachine Learning MorphismML : X! Y is defined as:

ML : X! Y; ŷ ¼ Fðx; p�Þ ð7Þ

where

p� ¼ arg min
p2P

�Rðp;X;Y; Fð�; pÞ; PðpÞÞ ð8Þ

and X � Xn and Y � Yn are n realizations from the input and output spaces used to learn the

parameters.

Note 1: The choice of a morphism with an associated empirical risk function and parameter

prior represents a unique building block. We consider two MLMs with the same morphism F
but different risk functions and/or priors to be different morphisms.

Note 2: For the purposes of simplicity we assume all of the risk functions used after this

point are empirical risk functions acting on the training data rather than the expected risk

function, and will refer to empirical risk functions as “risk functions”.

Note 3: We present linear regression, standardization, and other data operations as MLMs

in Table 2.

The Machine Learning Morphism consists of the morphism F, whose parameters have been

optimized over an empricial risk function �R on the set of realizations from the statistical space.

The risk function also performs any necessary operations on the data in the statistical space to

ensure convergence in probability to the expected value risk function in Eq 3. One example of

this is applying sampling techniques such as oversampling, undersampling, SMOTE [15], or

ROSE [16] to the training data in a classification task. This helps “learn” a better representation

of the training data conditioned on each class.

The morphism F represents an operation acting on data, such as data standardization, fea-

ture extraction, or regression, In supervised tasks, we assume that the realizations of Y are

matched to corresponding realizations of X. In an unsupervised task or if training outputs are

unknown (for example, k-means clustering), the realizations Y = ; are empty.

Consider the example of least squares linear regression. The input spaceX is Rm. Denote

X 2 Rn�m as the matrix made from n realizations of X. The output space Y isR and denote the

n-dimensional vector of all output realizations as Y. We assume no prior knowledge on the

parameters of F, so we use the improper prior PðpÞ ¼ 18p 2 Rm. The morphism F is defined

as:

Fðx; pÞ ¼ x � p ð9Þ

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 4 / 26

https://doi.org/10.1371/journal.pone.0225577

is the dot product of x and p 2 RM, and the empirical risk function R is the sum of squared

error across all of the datapoints:

�Rðp;X;Y; Fð�; pÞ; PðpÞÞ ¼k Y � Xp k2

2
ð10Þ

where k�k2 is the standard 2-norm for real-valued vectors. The Machine Learning Morphism

is

MLðxÞ ¼ x � p� ð11Þ

where p� ¼ arg min k Y � Xp k2
2
¼ ðXTXÞ� 1XTY is the optimal least squares solution, and

XT 2 Rm�n is the transpose of X.

Continuing the example of linear regression, many times the data matrix X consists of

shifted and scaled columns. The process of shifting and scaling is an MLM. The input space is

Rm, and the output space isRm. The parameter p is a vector containing shifting constants

c 2 Rm and scaling constants s 2 Rm, and again P is the non-informative prior. The morphism

Fðx; pÞ ¼ ðx � cÞdiagðsÞ� 1
ð12Þ

where diag(s) is the diagonal matrix whose main diagonal is s. This morphism shifts and scales

each element of x. The risk function depends on the type of scaling implemented. For example,

the goal of standardization is to transform data into standard Gaussian random variables to

ensure that each element of a data point lies on the same scale for comparison, statistical tests,

or model training later on in the workflow. For standardization, one choice of empirical risk

Table 2. Common data operations expressed as MLMs.

Operation Input Space X Output Space Y Parameters Morphism Empirical Risk Function

Data Encoding Abstract Space X Rm embedding parameters Injective map:

F : X,!Rm
trivial (one—hot encoding)

or cost function, e.g. from [20]

PCA Rm Rc c 2 N
A 2 Rm�c

x A k X � XAT k2
F

Such that: AAT = I

Linear Regression Rm R p 2 Rm x � p k Y � Xp k2

2

Logistic Regression Rm [0, 1] p 2 Rm Fðx:pÞ ¼ 1

1þexpð� x�pÞ Maximum Likelihood
QN

i¼1
Fðxi; pÞ

yi ð1 � Fðxi; pÞÞ
1� yi

SVM Rm {−1, 1} ðw; bÞ 2 ðRm;RmÞ
slack variables

s 2 Rm, c 2 R

w � x − b kwk2 + cksk2

Decision Tree Set X {y1, y2, . . ., yk}
for finite k

splitting criterion Tree Gini Impurity
PN

j¼1
1 �

P1

i¼0
PðYj ¼ ijXj ¼ xjÞ

2

Information Gain see [21]

Standardization Rm Rm ðc; sÞ 2 ðRm;RmÞ (x − c)diag(s)−1 KL Divergence, Eq 13

Adaboost Rm R parameters associated

with weak learners

Pk
i¼1
FiðxÞ Exponential Loss [22]:

PN
i¼1

expð� yi
Pk

j¼1
FjðxiÞÞ

Neural Networks Rm R Weights in Rw F = Fk(Fk−1(Fk−2(. . .F1(x))))) Loss functions,

examples include

Mean Squared Error:

kY − F(X)k2,

Cross Entropy:
� 1

N

PN
i¼1
yilogðFðxiÞÞ�

(1 − yi)log(1 − F(xi)) [23]

Model Evaluation Collection Vk
Y R or Rk Evaluation parameters

Test/validation set

Performance Metric

e.g. Accuracy, Sensitivity, etc.

Complexity Criterion

or other objective

e.g. Aikeke Information Criterion

https://doi.org/10.1371/journal.pone.0225577.t002

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0225577.t002
https://doi.org/10.1371/journal.pone.0225577

function is

�Rðp;X;Y; Fð�; pÞ; PðpÞÞ ¼ KLðPððX � 1m � cTÞdiagðsÞ� 1
Þ;N ð0; InÞÞ ð13Þ

where KL(�) is the KL divergence [17] between the distribution of their shifted and scaled data

and the standard multivariate normal distribution, In is an n × n identity matrix, and� is the

Kronecker product. Let �x be the vector of column means of X, and ~x be the vector of standard

deviations of each columns of X. If the data follow a multivariate normal distribution, then the

optimal parameters in this case are c ¼ �x and s ¼ ~x.

Because we specify a prior distribution on parameters in Definition 1, we can express Bayes-

ian operations as MLMs. Consider the Naive Bayes classifier [18] with input space is a set X.

Similarly, the output space is the set Y ¼ fy1; :::; ykg for k<1. Assuming conditional inde-

pendence between the input data, the morphism chooses the class which maximizes the poste-

rior distribution, arg max
i2f1;:::;kg

PðY ¼ yijX ¼ x; p
�Þ, and the empirical risk function is 0-1 loss

[18]. The parameter prior P(p) is a distribution on the parameters of the likelihood P(X = x|Y
= y; p) and prior P(y; p).

Now that we shown examples of three MLMs, it is natural to investigate how they relate to

one another. Property 1 establishes that for certain risk functions, learning the parameters for

one MLM can be decomposed into learning the parameters of two MLM’s with lower dimen-

sional parameter spaces and potentially lower dimensional input spaces.

Property 1. First define two separate MLMs with the same output space: ML1 with input

spaceX1, output space Y, parameter prior P(p1), morphism F1, risk function �R1; and ML2

with input spaceX2, output space Y, parameter prior P(p2), morphism F2, risk function �R2.

Let the Θ1 and Θ2 represent the respective parameter spaces for p1 and p2.

Let� represent a closed operation defined on Y, X3 ¼ X1 [X2 be an input space, and p3 =

(p1, p2) 2 Θ1 × Θ2 be a parameter vector. Define ML3 as an MLM with input spaceX3, output

spaceY, parameter prior P(p3), morphism F3(x3; p3) = F1(x1; p1)�F2(x2; p2), where x1 2 X1,

x2 2 X2, and x1[x2 = x3. Denote the risk function for ML3 as �R3ðp3;X3;Y; Fð�; p3Þ; Pðp3ÞÞ.

Note that the parameter prior P(p3) is the joint distribution of p1 and p2.

If the risk function �R3 has the form

a�R1ðp1;X1;Y; F1ð�; p1Þ; Pðp1ÞÞ þ b�R2ðp2;X2;Y; F2ð�; p2Þ; Pðp2ÞÞ, where a; b 2 Rþ, then

ML3ðx3Þ is equivalent to ML1ðx1Þ �ML2ðx2Þ.

