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Abstract

Wind energy is one of the most important renewable resources and plays a vital role in

reducing carbon emission and solving global warming problem. Every country has made a

corresponding energy policy to stimulate wind energy industry development based on wind

energy production, consumption, and distribution. In this paper, we focus on forecasting

wind energy consumption from a macro perspective. A novel power-driven fractional accu-

mulated grey model (PFAGM) is proposed to solve the wind energy consumption prediction

problem with historic annual consumption of the past ten years. PFAGM model optimizes

the grey input of the classic fractional grey model with an exponential term of time. For

boosting prediction performance, a heuristic intelligent algorithm WOA is used to search the

optimal order of PFAGM model. Its linear parameters are estimated by using the least-

square method. Then validation experiments on real-life data sets have been conducted to

verify the superior prediction accuracy of PFAGM model compared with other three well-

known grey models. Finally, the PFAGM model is applied to predict China’s wind energy

consumption in the next three years.

Introduction

Wind energy is one of the important vital resources of renewable energy, which is widely dis-

tributed with large reserves. Wind energy and other renewables will play a vitally important

role in solving global warming issues and reducing carbon emission in future decades. Interna-

tional energy agency (IEA) has optimistically estimated that renewables will account for 39%

share of total electricity generation by 2050. In light of Global Wind Report 2018 of the

GWEC, it noticed that new wind installed capacity had overtaken new fossil fuel capacity for

the first time in many developing or mature markets. The global total cumulative wind

installed capacity has brought up to 591GW at the end of 2018 with new installations 51.3GW.

In China, the total wind installed capacity has reached 211GW in 2018, which indicates that

the wind energy target of Five-Year-Plan 2016-2020 has been achieved two years ahead of
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schedule. Along with the rapid development of the energy industry, it also brings a great chal-

lenge to make energy policy upgrade energy structure. According to the definition in the litera-

ture [1], the energy policy of an entity (especially a government) is used to solve the problems

of energy production, consumption, and distribution [2]. Most scholars mainly focused on

forecasting the state of wind energy, including wind speed forecasting and wind power fore-

casting, which is expected to provide a reference for formulating energy production planning

from micro-perspective. These forecasting approaches mainly include deterministic forecast-

ing and uncertainty analysis [3]. For these approaches, forecasting wind energy is considered

as a prediction process of stochastic time series. Usually, the future values are predicted by

these data-driven algorithms based on the historical wind speed or wind energy sequence or

other related data. Many scholars applied Artificial Neural Network (ANN) to forecast wind

energy. Numerous variants of ANN, such as Back Propagation Neural Network (BPNN) [4, 5],

Radial Basis Function Neural Network (RBFNN) [6], Generalized Regression Neural Network

(GRNN) [7] and Wavelet Neural Network (WNN) [8, 9], were also proposed to predict the

future wind energy. Besides, some scholars utilized Support Vector Machine (SVM) [10] or its

variants [11, 12] to forecast wind energy. Deep learning approaches, such as Autoencoder

(AE), Deep Boltzmann Machine (DBM) [13], Convolutional Neural Network (CNN) [14],

Recurrent Neural Networks (RNNs) [15] and so on, were also adopted to forecast the future

wind energy. Though these approaches can be used to forecasting wind energy, they usually

need a larger dataset, including historical data and some exogenous data, to train the

predictors for better prediction performance. And they were often used to predict hours or

minutes ahead of wind energy or speed for making the production plan of a company or

energy farm in a local region [16, 17]. Besides, many scholars utilized ARMA, ARIMA,

and their successors to predict wind energy or wind speed [18, 19]. However, the study of

wind energy consumption prediction from the macro view is very few at present. Previously,

many scholars mainly concentrated in study of forecasting electricity [20–29], natural gas [30,

31], oil [32, 33], nuclear [34, 35], renewable [36, 37] energy consumption and so on. Forecast-

ing wind energy consumption is also an important task for making energy policy and plan for

the government. Grey prediction model is an effective prediction approach, which is one of

the best choices for solving the wind energy consumption prediction problem with small

samples.