Proof: In appendix.

Examples of closed operations between MLMs when Y ¼ R include addition, multiplica-

tion of two MLMs (for example multiplying probability density functions), and division. If the

output space is binary, then Boolean logic operations are valid.

In the example of linear regression, the least squares risk function can be decomposed into

two lower dimensional least squares risk functions if the training realizations X form an

orthogonal matrix. This could be a property of the feature space or the result of applying a

transformation such as principal component analysis. To see this decomposition, let ML3 be

the MLM representing linear regression trained over X, with regression coefficients p. Split

the parameters p ¼
p1

p2

" #

where p1 2 R
c and p2 2 R

m� c and the training matrix into X =

[X1X2] where X1 is the first c columns of X, and X2 contains the remaining columns. Let ML1

andML2 represent linear regressions trained on X1 and X2 respectively using empirical risk

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 6 / 26

https://doi.org/10.1371/journal.pone.0225577

functions �Ri ¼k Y � Xipi k2
2
� 1

2
k Y k2

2
for i = 1, 2. For ML3, the risk function is:

�R3 ¼k Y � Xp k2

2
¼ ðY � XpÞTðY � XpÞ ¼ ð14Þ

�
1

2
k Y k2

2
þ k Y � X1p1 k

2

2
�

1

2
k Y k2

2
þ k Y � X2p2 k

2

2
¼ �R1 þ

�R2 ð15Þ

which clearly satisfies Property 1. In the derivation (provided in the appendix) we leverage the

fact that XT
1
X2 and other cross terms form a zero matrix due to the orthogonality of X. In this

case each regression coefficient can be found by solving it’s own independent one dimensional

least squares problem, which could be easily parallelized for a very fast regression.

IfY is a vector space, then ensemble models featuring linear combinations of independently

trained MLM’s can be decomposed into problems with lower dimensional parameter spaces.

For example in random forests each tree is independently trained (common risk functions

include Gini Impurity or Information gain) on random and possibly overlapping subsets of

the feature space using the random subspace method [19]. The parameters of each tree are the

splitting criterion, and the output of a random forest is the average response of all trees in the

forest, which is used either as a majority vote or class probability. Because the trees are trained

independently of each other, we can define a risk function for the random forest as the sum of

the Gini Impurity in each tree and use Property 1 to decompose the forest into its individual

trees.

We are also interested in sequential operations using MLMs, so we need a notion of compo-

sition. For example, we wish to first standardize our data, and then perform linear regression.

Definition 2. Let ML1 and ML2 be two MLMs such that the output space of ML1 is the

same as the input space of ML2. We define the compositionML3 ¼ML2 �ML1 as a MLM

with structure:

Input Space : X1 ð16Þ

Output Space : Y2 ð17Þ

Parameter Prior : PðpÞ≔Pðp1; p2Þ ð18Þ

Learning Morphism : Fðx; pÞ ¼ F2ðF1ðx; p1Þ; p2Þ ð19Þ

Empricial Risk Function : �R2ðp2;X;Y; Fð�; p1Þ; PðpÞÞ ð20Þ

and the learned parameters are given by

p� ¼ arg min
ðp1 ;p2Þ

�R2ðp2;X;Y; Fð�; p1Þ; Pðp1; p2ÞÞ ð21Þ

The output morphisms is a composition of F1 and F2 follows the general form for composi-

tion of morphisms, and reflects the sequence of transformations on data in a machine learning

application. The risk function used in this definition optimizes the task over every available

parameter. This was motivated by the idea that this risk function is oriented to the task or

machine learning goal, so there is an opportunity to improve task performance by jointly opti-

mizing the parameters.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 7 / 26

https://doi.org/10.1371/journal.pone.0225577

In our example of standardization (ML1) followed by linear regression (ML2), ML3 ¼

ML2 �ML1 has structure:

X ¼ Rm ð22Þ

Y ¼ R ð23Þ

Fðx; ðp; c; sÞÞ ¼ ðx � cÞdiagðsÞ� 1
� p ð24Þ

�Rðp;X;Y; Fð�; ðp; c; sÞÞ;Pðp; c; sÞÞ ¼ ð25Þ

k Y � ðX � 1m � cTÞdiagðsÞ� 1p k2

2

In linear regression, standardization is extremely common, and MLMs such as PCA

(shown in section 3) require standardized input data. However, in some applications it may be

of interest to give more weight to one column than another, and exploring non-standard or

non-linear scalings may be an interesting future application.

2.3 Collections of morphisms

In machine learning, we are often interested in ensembles of models, evaluating model perfor-

mance, and model selection. To incorporate these tasks into the MLM framework, we need a

notion of multiple MLMs gathered together.

Definition 3. Given MLMs ML1, ML2, . . .,MLk, then the collection CML of MLMs is the

set:

CML≔ fMLig
k
i¼1

ð26Þ

We call the number of morphisms, k, the dimension of CML.
In the numerical experiments presented in Section IV, we use the idea of collections for

model selection and evaluation. Once data has been collected, it is standard practice in

machine learning to split the data into a Training Set used to develop a workflow and choose

optimal parameters, a Validation Set used to assess and tune model performance during devel-

opment, and a Testing Set used to assess performance after development is completed [24].

Evaluating the performance of a model is a MLM, which we will denote MLeval.

The input space is the set of all collections of k-dimensional MLMs with output space Y,

which we will denote Vk
Y. The output space (often R or Rk) represents the performance of the

model(s) under consideration.

There are two major sets of parameters. The first are any parameters p1 required by the

morphisms in the collection, which have prior P(p1). The second are the parameters of the

evaluation function, p2, which have prior P(p2). Assuming these parameters are indepentent,

the final parameter prior is P(p1)P(p2).

The morphism evaluates the performance of the collection of MLMs on a new set of realiza-

tions. Examples include sensitivity, the Reciever Operating Characteristic (ROC) [25], or the

Aikeke Information Criterion (AIC) [26]. A model selection morphism chooses the MLM in a

collection that maximizes the chosen performance measure. The risk function performs what-

ever optimization is required by the performance measure, such as complexity criterion.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0225577

2.4 Machine learning workflow

Now that we have established operations and composition on MLMs, we define theMachine
Learning Workflow (MLW or “workflow”).

Definition 4. AMachine Learning Workflow is a finite composition of kMLMs

M ¼MLk �MLk� 1 � . . . �ML2 �ML1, with initial input spaceX and final output space

Y.

This definition is inspired by the formulation of artificial neural networks as compositions

of functions. Instead of sigmoids, our composition represents different steps in a machine

learning application such as data preprocessing, feature extraction, and model training. A

workflow can contain any number of MLMs, and each MLM could possibly be broken down

into more MLMs. This representation allows us to present an application with a single master

equation, which keeps track of the parameter space, and optimizes over a single risk function.

This has advantages in both presentation and organization. If we are evaluating several work-

flows over the same outcome space (for example, models created for the Netflix Competition),

we can use the MLM framework to create an ontology of workflows for evaluation and

comparison.

2.5 Binary classification use case

We are specifically interested in the case when data points x 2 X are sets composed of both

real-valued continuous variables and categorical variables, the output space isY ¼ f0; 1g
(binary classification). Further, we are interested in the case when there is a class imbalance,

e.g. significantly more observed samples where y = 0 than y = 1. We were developing a

machine learning model to identify hospital patients at high risk of 30-day unplanned readmis-

sion, which occurs when patients come back to the hospital within 30 days of discharge. We

developed this framework to better keep track of how the data was manipulated, and discov-

ered a potentially useful application of the Topological Data Analysis algorithm Mapper as an

MLM. The rest of this paper will describe workflows we developed in terms of the MLM

framework.

3 TDA Mapper as a MLM

In this section we present a brief overview of the TDA Mapper algorithm, show that it fits into

the MLM framework, and build some example workflows.

3.1 Mapper algorithm

Topological Data Analysis assumes that the space X can be endowed with a collection of sub-

setsO. Elements o 2 O satisfy [
i
oi 2 O and \

n<1

i¼1
oi 2 O, and are called open sets. Then the

ordered pair fX;Og, forms a Topological Space. TDA builds topological spaces on top of data

points, and evaluates the shape of the computed spaces [27]. The critical features are closed

loops in various dimensions, which are invariant to rotation or multiplicative scaling. WhenX
is also endowed with a probability space, the topological features are also endowed with a

probability space [28], and can be used in machine learning. TDA has been used as a novel

visualization tool in bio-medical applications [29] [30], text mining [31], and remote sensing

[32].

One visualization tool developed for TDA at Stanford is the Mapper Algorithm [4]. It cre-

ates a graphical representation of the data that keeps an equivalent topological structure, and

has been used in a wide variety of applications [33] [34]. Mapper is usually used as a method

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 9 / 26

https://doi.org/10.1371/journal.pone.0225577

for clustering and visualization. Interesting clusters or patterns are used as a feature selection

method to reduce the dimensionality of data before training learning models.

To construct the Mapper graph, first define a filtration function A : X! R (note: it isn’t

necessary for the range to be R, but we’re using it here for simplicity). Then define an equiva-

lence relation *A such that x1 *A x2 whenever A(x1) = A(x2), which collapses every level set

of A to a single point. The Reeb Graph is the quotient space of X under the relation *A. Math-

ematically, the Mapper algorithm computationally approximates the Reeb Graph by comput-

ing the nerve of a refined pullback of an open cover, O � O, of AðXÞ. Practically, Mapper

assigns datapoints to O, and then performs clustering within each member of the open cover.

Then it creates graph G with a set of nodes Ni 2 N representing the clusters, and a set of edges

E where an edge eij means that two clusters have non-empty intersection. It has been proven to

converge exactly to the Reeb graph if O is refined enough [35]. The full algorithm is described

in [4], and rough pseudocode of computational algorithm is detailed in Algorithm 1.

In topology, an abstract simplicial complex is a family of non-empty finite sets that is closed

when taking non-empty subsets. One of the main ideas of TDA is to create abstract simplicial

complexes from sets of data [36]. The pullback operator on an open cover has a more compli-

cated definition that is out of the scope of this paper, but the nerve of an open cover is a repre-

sentation of the open cover as an abstract simplicial complex. The Mapper algorithm

computes the nerve of theO using the procedure in Algorithm 1, and the result is a graph

showing the “shape” of the data [4].

Algorithm 1 Description of the TDA Mapper Algorithm by Singh, Memoli, and Carlsson

et al.
Input: • Data X, distance metric D on X, filtration function A : X! R

• Number of intervals k, number of bins when clustering b, per-
cent overlap o
Output: Graph G, nodes ni 2 N, edges eij 2 E
1: N ;
2: E ;
3: Compute Y = A(X)
4: Generate an open cover of Y with k open intervals fIjg

k
j¼1
, with area

aI, such that Ij \ Ij+1 6¼ ; and the area of each intersection is o�aI
5: for j = 1 to k do
6: Perform clustering such as k-means, using b clusters, on x 2 X \
A−1(Ij)
7: append each cluster Ni, for i = 1, 2, 3. . . to N
8: end for
9: for i, j 2 N do
10: if Ni \ Nj 6¼ ; then
11: Append edge eij to E
12: end if
13: end for
14: return N, E

3.2 Machine learning workflows with Mapper

The set of nodes, N = {N1, . . ., Nw}, output by Mapper, represents a cover, fXig
w
i¼1

of X. Taking

Mapper as a morphism from X to the set of all covers of X, the Mapper algorithm is an MLM

with structure:

• Input space is the topological space ðX;OÞ

• Output space is the set of all open covers of X

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 10 / 26

https://doi.org/10.1371/journal.pone.0225577

• A Parameter Prior over the parameters in algorithm 1 P(D, A, k, b, o), representing prior

knowledge or choices of the proper distance metric, filtration function, etc.

• Morphism: Nerve of the refined pullback of an open cover, O, of AðXÞ

• Risk function: Graph Edit Distance [37]

Because Mapper approximates the Reeb Graph, we use the graph edit distance (GED) [37]

between Mapper and the “true” Reeb Graph as the risk function for the Mapper MLM. The

graph edit distance between graphs G1 and G2 summing up the cost of the operations neces-

sary to transform G1 into G2. These operations commonly include adding/deleting edges,

nodes, and changing the labels of nodes. Formally if B = [B1, B2, . . ., Bk] contains the graph

operations necessary to transform G1 into G2 and C : B! Rþ is a cost function, then the

graph edit distance is:

�R ¼ GEDðG1;G2Þ ¼
Xk

i¼1

CðBiÞ ð27Þ

In Section IV, we use grid search to search through the parameters of Mapper. To bring this

MLM closer to the realm of statistical learning theory, future work could extend the statistical

analysis from [35] to define an computationally tractable loss function and more informative

parameter prior. However, in the context of the larger workflow, the choice of risk is less rele-

vant because the parameters are optimized over the final risk function.

We build an example machine learning workflow with Mapper and logistic regression as

follows:

• The input space is X, which has training realizations XTR, validation realizations XV, and

testing realizations XTS.

• The output space isY ¼ f0; 1g.

• ML0: Dummy coding the original data matrix, embeds the data into Rm.

• ML1: Mapper MLM on trained on realizations XTR:

• If the first principal component is the filtration function a, then this MLM features a com-

position with the PCA MLM.

• For computational reasons down the line, we remove vertices with less than 40 data points,

so the output is not a total cover of X. When the first principal component is used this

seems to have the effect of removing outliers with high/low PCA scores.

• ML1 outputs a set of spaces fXig
k
i¼1

, with training realizations separated into each group

fXTR;i � Xig

• ML2 ¼
Pw

i¼1
CiðxÞMLi

2
, where each MLi

2
has structure:

• Input Space: Rm,

• Output Space:Y ¼ ½0; 1�, representing the class probability P(y = 1),

• Morphism: Composition of:

• Feature extraction, e.g. PCA,

• A learning machines, e.g. Logistic Regression trained on XTR,i

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 11 / 26

https://doi.org/10.1371/journal.pone.0225577

• Parameter Prior: Gaussian priors on the regression coefficients for each node, uniform pri-

ors on the parameters of the Mapper MLM.

• Risk function: Maximum likelihood, combined with sampling to address class imbalance,

e.g. oversampling, undersampling, ROSE [38], or SMOTE [15]. Additionally, model

hyperparameters can be selected with cross validation.

• Ci : X! R is a weighting function depending on where points lie in the input space,

related to which nodes of the Mapper graph are “active” for a given data point.

• ML3: A decision threshold with

• Input space: X ¼ ½0; 1�

• Output space: Y ¼ f0; 1g

• Morphism:

y ¼ 1 if x � T

y ¼ 0 else

(

ð28Þ

• Parameter Prior: prior information of threshold T 2 [0, 1]

• Risk Function: Method to choose probability threshold, e.g. choosing an optimal threshold

of a ROC curve over cross validation sets.

The full workflow is:

M : X! f0; 1g ¼ML3 �ML2 �ML1 �ML0 ð29Þ

This MLW creates and optimizes a separate workflow MLi
2

for each node created by the

Mapper graph. Then, we leverage Property 1 and the fact that each workflow outputs class

probabilities to create a weighted ensemble of workflows. Fig 1 shows a block diagram represe-

nation of the full workflow using Mapper. Final model evaluation uses M as an input to an

evaluation MLM using realizations from the test set XTS. The weights Ci(x) in ML2 represent

an interesting choice. Intuitively, weights should be non-zero only when a point lies in Xi, so

only a portion of the models are “active” for a given point. Because they are summing elements

of a probability space,
Pw

i¼1
CiðxÞ ¼ 1 for all x. Options for the weighting parameters include:

• Assign a weight of 1 to the “closest” node and 0 to all others.

• Assign equal weight to all nodes to which the point belongs, and 0 to all others.

• Assign weight inversely proportional to the distance from the center of the interval assigned

to that node.

• Assign weight proportional to the cross validation metrics of each model, i.e. models that

perform better on the training data are assigned higher weights.

• Train weights within cross validation by defining a loss function based on the metric of

interest.

The Mapper algorithm could be replaced with another clustering algorithm such as k-

means, or any other mapping that chooses subsets of data. We chose the Mapper algorithm

because the subsets it generates have some appealing properties. First, the points in one Xi are

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 12 / 26

https://doi.org/10.1371/journal.pone.0225577

all “close” in the sense of the filtration function, but may have a different internal structure

than another node to which they are not connected. A column of Xi may be positively corre-

lated with the outcome variable, but the same column of Xj may be negatively correlated.