Recently, scholars have conducted numerous studies to improve prediction performance

and enlarge the application range of grey models. Lots of novel or improved grey models have

been put forward to solve prediction problems with partially know or unknown information

effectively. On the one hand, many scholars devoted their efforts to optimize the initial GM

(1,1) model. Wang et al. proposed a rolling grey model with PSO and data cleaning techniques

to predict Beijing’s tertiary industry effectively [38]. Xia et al. [39] proposed an improved grey

model with grey input of time power based on the new information priority. Ding et al. over-

came the fixed structure and poor adaptability of GM(1,1) model and put forward an opti-

mized grey model called NOGM(1,1) to forecast China’s electricity consumption [20]. Xu

et al. proposed IRGM(1,1) model with optimizing the initial condition of time response func-

tion [21]. Wang et al. proposed SGM(1,1) model to forecast the seasonal time series [23].

Besides, other improved grey models such as WBGM(1,1) [40], GARGM(1,1) [41], Nash

NBGM [42], SIGM [43], GRA-IGSA [44] and so on were proposed and obtained satisfactory

prediction accuracy. But these models have the same insufficiency of traditional GM(1,1)

model because they are essentially grey models with one order and one variable. For the multi-

variable time series, Wang et al [45] proposed an improved GM(1,n) model which considered

the effects of the dependent variables. Zeng et al. improved the GM(1,n) model with a dynamic

background parameter [46]. Soon afterwards Zeng et al. [47] presented a new multi-variable
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grey model to enhance the structure compatibility of grey model. Ma et al. [48] proposed a

parameter optimization method for CGM(1,n) model to promote its prediction accuracy.

These efforts not only enriched the theory of grey system but also improved the prediction per-

formance of grey prediction model.

On the other hand, fractional order accumulating operator was imported to decrease the

stochasticity and uncertainty of raw sequence to boost the performance of grey model. Wu

et al. initially improved traditional GM(1,1) with fractional order accumulated operator called

FAGM(1,1), which guarantees the priority of new information under small fractional order

and boosts the prediction accuracy compared with traditional GM(1,1) model [49]. Yang et al.

generalized the traditional GM(1,1) models with fractional calculus of which fractional-order

derivative is profoundly determined the accuracy of prediction and can be optimized by intelli-

gent algorithms [27]. Mao et al. proposed a fractional grey model based on fractional order

derivative called FGM(q,1) of which the whitening equation is a fractional order differential

equation, and forecasted the gross national income per capita accurately [50]. Some research-

ers optimized the grey action quantity of FAGM(1,1) and achieved better prediction accuracy.

Ma et al. optimized the grey input of the original FAGM(1,1) model with a fractional time

delay term and applied it to predict the gas consumption and coal consumption [51]. Wu et al.

proposed a fractional FAGM(1,1,k) model with linear grey input of time instead of constant

grey input in initial FAGM(1,1) model and optimized it with optimal linear parameters and

optimal order [34]. Then Wu et al. proposed a fractional accumulated Bernoulli grey model

and adopted an intelligent optimization algorithm to seek optimal fractional order of this

model [37]. Optimization of fractional order accumulation is another improvement for the

traditional FAGM(1,1) model. Ma et al. firstly proposed a CFGM(1,1) model in which the

computational complexity of accumulation is lower than that of traditional fractional accumu-

lated operator [52]. Zeng proposed a self-adaptive intelligent fractional grey model called as

SAIGMFO model and predicted the electricity consumption of China [53]. Besides, the frac-

tional multivariate grey model is another kind of grey model to deal with multivariate time

series. Ma et al. proposed a discrete multivariate grey prediction model (FDGM) and mathe-

matically proved that it is an unbiased grey model that was applied in four real-life applications

and achieved better accuracy compared with other well-known grey models [54]. Though

these fractional grey models have gained better performance, boosting prediction accuracy of

fractional grey models is still worth studying.

In this paper, we focus on forecasting wind energy consumption by using grey models to

provide reference information for formulating and adjusting energy policy. In order to boost

the prediction accuracy, we improved the classic fractional grey model with an exponential

grey input term. There are two aspects of the contribution. On the one hand, we proposed a

novel power-driven fractional accumulated grey model called PFAGM of which optimal order

is sought out by WOA algorithm. Meanwhile, PFAGM model can be easily reduced into the

classical grey model and fractional grey model. To some extends, PFAGM model has better

adaptability than classical grey models. On the other hand, PFAGM model is applied to fore-

cast China’s wind energy consumption in the next three years.