When considered in a model over the entire dataset, these correlations may “compete” with

each other.

Furthermore, with the proper choice of a filtration function, some nodes may have a higher

incidence of the outcome variable. In previous literature this was done in order to identify

Fig 1. Block diagram of Eq 29, showing how a workflow is created for each node. The first step is one-hot encoding

the data to embed it intoRM . The next step computes the Mapper graph of the data. Then models are trained on each

node, and summed. Finally, a decision function outputs the final class prediction.

https://doi.org/10.1371/journal.pone.0225577.g001

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 13 / 26

https://doi.org/10.1371/journal.pone.0225577.g001
https://doi.org/10.1371/journal.pone.0225577

subsets with high minority prevalence for further study. By training a model only on that

node, we reduce some of the class imbalance on that set, theoretically increasing model perfor-

mance. Finally, many clustering methods do not produce overlapping clusters, but in [39],

training classifiers on overlapping cluster was shown to improve performance. The Mapper

algorithm allows for datapoints that fall into multiple nodes of the Mapper graph to contribute

information to each node’s model.

To evaluate the workflow M, use the workflow as input to an MLM that evaluates classifier

performance over new realizations from X (the testing set). In the next section we focus on

ROC area under the curve (AUC), Sensitivity, and Specificity as different training metrics.

4 Numerical experiments

4.1 Comparisons

We built several versions of Eq 29 across two real world datasets. The workflow breakdown is

as follows:

• Realizations: Always an 80/20 training/testing split.

• ML0: Dummy coding performed using the default parameters from the caret package.

• ML1: One of [Mapper, Identity (no transformations)]. For the Mapper graph, we used a

uniform prior on the number of intervals k from [5–20], the percent overlap o from [20%–

60%], and the number of bins when clustering from [5–30]. We fixed the filtration function

a as the first principal component, and the distance metric d as the gower metric, which

means we used a dirac delta as the prior for these parameters.

• ML2: Node Models:

• Feature Extraction: Used caret package in R [40] to perform one of: [no transformations,

PCA]

• Sampling: Used caret package in R to perform one of [no sampling, SMOTE, ROSE]

• Learning Machines: Used caret package in R to train one of [Logistic Regression, SVM,

Random Forests, AdaBoost [22]]

• Cross Validation: Used caret package in R to generate 10-fold cross validation sets to tune

model hyperparameters, such as the number of trees in the random forests.

• Weighting functions Ci: Points are assigned to nodes by computing the filtration function,

assigning to appropriate intervals and then finding the closest cluster within each interval.

Then weights were assigned to the one or two closest nodes. If two nodes are used, we use

either equal weights or weights proportional to the ROC performance on the validation

set.

• ML3 : Decision threshold function as defined in Eq 28.

Mapper graphs used the first principal component as the filtration function, and the other

parameters were tuned by grid search. Preliminary investigations with other filtration func-

tions on patient record data revealed that the first PC seemed to yield the best classifier perfor-

mance, so it was fixed as the filtration function for each experiment. These graphs tended not

to find any loops or interesting topological structures when using that particular filtration

function. However, there was usually a good spread with respect to the outcome variable

where some nodes have a high minority class occurence and others have very low.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 14 / 26

https://doi.org/10.1371/journal.pone.0225577

For the risk function, we optimized ML2 independently of the whole process, via methods

such as maximum likelihood (for Logistic Regression) using models from caret. The decision

threshold in ML3 and the parameters of the mapper algorithm were selected to optimize the

average ROC AUC over the hold-out sets from the cross validation. This was done via grid

search.

The results are grouped by the type of learning machine used in ML2. Each workflow uses

only one of these types, and experimenting with more involved model selection on different

nodes Xi is an interesting direction of future work. Every workflow tested was run with 10 dif-

ferent training/testing splits, and the resulting performance measures were averaged. The

workflows are named by Mapper/No Transformation, PCA (if applicatble), Sampling method

(if applicable), node weights (if applicable).

4.2 Hospital readmissions data

The original dataset used in development of this project is from a set of 776 medicare/medicaid

patients from Barnes Jewish Hospital in St. Louis, MO admitted between April 2015-April

2016. We seek to predict whether or not the patients will be readmitted into the hospital within

30 days after being discharged. The variables collected are: LACE Risk Score, presence of Dia-

betes, principal diagnoses from ICD9/10 codes, gender, ethnicity, zip code readmission rate,

length of stay, age, and presence of a primary care provider. 134 (17.3%) of the patients were

readmitted. In each run of the simulation, the data was divided into 621 training and 155 test

patients. Some descriptions of the population under study are given in Table 3. Tables 4–7

show the classification results for multiple workflows, themed by the type of classifier, averaged

over 10 runs. The chosen Mapper parameters were 10 intervals, 50% overlap, and 20 bins

when clustering. Typical Mapper graphs had 10 nodes, each with 40-200 patients per node.

We report the ROC AUC, Sensitivity, Specificity, and Accuracy for each model tested, but

Table 3. Descriptive table of patient data from Barnes Jewish Hospital.

Total Cohort

(N = 776)

Number Readmitted

(Total Readmissions = 134)

Congestive Heart Failure (CHF) 378 71

Chronic Obstructive Pulmonary Disease (COPD) 88 9

Acute Myocardial Infarction (AMI) 198 31

Pneumonia (PNA) 113 23

Male 420 74

White 472 76

Has Diabetes 142 32

65-70 years old (y.o.) 209 41

70-75 y.o. 174 30

75-80 y.o. 135 18

85+ y.o. 258 45.

Discharged Home 296 50

Disch. to

Skilled Nursing Facility

147 25

Disch. with Home Health 270 52

Low LACE Score (< 5) 30 3

Medium LACE Score (5-10) 231 27

High LACE Score (> 10) 515 104

Average Length of Stay (Days) 7.0 8.25

https://doi.org/10.1371/journal.pone.0225577.t003

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 15 / 26

https://doi.org/10.1371/journal.pone.0225577.t003
https://doi.org/10.1371/journal.pone.0225577

Table 4. Results for different workflows of logistic regression on hospital readmissions data, with standard deviations over n = 10 runs.

LR Workflow ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.49 (0.023) 0.58 (0.031) 0.48 (0.021) 0.49 (0.022)

No Transformation, SMOTE 0.64 (0.033) 0.62 (0.029) 0.67 (0.039) 0.66 (0.037)

No Transformation, ROSE 0.53 (0.041) 0.54 (0.044) 0.51 (0.045) 0.52 (0.045

PCA 0.58 (0.017) 0.68 (0.022) 0.45 (0.029) 0.49 (0.028)

PCA, SMOTE 0.49 (0.037) 0.64(0.035) 0.44 (0.034) 0.47 (0.034)

PCA, ROSE 0.45 (0.061) 0.50 (0.059) 0.55(0.065) 0.54 (0.063)

Mapper, No Transformations 0.61 (0.048) 0.62 (0.052) 0.53 (0.049) 0.55 (0.050)

Mapper, No Transformations, SMOTE 0.67 (0.066) 0.60 (0.055) 0.60 (0.064) 0.60 (0.062)

Mapper, No Transformation, ROSE 0.62 (0.073) 0.69 (0.076) 0.59 (0.078) 0.61 (0.078)

Mapper, Node PCA 0.55 (0.065) 0.62 (0.058) 0.50 (0.059) 0.52 (0.058)

Mapper, Node PCA, SMOTE 0.69(0.071) 0.62 (0.069) 0.78 (0.065) 0.75 (0.066)

Mapper, Node PCA, ROSE 0.61 (0.084) 0.58 (0.082) 0.63 (0.087) 0.62 (0.086)

https://doi.org/10.1371/journal.pone.0225577.t004

Table 5. Results for different workflows of SVMs for hospital readmissions data, with standard deviations over n = 10 runs.