The rest of this paper is structured as follows. In section 2, we will introduce the fractional

order accumulation and the classic fractional accumulated grey model in detail. In section 3, a

power-driven fractional accumulated grey model (PFAGM) with optimization of grey action

quantity is proposed. In section 4, we validate the prediction accuracy of PFAGM model on

several real-life datasets compared with those of three well-known grey models. In section 5,

PFAGM model is utilized to forecast the total wind energy consumption of China. In the last

section, several conclusions are drawn.
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Fractional accumulated operation and fractional accumulated grey

model

The fractional accumulating operation plays a very important role in grey prediction applica-

tions. It can be used to decrease the randomness of raw sequence data and boost the perfor-

mance of grey models. The detail of fractional accumulate operation and its inverse operation

are introduced as follows.

Fractional accumulated operation

For an original data sequence X(0) = (x(0)(1), x(0)(2), � � �, x(0)(n)), the r-order accumulated oper-

ation sequence can be defined as follow.

Definition 1 The r-order fractional accumulated operation sequence of raw data is defined
as:

XðrÞ ¼ ðxðrÞð1Þ; xðrÞð2Þ; � � � ; xðrÞðnÞÞ: ð1Þ

where xðrÞðkÞ ¼
Pk

i¼1

ðk� iþr� 1Þ!

ðr� 1Þ!ðk� iÞ! x
ð0ÞðiÞ; k ¼ 1; 2; . . . ; n.

Definition 2 The inverse r-order fractional accumulated operation sequence is defined as:

Xð� rÞ ¼ ðxð� rÞð1Þ; xð� rÞð2Þ; � � � ; xð� rÞðnÞÞ: ð2Þ

where xð� rÞðkÞ ¼
Pk

i¼1

ðk� i� r� 1Þ!

ð� r� 1Þ!ðk� iÞ! x
ð0ÞðiÞ; k ¼ 1; 2; . . . ; n.

Methodology of fractional order accumulated grey model

The fractional order accumulated grey model abbreviated as FAGM(1,1) was firstly proposed

by Wu et al. in 2013 [49]. The whitening differential equation of FAGM(1,1) model is defined

as:

dxðrÞðtÞ
dt

þ axðrÞðtÞ ¼ b: ð3Þ

where a is the development coefficient, b is the grey input, and r is the fractional order of grey

model. Integrating both side of Eq (3) within the interval [k − 1, k], the discrete form of FAGM

model is obtained as follow:

xðrÞðkÞ � xðrÞðk � 1Þ þ azðrÞðkÞ ¼ b: ð4Þ

where z(r)(k) = 0.5(x(r)(k) + x(r)(k)).

In order to estimate the parameters of FAGM(1,1) model, the least-square method is used

to solve the problem with the objective of minimizing the errors of simulation under the

assumption that the order is given. So, the parameters a and b can be calculated as follow:

½a; b�T ¼ ðATAÞ� 1ATY: ð5Þ

where

Yu ¼

xðrÞð2Þ � xðrÞð1Þ

xðrÞð3Þ � xðrÞð2Þ

..

.

xðrÞðuÞ � xðrÞðuÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;Au ¼

zðrÞð2Þ 1

zðrÞð3Þ 1

..

. ..
.

zðrÞðuÞ 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð6Þ
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in which u is the number of in-samples used to build model. Then we solve the differential

Eq (3) and have

xðrÞðtÞ ¼ Ce� at þ
b
a
: ð7Þ

Substituting the initial condition into Eq (7) and setting t = k, the time response function of

FAGM model is obtained as follow:

xðrÞp ðkÞ ¼ xð0Þð1Þ �
b
a

� �

e� aðk� 1Þ þ
b
a
: ð8Þ

where k = 2, 3, . . ., n. However, the time response sequence is only an intermediate result and

needs to be restored to restored values by using inverse r-order fractional accumulated opera-

tion. The restored value can be represented as:

xð0Þp ðkÞ ¼
Pk

i¼1

ðk � i � r � 1Þ!

ð� r � 1Þ!ðk � iÞ!
xðrÞp ðiÞ: ð9Þ

where k = 1, 2, . . ., n.

The proposed fractional accumulated grey model

In this section, we prove that the grey action quantity of fractional grey model built by

various subsequences with the same length changes with time in a homogeneous exponential

sequence. Then a novel power-driven fractional accumulated grey model is proposed, which

optimizes the classical FAGM model with an exponential grey action quantity. It makes the

grey action quantity change from a constant term to an exponential term of time.