SVM Workflow ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.63 (0.033) 0.65 (0.037) 0.6 (0.035) 0.61 (0.036)

No Transformation, SMOTE 0.59 (0.042) 0.65 (0.040)) 0.49 (0.046) 0.52 (0.044)

No Transformation, ROSE 0.55 (0.083) 0.80 (0.087) 0.44 (0.091) 0.50 (0.090)

PCA 0.64 (0.039) 0.69 (0.044) 0.58 (0.038) 0.60 (0.039)

PCA, SMOTE 0.61 (0.047) 0.58 (0.043) 0.58 (0.048) 0.58 (0.046)

PCA, ROSE 0.62 (0.058) 0.62 (0.049) 0.62 (0.054) 0.62 (0.053)

Mapper, No Transformations 0.53 (0.057) 0.58 (0.075) 0.48 (0.068) 0.49 (0.070)

Mapper, No Transformations, SMOTE 0.57 (0.079) 0.54 (0.072) 0.64 (0.076) 0.62 (0.075)

Mapper, No Transformation, ROSE 0.53 (0.086) 0.50 (0.081) 0.64 (0.088) 0.61 (0.086)

Mapper, Node PCA 0.50 (0.065) 0.62 (0.073) 0.49 (0.072) 0.51 (0.072)

Mapper, Node PCA, SMOTE 0.61 (0.077) 0.73 (0.083) 0.53 (0.089) 0.56 (0.088)

Mapper, Node PCA, ROSE 0.67 (0.092) 0.77 (0.095) 0.60 (0.088) 0.63 (0.089)

https://doi.org/10.1371/journal.pone.0225577.t005

Table 6. Results for different workflows of random forests for hospital readmissions data, with standard deviations over n = 10 runs.

RF Workflow ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.60 (0.047) 0.58(0.042) 0.57 (0.049) 0.57 (0.046)

No Transformation, SMOTE 0.52 (0.053) 0.46 (0.052) 0.75 (0.055) 0.70 (0.055)

No Transformation, ROSE 0.5 (0) 0 (0) 1(0) 0.827 (0)

PCA 0.56(0.051) 0.50 (0.066) 0.63 (0.068) 0.61 (0.068)

PCA, SMOTE 0.57 (0.053) 0.62(0.051) 0.60 (0.058) 0.60(0.056)

PCA, ROSE 0.53 (0.072) 0.54 (0.071) 0.56 (0.076) 0.56 (0.075)

Mapper, No Transformations 0.49 (0.078) 0.46 (0.084) 0.60 (0.081) 0.58 (0.082)

Mapper, No Transformations, SMOTE 0.55 (0.087) 0.58 (0.075) 0.54 (0.082) 0.55 (0.080)

Mapper, No Transformation, ROSE 0.51 (0.093) 0.54(0.116) 0.51 (0.143) 0.52 (0.137)

Mapper, Node PCA 0.57 (0.069) 0.62 (0.076) 0.62 (0.086) 0.62 (0.083)

Mapper, Node PCA, SMOTE 0.57 (0.084) 0.46 (0.095) 0.71 (0.091) 0.67 (0.092)

Mapper, Node PCA, ROSE 0.64 (0.110) 0.65 (0.099) 0.61 (0.091) 0.62 (0.097)

https://doi.org/10.1371/journal.pone.0225577.t006

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 16 / 26

https://doi.org/10.1371/journal.pone.0225577.t004
https://doi.org/10.1371/journal.pone.0225577.t005
https://doi.org/10.1371/journal.pone.0225577.t006
https://doi.org/10.1371/journal.pone.0225577

note that accuracy in this case is biased heavily towards the specificity score since negatives

make up 83% of the patients.

The Mapper graphs were tuned using the first principal component of the entire dataset as

the filtration function, a typical graph is shown in Fig 2. Based off of a grid search, a bin overlap

of 40-50% yielded roughly the same results, with 10 intervals as the clustering parameter. Each

run produced 5-10 nodes, with readmission ranging from 5%-30%.

This dataset catalyzed the use of the Mapper graph in the ML workflow. Models trained on

the entire dataset do not perform well, and we were aiming to build a workflow that improved

upon the LACE score. LACE is a combination of Length of previous hospital stays, Acuity of

admission (emergency/not emergencey), the Charlson Comorbidity, and number of prior

Emergency Department visits, and is the most used tool to predict readmissions risk. However,

our population has a huge majority of “high” risk patients, and logistic regression trained on

lace results in a ROC AUC of 0.59, with the optimal sensitivity at 0.54, which only correctly

predicts slightly more than half of all readmissions. Applying Mapper in to our workflow

resulted in large performance increases over the LACE model.

On the Logistic Regression, the Mapper algorithm with PCA computed for individual

nodes and SMOTE sampling outperforms all other workflows, with Mapper/No Transforma-

tion (NT) and NT + SMOTE also showing higher performance than others. Sensitivity is of

particular interest in this problem, in order to identify as many high risk patients as possible

and target them with additional resources.

The SVM classifier performed the best out of the out-of-the-box models with no sampling

or other transformations, however the Sensitivity was significantly increased by the models

using Mapper, Node PCA, and SMOTE/ROSE sampling. None of the models using Mapper in

conjunction with Random Forests showed large improvement over training the Random For-

ests over the entire training set. It should be noted that the models running Random Forests

with ROSE sampling in the Caret Package didn’t converge, and voted “no-readmission” for

every point in the test set. This issue also occured when using Adaboost classifiers with ROSE

sampling in Table 7.

Adaboost models were improved both by sampling and in two of the Mapper workflows.

One case to note is the PCA+ROSE combination, which features a “high” AUC but low Sensi-

tivity. In this case we would throw out the model in favor of the Mapper, no transformation,

SMOTE workflow which correctly identifies almost 3/4 of the readmitted patients. One reason

Table 7. Results for different workflows of Adaboost classifiers, with standard deviations over n = 10 runs.

AdaBoost workflow ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.50 (0.043) 0.54 (0.058) 0.49 (0.049) 0.50 (0.051)

No Transformation, SMOTE 0.62 (0.056) 0.65 (0.072) 0.53 (0.070) 0.55 (0.071)

No Transformation, ROSE 0.5(0) 0 (0) 1 (0) 0.827 (0)

PCA 0.48 (0.038) 0.54 (0.044) 0.53 (0.049) 0.53 (0.048)

PCA, SMOTE 0.53 (0.051) 0.50 (0.053) 0.58 (0.057) 0.57 (0.056)

PCA, ROSE 0.69 (0.073) 0.46 (0.078) 0.74 (0.064) 0.69 (0.068)

Mapper, No Transformations 0.56 (0.079) 0.49 (0.082) 0.75 (0.086) 0.71 (0.085)

Mapper, No Transformations, SMOTE 0.63 (0.083) 0.73 (0.077) 0.63 (0.083) 0.65 (0.082)

Mapper, No Transformation, ROSE 0.54 (0.098) 0.42 (0.131) 0.67 (0.110) 0.63(0.119)

Mapper, Node PCA 0.63 (0.066) 0.69 (0.075) 0.58 (0.082) 0.60 (0.081)

Mapper, Node PCA, SMOTE 0.58 (0.088) 0.65 (0.084) 0.54 (0.091) 0.56 (0.089)

Mapper, Node PCA, ROSE 0.44 (0.141) 0.58 (0.109) 0.51 (0.092) 0.52(0.095)

https://doi.org/10.1371/journal.pone.0225577.t007

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 17 / 26

https://doi.org/10.1371/journal.pone.0225577.t007
https://doi.org/10.1371/journal.pone.0225577

AdaBoost models might perform better with the Mapper algorithm is that AdaBoost is often

used on smaller datasets, which the Mapper workflow naturally creates.

Compared to the out of the box models trained using caret, workflows utilizing Mapper

tend to have a higher variance between runs. This can be explained by additional variance

introduced by assigning the testing points to different nodes of the Mapper graph. Since each

run has a different testing set, different node models will predict different numbers of testing

points. Additionally, variance is introduced by using SMOTE or ROSE sampling methods,

Fig 2. Typical Mapper graph generated from hospital readmissions data. The nodes are colored showing level of

readmissions, and larger node size indicates a higher number of patients in that node.

https://doi.org/10.1371/journal.pone.0225577.g002

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 18 / 26

https://doi.org/10.1371/journal.pone.0225577.g002
https://doi.org/10.1371/journal.pone.0225577

since each run creates a new set of synthetic samples. Methods using ROSE Sampling and

Mapper had the highest spread in metrics.

4.2.1 Approval. The Washington University Institutional Review Board approved the use

of this data as a retrospective study. All HIPPA identifying information has been removed.

4.2 Additional testing: German credit data

For replication and additional testing, we built workflows on German Credit data available

through UCI’s machine learning data repository [41]. The data features 20 features, which are

described in Table 8. We chose this dataset because it has a mix of categorical and continuous

features, and a similar class imbalance to the Hospital Readmissions data. The selected Mapper

parameters were 10 intervals, 30% overlap, and 15 bins when clustering. A typical Mapper

graph created 7 nodes, with 50-400 points per node, and is shown in Fig 3. The goal of these

workflows is to classify applicants into “good” or “bad” credit risk.

In the numerical comparisons, we encountered convergence issues with the AdaBoost algo-

rithm and ROSE sampling scheme, so we do not report experiments featuring those MLMs.

On the credit data, we also experimented with adding the weighted interactions between

two models. The results of the comparisons are posted in Tables 9–11. The weights were either

equal, or weighted towards the best ROC AUC. If a testing point was assigned to nodes i and j,

Table 8. Descriptive table of German Credit Dataset from UCI Repository, monetary values in units of Deutsch

Marks.

Total Cohort

(N = 1000)

Number with Bad Credit

(Total = 300)

Checking Status <0 274 135

Checking Status 0-200 269 105

Checking Status >200 63 14

Checking Status no account 394 46

Credit History—no history 40 25

Credit History—all paid 49 28

Credit History—existing, paid 530 169

Credit History—Delayed Previously 60 28

Credit History—critical/other debt 293 50

Buying New Car 234 89

Buying Used Car 103 17

Buying furniture/equipment 181 58

Buying Radio/TV 280 62

No Savings 183 32

Savings < 100 603 217

Savings > 100 214 51

Rent Housing 179 70

Own Housing 713 186

Free Housing 64 44

Unemployed/unskilled non resident 22 7

Unskilled Resident 200 56

Skilled 630 186

Highly Skilled/Self Employed/Management 148 51

https://doi.org/10.1371/journal.pone.0225577.t008

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 19 / 26

https://doi.org/10.1371/journal.pone.0225577.t008
https://doi.org/10.1371/journal.pone.0225577

we used the weights:

Ci ¼
AUCi

AUCi þ AUCj
ð30Þ

Cj ¼
AuCj

AUCi þ AUCj
ð31Þ

where AUCi and AUCj are the average of the ROC AUC’s computed on the holdout sets during

cross validation.

Fig 3. Typical Mapper Graph generated from first principal component of German Credit Data. Nodes are

colored to show the levels of bad credit, and sized by number of data points.

https://doi.org/10.1371/journal.pone.0225577.g003

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 20 / 26

https://doi.org/10.1371/journal.pone.0225577.g003
https://doi.org/10.1371/journal.pone.0225577

An interesting property of this dataset is that training models with no transformations

yields high ROC AUC (compared to models trained on the readmissions data) across every

model, with roughly the same performance when PCA is applied across the whole dataset. The

Mapper/Logistic Regression workflow produced lower ROC AUC’s when no transformations

were used, but similar AUC’s when node PCA was applied, and slightly lower specificity.

Random forest classifiers using the Mapper workflow performed worse in AUC than train-

ing a random forest on the original dataset. Most of the loss in performance is due to much

lower specificity across the board. When applying node PCA to random forests, the perfor-

mance decreased, unlike the Logistic Regression case.

Table 9. Results for different workflows of logistic regression classifiers on German Credit Data, with standard deviations over n = 10 runs.

Model ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.76 (0.043) 0.71 (0.033) 0.73 (0.039) 0.72 (0.038)

No Transformation, SMOTE 0.76 (0.027) 0.72 (0.046) 0.7 (0.041) 0.71 (0.043)

PCA 0.76 (0.031) 0.71 (0.041) 0.71 (0.035) 0.71 (0.037)

PCA, SMOTE 0.76 (0.049) 0.7 (0.046) 0.74 (0.048) 0.73 (0.048)

Mapper, 1 model 0.68 (0.054) 0.66 (0.063) 0.69 (0.057) 0.68 (0.059)

Mapper, SMOTE, 1 model 0.69 (0.068) 0.66 (0.060) 0.72 (0.061) 0.70 (0.061)

Mapper, 2 models, equal weight 0.73 (0.072) 0.71 (0.065) 0.69 (0.068) 0.70 (0.067)

Mapper, SMOTE 2 models, equal weight 0.72 (0.079) 0.71 (0.073) 0.7 (0.066) 0.70 (0.068)

Mapper, 2 models, AUC weight .72 (0.075) 0.71 (0.068) 0.71 (0.063) 0.71 (0.064)

Mapper, SMOTE 2 models, AUC weight 0.72 (0.078) 0.7 (0.077) 0.67 (0.063) 0.68 (0.067)

Mapper, Node PCA, 1 model 0.74 (0.056) 0.73 (0.063) 0.67 (0.061) 0.69 (0.061)

Mapper, Node PCA, SMOTE, 1 model 0.71 (0.067) 0.69 (0.054) 0.68 (0.055) 0.683 (0.055)

Mapper, Node PCA, 2 models, equal weight 0.74 (0.057) 0.78 (0.063) 0.67 (0.069) 0.703 (0.068)

Mapper, Node PCA, SMOTE 2 models, equal weight 0.72 (0.073) 0.7 (0.076) 0.66 (0.067) 0.67 (0.069)

Mapper, Node PCA, 2 models, AUC weight 0.74 (0.072) 0.75 (0.059) 0.67 (0.063) 0.69 (0.062)

Mapper, Node PCA, SMOTE 2 models, AUC weight 0.74 (0.079) 0.7 (0.062) 0.69 (0.071) 0.69 (0.067)

https://doi.org/10.1371/journal.pone.0225577.t009

Table 10. Results for different workflows of SVM classifiers on German Credit Data, with standard deviations over n = 10 runs.

Model ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.77 (0.023) 0.74 (0.035) 0.71 (0.027) 0.72(0.029)

No Transformation, SMOTE 0.71 (0.038) 0.71 (0.049) 0.67 (0.042) 0.68 (0.044)

PCA 0.76 (0.028) 0.68 (0.051) 0.72 (0.038) 0.71 (0.041)

PCA, SMOTE 0.76 (0.036) 0.69 (0.031) 0.74 (0.043) 0.73 (0.040)

Mapper, 1 model 0.53 (0.051) 0.54 (0.055) 0.56 (0.047) 0.55(0.049)

Mapper, SMOTE, 1 model 0.54 (0.066) 0.57 (0.048) 0.55 (0.068) 0.56 (0.062)

Mapper, 2 models equal weight 0.52 (0.062) 0.54 (0.068) 0.56 (0.061) 0.55 (0.063)

Mapper, SMOTE 2 models—equal weight 0.54 (0.070) 0.54 (0.059) 0.59 (0.061) 0.58 (0.061)

Mapper, 2 models—AUC weight .52 (0.064) 0.55 (0.054) 0.56 (0.072) 0.56 (0.065)

Mapper, SMOTE 2 models—AUC weight 0.53 (0.077) 0.59 (0.079) 0.52 (0.071) 0.54 (0.074)

Mapper, Node PCA, 1 model 0.72 (0.041) 0.73 (0.066) 0.67 (0.059) 0.69 (0.061)

Mapper, Node PCA, SMOTE, 1 model 0.76 (0.058) 0.75 (0.052) 0.67 (0.047) 0.69 (0.048)

Mapper, Node PCA, 2 models equal weight 0.75 (0.067) 0.7 (0.075) 0.69 (0.071) 0.7 (0.073)

Mapper, Node PCA, SMOTE 2 models, equal weight 0.76 (0.072) 0.72 (0.063) 0.71 (0.069) 0.71 (0.067)

Mapper, Node PCA, 2 models AUC weight 0.75 (0.056) 0.71 (0.059) 0.7 (0.067) 0.71 (0.064)

Mapper, Node PCA, SMOTE 2 models, AUC weight 0.76 (0.081) 0.73 (0.073) 0.71 (0.065) 0.72 (0.068)

https://doi.org/10.1371/journal.pone.0225577.t010

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 21 / 26

https://doi.org/10.1371/journal.pone.0225577.t009
https://doi.org/10.1371/journal.pone.0225577.t010
https://doi.org/10.1371/journal.pone.0225577

SVM classifiers with Mapper also performed poorly across the board when no node trans-

formations are applied. However, applying PCA to Mapper nodes significantly outperformed

Mapper workflows with no transformations, and had similar results to workflows trained on

the entire dataset.