The basis of grey action quantity optimization

The optimization of grey input is a remarkable approach to improve classical grey models and

promote their prediction accuracy. The basis of grey action quantity optimization is that the

grey input of the grey model changes with time in the real-world grey system. Xu et al. [55]

presented a theory to illustrate that the grey action quantity of the classical grey model would

change with time. The theory is represented as follow:

Theorem 1 Assuming that the time series X(0)(k) = Aeλ(k−1), k = 1, 2, � � � is raw sequence,
there are two subsequence Xð0Þ1 ðkÞ ¼ Aelðk� 1Þ; k ¼ 1; 2; . . . ; n and Xð0Þ2 ðkÞ ¼ Aelðkþt� 1Þ; k ¼
1; 2; . . . ; n with the same number of samples. The parameters a1 and b1 are respectively the
development coefficient and grey input of the GM(1,1) model built by Xð0Þ1 . The parameters a2

and b2 are respectively the development coefficient and grey input of the GM(1,1) model built by
Xð0Þ2 . Then, a1 = a2 and b2 = b1 eλt.

Theorem 1 indicates that the grey action quantity of GM(1,1) changes with time. If the first

order term and constant term of Maclaurin’s series of eλt are only remained, the SAIGM(1,1)

model is obtained with the grey input term bt + c. If the first order term of Maclaurin’s series

of eλt is only remained, the NGM(1,1) model can be obtained with the grey input term bt.
Obviously, the grey inputs of SAIGM and NGM are linear time functions. In fact, the grey

input of the grey system is nonlinear. Notably, the EOGM(1,1) model has been presented

when the term beλt is directly used as its grey action quantity.

For the fractional accumulation grey model, its grey action quantity should vary with time

according to the above-mentioned optimization of the classical GM(1,1) model. This proposi-

tion can also be illustrated with the theorem as follow:
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Theorem 2 Assuming that the sequence Y(0) = {y(0)(k) = Aeλ(k−1)|k = 1, 2, � � �} is raw
data, there are two subsequence Y ð0Þ1 ¼ fy

ð0Þ

1 ðkÞ ¼ Aelðk� 1Þjk ¼ 1; 2; . . . ; ng and
Yð0Þ2 ¼ fy

ð0Þ

2 ðkÞ ¼ Aelðkþt� 1Þjk ¼ 1; 2; . . . ; ng with the same number of samples. The parameters
a1 and b1 are respectively the development coefficient and grey input of the FAGM(1,1) model
built by Yð0Þ1 . The parameters a2 and b2 are respectively the development coefficient and grey
input of the FAGM(1,1) model built by Yð0Þ2 . Then, a1 = a2 and b2 = b1 eλt.

Proof 1 According to the modeling procedure of FAGM(1,1) model, the fractional
order accumulation generated sequence of Y ð0Þ1 is represented as

YðrÞ1 ¼ yðrÞ1 ðkÞ ¼
Pk

i¼1

ðk� i� r� 1Þ!

ð� r� 1Þ!ðk� iÞ! y
ð0Þ

1 ðiÞjk ¼ 1; 2; . . . ; n
n o

. The fractional order

accumulation generated sequence of Y ð0Þ2 is represented as

YðrÞ2 ¼ yðrÞ2 ðkÞ ¼
Pk

i¼1

ðk� i� r� 1Þ!

ð� r� 1Þ!ðk� iÞ! y
ð0Þ

2 ðiÞjk ¼ 1; 2; . . . ; n
n o

. The grey differential equation of

FAGM(1,1) can be built by using Yð0Þ1 as follow:

yðrÞ1 ðkÞ � yðrÞ1 ðk � 1Þ þ a1zðrÞ1 ðkÞ ¼ b1; ð10Þ

where zðrÞ1 ðkÞ ¼ 0:5ðyðrÞ1 ðkÞ þ yðrÞ1 ðk � 1ÞÞ; k ¼ 2; 3; . . . ; n. The grey differential equation of
FAGM(1,1) can be built by using Y ð0Þ2 as follow:

yðrÞ2 ðkÞ � yðrÞ2 ðk � 1Þ þ a2zðrÞ2 ðkÞ ¼ b2; ð11Þ

where zðrÞ2 ðkÞ ¼ 0:5ðyðrÞ2 ðkÞ þ yðrÞ2 ðk � 1ÞÞ; k ¼ 2; 3; . . . ; n. According to the Eqs (5) and (6), the
grey parameters a1 and b1 can be obtained as follow:

a1 ¼ �

ðn � 1Þ
Xn

i¼2

zðrÞ1 ðiÞðy
ðrÞ
1 ðiÞ � yðrÞ1 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞ

 !2

þ

Xn

i¼2

zðrÞ1 ðiÞ
Xn

i¼2

ðyðrÞ1 ðiÞ � yðrÞ1 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞ

 !2

ð12Þ

b1 ¼ �

Xn

i¼2

zðrÞ1 ðiÞ
Xn

i¼2

zðrÞ1 ðiÞðy
ðrÞ
1 ðiÞ � yðrÞ1 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞ

 !2

þ

Xn

i¼2

ðzðrÞ1 ðiÞÞ
2
Xn

i¼2

ðyðrÞ1 ðiÞ � yðrÞ1 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞ

 !2

ð13Þ
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In a similar way, the grey parameters a2 and b2 can be obtained as:

a2 ¼ �

ðn � 1Þ
Xn

i¼2

zðrÞ2 ðiÞðy
ðrÞ
2 ðiÞ � yðrÞ2 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ2 ðiÞÞ
2
�

Xn

i¼2

zðrÞ2 ðiÞ

 !2

þ

Xn

i¼2

zðrÞ2 ðiÞ
Xn

i¼2

ðyðrÞ2 ðiÞ � yðrÞ2 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ2 ðiÞÞ
2
�

Xn

i¼2

zðrÞ2 ðiÞ

 !2

ð14Þ

b2 ¼ �

Xn

i¼2

zðrÞ2 ðiÞ
Xn

i¼2

zðrÞ2 ðiÞðy
ðrÞ
2 ðiÞ � yðrÞ2 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ2 ðiÞÞ
2
�

Xn

i¼2

zðrÞ2 ðiÞ

 !2

þ

Xn

i¼2

ðzðrÞ2 ðiÞÞ
2
Xn

i¼2

ðyðrÞ2 ðiÞ � yðrÞ2 ði � 1ÞÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ2 ðiÞÞ
2
�

Xn

i¼2

zðrÞ2 ðiÞ

 !2

ð15Þ

Based on the relation between the sequence Yð0Þ1 and Y ð0Þ2 , the equation between the accumu-
lated sequence YðrÞ1 and Y ðrÞ2 are obtained as follow:

yðrÞ2 ðkÞ ¼
Pk

i¼1

ðk � i � r � 1Þ!

ð� r � 1Þ!ðk � iÞ!
yð0Þ1 ðiÞelt ¼ eltyðrÞ1 ðkÞ ð16Þ

The equation between the sequence zðrÞ1 ðkÞ and zðrÞ2 ðkÞ are obtained as follow:

zðrÞ2 ðkÞ ¼ 0:5ðyðrÞ1 ðkÞelt þ yðrÞ1 ðk � 1ÞeltÞ ¼ eltzðrÞ1 ðkÞ ð17Þ

Substituting Eqs (16) and (17) into Eqs (14) and (15), the equations can be obtained as fol-
low:

a2 ¼ �

ðn � 1Þ
Xn

i¼2

zðrÞ1 ðiÞeltðyðrÞ1 ðiÞelt � yðrÞ1 ði � 1ÞeltÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞeltÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞelt

 !2

þ

Xn

i¼2

zðrÞ1 ðiÞelt
Xn

i¼2

ðyðrÞ1 ðiÞelt � yðrÞ1 ði � 1ÞeltÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞeltÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞelt

 !2
¼ a1

ð18Þ
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b2 ¼ �

Xn

i¼2

zðrÞ1 ðiÞelt
Xn

i¼2

zðrÞ1 ðiÞeltðyðrÞ1 ðiÞelt � yðrÞ1 ði � 1ÞeltÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞeltÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞelt

 !2

þ

Xn

i¼2

ðzðrÞ1 ðiÞeltÞ
2
Xn

i¼2

ðyðrÞ1 ðiÞelt � yðrÞ1 ði � 1ÞeltÞ

ðn � 1Þ
Xn

i¼2

ðzðrÞ1 ðiÞeltÞ
2
�

Xn

i¼2

zðrÞ1 ðiÞelt

 !2
¼ b1elt

ð19Þ

This proof is completed.