When a weighted combination of two models was used instead of one model (more than

one Ci(x) > 0), the results were either the same or slightly improved. One reason for the same

results is that models tend to be similar when trained with nodes that overlap with each other,

while models from nodes on opposite ends of the Mapper graph are different. This means

models give roughly the same probability, and therefore the weighted combination will be

roughly the same as just using the closest model. More experimentation and analysis should be

done to tune these weights.

5 Discussion

In summary, we presented the machine learning workflow as a composition of machine learn-

ing morphisms, starting from the original data space X, and ending with task completion. We

presented several properties of these morphisms, including when groups of MLMs form a vec-

tor space. Then we presented a workflow using the TDA Mapper algorithm as an MLM to split

X into overlapping subsets and train models on each subset. We discussed implications of this

workflow and presented results from two applications on real data. In the case of Hospital

Readmissions we found several models using the Mapper algorithm that yielded increased per-

formance. In the case of the German Credit data, models using Mapper and node PCA per-

formed similarly to workflows trained without Mapper. However, the closeness of some of the

models suggests that further tuning may be all that is needed to improve performance.

Besides potential performance improvements, workflows utlizing Mapper provide the

advantage of parallelization. On the German Credit Data, we showed several cases where mod-

els trained on smaller datasets and then pooled together performed just as well as models

trained on the whole dataset. Once the data is split, each model is trained on a significantly

smaller portion of the data. The training can be parallelized, which has the potential to

Table 11. Results for different workflows of random forest classifiers on German Credit Data, with standard deviations over n = 10 runs.

Model ROC AUC Sensitivity Specificity Accuracy

No Transformation 0.75 (0.029) 0.72 (0.027) 0.71 (0.038) 0.71 (0.034)

No Transformation, SMOTE 0.76 (0.033) 0.7 (0.036) 0.73 (0.031) 0.72 (0.033)

PCA 0.75 (0.025) 0.69 (0.038) 0.71 (0.029) 0.7 (0.032)

PCA, SMOTE 0.75 (0.046) 0.71 (0.049) 0.72 (0.053) 0.72 (0.051)

Mapper, 1 model 0.7 (0.053) 0.75 (0.066) 0.62 (0.054) 0.66 (0.056)

Mapper, SMOTE, 1 model 0.71 (0.064) 0.7 (0.067) 0.67 (0.075) 0.68 (0.072)

Mapper, 2 models equal weight 0.71 (0.073) 0.75 (0.077) 0.65 (0.073) 0.68 (0.074)

Mapper, SMOTE 2 models—equal weight 0.69 (0.070) 0.68 (0.071) 0.67 (0.087) 0.68 (0.083)

Mapper, 2 models—AUC weight .71 (0.061) 0.77 (0.078) 0.64 (0.074) 0.68 (0.075)

Mapper, SMOTE 2 models—AUC weight 0.69 (0.086) 0.67 (0.062) 0.7 (0.073) 0.68 (0.070)

Mapper, Node PCA, 1 model 0.67 (0.045) 0.64 (0.067) 0.65 (0.071) 0.65 (0.069)

Mapper, Node PCA, SMOTE, 1 model 0.67 (0.051) 0.65 (0.062) 0.66 (0.066) 0.66 (0.064)

Mapper, Node PCA, 2 models equal weight 0.66 (0.068) 0.67 (0.059) 0.64 (0.064) 0.65 (0.062)

Mapper, Node PCA, SMOTE 2 models, equal weight 0.67 (0.078) 0.67 (0.071) 0.67 (0.068) 0.67 (0.070)

Mapper, Node PCA, 2 models AUC weight 0.67 (0.075) 0.64 (0.060) 0.68 (0.058) 0.65 (0.059)

Mapper, Node PCA, SMOTE 2 models, AUC weight 0.67 (0.073) 0.68 (0.067) 0.68 (0.072) 0.68 (0.071)

https://doi.org/10.1371/journal.pone.0225577.t011

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 22 / 26

https://doi.org/10.1371/journal.pone.0225577.t011
https://doi.org/10.1371/journal.pone.0225577

significantly decrease training time on large datasets, or on models such as neural networks

and SVM that scale nonlinearly with the number of data points.

Some limitations with the numerical experiments include limited data: each node is only

assigned a few samples from the test set, which adds some uncertainty to the results. The

bounds of uncertainty should be further analyzed, and these workflows should be analyzed by

studying datasets with more samples.

One direction for future work is to examine the theoretical performance of the workflow

utilizing TDA. TDA is a natural fit for this framework because it is intrinsically interested in

the study of data spaces and the morphisms between those spaces.

Other directions of future work include studying the optimization of MLM based work-

flows given a choice of risk functions. When should parameters be optimized independently,

and when should they be formulated as a joint optimization over a risk function? When the

morphisms and risk functions are all continuous and differentiable functions, the workflow is

similar or equivalent to a simple feed forward neural network, and we could leverage the

research done on neural networks to jointly optimize large ensembles of models. Finally, vec-

tor spaces of MLMs could be leveraged to build and analyze ensembles.

In conclusion, the MLM framework allows us to concisely build multiple well organized

workflows, from preprocessing to task completion, and provides a medium for performance

analysis and optimization of all workflow parameters.

6 Appendix

[Proof of Property 1]

Proof. Given that they have the same output space, to show that ML3 ¼ML1 �ML2, it

is sufficient to establish that the optimal parameters of ML3 are the same as the optimal

parameters of ML1 and ML2.

Let

p�
1
¼ arg min

p2Y1

�R1ðp1;X;Y; F1ð�; p1Þ; Pðp1ÞÞ

and

p�
2
¼ arg min

p2Y2

�R2ðp2;X;Y; F2ð�; p2Þ; Pðp2ÞÞ

be the optimal parameters of ML1 and ML2. Now find the optimal parameters of �R3:

arg min
ðp1 ;p2Þ2Y1�Y2

�R3ððp1; p2Þ;X1 [X2;Y; F1 � F2; Pððp1; p2ÞÞÞ ¼ ð32Þ

arg min
ðp1 ;p2Þ2Y1�Y2

a�R1 þ b�R2 ¼

ðarg min
p12Y1

�R1; arg min
p22Y2

�R2Þ ¼ ðp
�

1
; p�

2
Þ

Since minða�R1 þ b�R2Þ ¼ aminð�R1Þ þ bminð�R2Þ, therefore we can optimize �R1 and �R2

independently in �R3.

[Decomposition of Linear Regression with Orthogonal Training Matrix] The risk function

for linear least squares regression is:

�R3 ¼k Y � Xp k2

2
¼ ðY � XpÞTðY � XpÞ ¼ ð33Þ

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 23 / 26

https://doi.org/10.1371/journal.pone.0225577

which expands to:

YTY � ½pT
1
; pT

2
�½X1X2�

TY � YT½X1X2�
p1

p2

" #

þ ½pT
1
; pT

2
�½X1X2�

T
½X1X2�

p1

p2

" #

¼ ð34Þ

continuing the matrix multiplication:

YTY � pT
1
XT

1
Y � YTX1p1 � pT

2
XT

2
Y � YTX2p2 þ ðp

T
1
XT

1
þ pT

2
XT

2
ÞðX1p1 þ X2p2Þ ¼ ð35Þ

cancelling out the cross terms:

YTY � pT
1
XT

1
Y � YTX1p1 � pT

2
XT

2
Y � YTYþ YTY � YTX2p2 þ pT

1
XT

1
X1p1 þ pT

2
XT

2
X2p2 ¼ ð36Þ

finally, collecting the terms with X1 and X2 into a sum of norms:

�
1

2
k Y k2

2
þ k Y � X1p1 k

2

2
�

1

2
k Y k2

2
þ k Y � X2p2 k

2

2
¼ �R1 þ

�R2 ð37Þ

Acknowledgments

The authors would like to thank Dr. Ann-Marcia Tukpah, with the VA, and Dr. Lenise Cum-

mings-Vaughn, with Barnes Jewish Hospital for sharing data and collaboration on the Hospital

Readmissions Prediction.

Author Contributions

Conceptualization: Eric Cawi, Patricio S. La Rosa, Arye Nehorai.

Data curation: Eric Cawi.

Formal analysis: Eric Cawi.

Investigation: Eric Cawi.

Methodology: Eric Cawi.

Project administration: Arye Nehorai.

Supervision: Patricio S. La Rosa, Arye Nehorai.

Validation: Patricio S. La Rosa, Arye Nehorai.

Writing – original draft: Eric Cawi.

References

1. Vapnik V. The nature of statistical learning theory. Springer science & business media; 2013.

2. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: a system for large-scale

machine learning. In: OSDI. vol. 16; 2016. p. 265–283.

3. Ball D. Induction by a Hilbert hypercube representation. Aston University; 1991.

4. Singh G, Mémoli F, Carlsson GE. Topological methods for the analysis of high dimensional data sets

and 3d object recognition. In: SPBG; 2007. p. 91–100.

5. Miescke KJ, Liese F. Statistical Decision Theory: Estimation, Testing, and Selection.

6. Pednault EP. Statistical learning theory. Citeseer; 1997.

7. Vapnik VN. An overview of statistical learning theory. IEEE transactions on neural networks. 1999;

10(5):988–999. https://doi.org/10.1109/72.788640 PMID: 18252602

8. Xuegong Z. Introduction to statistical learning theory and support vector machines. Acta Automatica

Sinica. 2000; 26(1):32–42.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 24 / 26

https://doi.org/10.1109/72.788640
http://www.ncbi.nlm.nih.gov/pubmed/18252602
https://doi.org/10.1371/journal.pone.0225577

9. Nasrabadi NM. Pattern recognition and machine learning. Journal of electronic imaging. 2007;

16(4):049901. https://doi.org/10.1117/1.2819119

10. Vapnik V. Principles of risk minimization for learning theory. In: Advances in neural information process-

ing systems; 1992. p. 831–838.

11. Olson RS, Moore JH. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learn-

ing. Springer; 2018. p. 163–173.

12. Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F. Auto-sklearn: Efficient and

Robust Automated Machine Learning. Springer; 2018. p. 123–143.

13. Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. Auto-WEKA: Automatic model selection

and hyperparameter optimization in WEKA. Springer; 2018. p. 89–103.

14. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann; 2016.

15. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling tech-

nique. Journal of artificial intelligence research. 2002; 16:321–357. https://doi.org/10.1613/jair.953

16. Lunardon N, Menardi G, Torelli N. ROSE: A Package for Binary Imbalanced Learning. R journal. 2014;

6(1). https://doi.org/10.32614/RJ-2014-008

17. Raiber F, Kurland O. Kullback-Leibler Divergence Revisited. In: Proceedings of the ACM SIGIR Interna-

tional Conference on Theory of Information Retrieval. ICTIR’17. New York, NY, USA: ACM; 2017.

p. 117–124. Available from: http://doi.acm.org/10.1145/3121050.3121062.

18. Rish I, et al. An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop on empirical

methods in artificial intelligence. vol. 3. IBM New York; 2001. p. 41–46.

19. Barandiaran, Iñigo. The random subspace method for constructing decision forests. IEEE Trans. Pat-

tern Anal. Mach. Intell; volume 20; number 8; 1-22, 1998.

20. Cerda P, Varoquaux G, Kégl B. Similarity encoding for learning with dirty categorical variables. Machine

Learning. 2018; p. 1–18.

21. Patel N, Upadhyay S. Study of various decision tree pruning methods with their empirical comparison in

WEKA. International journal of computer applications. 2012; 60(12). https://doi.org/10.5120/9744-4304

22. Rojas R. AdaBoost and the super bowl of classifiers a tutorial introduction to adaptive boosting. Freie

University, Berlin, Tech Rep. 2009.

23. Mehrotra K, Mohan CK, Ranka S. Elements of artificial neural networks. MIT press; 1997.

24. Data Preparation and Feature Engineering in ML; 2018. Available from: https://developers.google.com/

machine-learning/data-prep/.

25. Fawcett T. An introduction to ROC analysis. Pattern recognition letters. 2006; 27(8):861–874. https://

doi.org/10.1016/j.patrec.2005.10.010

26. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Selected papers

of hirotugu akaike. Springer; 1998. p. 199–213.

27. Wasserman L. Topological data analysis. Annual Review of Statistics and Its Application. 2018; 5:501–

532. https://doi.org/10.1146/annurev-statistics-031017-100045

28. Bubenik P. Statistical topological data analysis using persistence landscapes. The Journal of Machine

Learning Research. 2015; 16(1):77–102.

29. Gamble J, Heo G. Exploring uses of persistent homology for statistical analysis of landmark-based

shape data. Journal of Multivariate Analysis. 2010; 101(9):2184–2199. https://doi.org/10.1016/j.jmva.

2010.04.016

30. Bendich P, Marron JS, Miller E, Pieloch A, Skwerer S. Persistent homology analysis of brain artery

trees. The annals of applied statistics. 2016; 10(1):198. https://doi.org/10.1214/15-AOAS886 PMID:

27642379

31. Gholizadeh S, Seyeditabari A, Zadrozny W. Topological Signature of 19th Century Novelists: Persis-

tence Homology in Context-Free Text Mining. 2018.

32. Duponchel L. Exploring hyperspectral imaging data sets with topological data analysis. Analytica chi-

mica acta. 2018; 1000:123–131. https://doi.org/10.1016/j.aca.2017.11.029 PMID: 29289301

33. Nicolau M, Levine AJ, Carlsson G. Topology based data analysis identifies a subgroup of breast can-

cers with a unique mutational profile and excellent survival. Proceedings of the National Academy of

Sciences. 2011; p. 201102826. https://doi.org/10.1073/pnas.1102826108

34. Coudriau M, Lahmadi A, François J. Topological analysis and visualisation of network monitoring data:

Darknet case study. In: Information Forensics and Security (WIFS), 2016 IEEE International Workshop

on. IEEE; 2016. p. 1–6.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 25 / 26

https://doi.org/10.1117/1.2819119
https://doi.org/10.1613/jair.953
https://doi.org/10.32614/RJ-2014-008
http://doi.acm.org/10.1145/3121050.3121062
https://doi.org/10.5120/9744-4304
https://developers.google.com/machine-learning/data-prep/
https://developers.google.com/machine-learning/data-prep/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1016/j.jmva.2010.04.016
https://doi.org/10.1016/j.jmva.2010.04.016
https://doi.org/10.1214/15-AOAS886
http://www.ncbi.nlm.nih.gov/pubmed/27642379
https://doi.org/10.1016/j.aca.2017.11.029
http://www.ncbi.nlm.nih.gov/pubmed/29289301
https://doi.org/10.1073/pnas.1102826108
https://doi.org/10.1371/journal.pone.0225577

35. Carriere M, Michel B, Oudot S. Statistical analysis and parameter selection for Mapper. The Journal of

Machine Learning Research. 2018; 19(1):478–516.

36. Epstein C, Carlsson G, Edelsbrunner H. Topological data analysis. Inverse Problems. 2011;

27(12):120201. https://doi.org/10.1088/0266-5611/27/12/120201

37. Gao X, Xiao B, Tao D, Li X. A survey of graph edit distance. Pattern Analysis and applications. 2010;

13(1):113–129. https://doi.org/10.1007/s10044-008-0141-y

38. Menardi G, Torelli N. Training and assessing classification rules with imbalanced data. Data Mining and

Knowledge Discovery. 2014; 28(1):92–122. https://doi.org/10.1007/s10618-012-0295-5

39. Rahman A, Verma B. Novel layered clustering-based approach for generating ensemble of classifiers.

IEEE Transactions on Neural Networks. 2011; 22(5):781–792. https://doi.org/10.1109/TNN.2011.

2118765 PMID: 21486714

40. Kuhn M. The caret Package; 2009.

41. Dheeru D, Karra Taniskidou E. UCI Machine Learning Repository; 2017. Available from: http://archive.

ics.uci.edu/ml.

Machine learning workflows

PLOS ONE | https://doi.org/10.1371/journal.pone.0225577 December 2, 2019 26 / 26

https://doi.org/10.1088/0266-5611/27/12/120201
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1109/TNN.2011.2118765
https://doi.org/10.1109/TNN.2011.2118765
http://www.ncbi.nlm.nih.gov/pubmed/21486714
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1371/journal.pone.0225577