From Theorem 2, it can be noticed that the grey input varies with time, and the develop-

ment coefficient remains unchanged if two different subsequences with the same number of

samples employed to construct models for a homogeneous exponential sequence. When the

grey input linearly changes with time, the typical fractional grey model is the FAGM(1,1,k)

model [34] with the linear grey input term bt + c. Moreover, the input of grey system is non-

linear in many other cases. The typical fractional grey model is FTDGM model [51] with non-

linear grey input tγ. Though these models have obtained better prediction performance, the

optimization of classical grey models is still required to enhance their adaptability and

applicability.

The power-driven fractional accumulated grey model

Optimization of grey action quantity is an effective and common method to improve the grey

model. Theorem 2 shows that the grey input should not be a constant while it should vary

with time. Meanwhile, Theorem 2 is derived based on homogeneous exponential time series.

In fact, more sequences have the non-homogeneous exponential characteristics in the real

world. Therefore, the term bert + c is considered as the grey action quantity of the proposed

fractional accumulated grey model. The definition of the proposed model is represented as

follows.

Definition 3 The differential equation

dxðrÞðtÞ
dt

þ axðrÞðtÞ ¼ bert þ c: ð20Þ

is the whitening equation of power-driven fractional order accumulated grey model abbreviated
as PFAGM, in which a is defined the same in FAGM model, bert + c is the power-driven grey
action quantity, and r is the fractional order of this grey model.

Integrating the whitening Eq (20) within [k − 1, k], we have

Z k

k� 1

dxðrÞðtÞ
dt

dt þ a
Z k

k� 1

xðrÞðtÞdt ¼
Z k

k� 1

ðbert þ cÞdt: ð21Þ

Then we have

xðrÞðkÞ � xðrÞðk � 1Þ þ a
Z k

k� 1

xðrÞðtÞdt ¼ br� 1ðer � 1Þerðk� 1Þ þ c: ð22Þ

Substituting the background value zðrÞðkÞ ¼
R k

k� 1
xðrÞðtÞdt into Eq (22), the discrete form of

PFAGM model can be obtained as follow.

Forecasting wind energy consumption with a novel PFAGM model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225362 December 5, 2019 8 / 33

https://doi.org/10.1371/journal.pone.0225362


Definition 4 The discrete differential equation of PFAGM model is defined as:

xðrÞðkÞ � xðrÞðk � 1Þ þ azðrÞðkÞ ¼ br� 1ðer � 1Þerðk� 1Þ þ c: ð23Þ

where z(r) is the background value, and z(r)(k) = 0.5x(r)(k) + 0.5x(r)(k − 1).

When the parameter b of PFAGM model is set to 0, PFAGM model can be reduced into

FAGM(1,1) model. When the parameter b is set to 0 and the fractional order is set to 1,

PFAGM model can be degenerated into GM(1,1) model. Because eγt� 1 + rt, PFAGM model

can be degenerated into FAGM(1,1,k) model if the term 1 + rt replaces the term eγt of the grey

input in PFAGM model.

Parameter estimation of power-driven factional grey model

To realize the prediction of the fractional grey model, one of the most important problems is

parameter estimation for building a model. In fact, it is effective to boost the prediction perfor-

mance of grey model by using suitable parameters. For PFAGM model, it needs to determine

three linear parameters and search out the optimal value of its fractional order. The optimal

linear parameters can be gained by using the least-square method under the condition of the

given fractional order of PFAGM model. In this subsection, we mainly introduce the principle

of linear parameters’ estimation while the methodology of seeking out the optimal fractional

order is presented in subsection 3.4.

Once the order of PFAGM model is given, the linear parameters of the PFAGM model can

mathematically be calculated as:

ða; b; cÞT ¼ ðBT
u BuÞ

� 1BT
u Yu: ð24Þ

where

Yu ¼

xðrÞð2Þ � xðrÞð1Þ

xðrÞð3Þ � xðrÞð2Þ

..

.

xðrÞðuÞ � xðrÞðu � 1Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;Bu ¼

� zðrÞð2Þ r� 1ðer � 1Þer 1

� zðrÞð3Þ r� 1ðer � 1Þe2r 1

..

. ..
. ..

.

� zðrÞðuÞ r� 1ðer � 1Þeðu� 1Þr 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð25Þ

in which u is the number of samples for fitting. The proof process of parameter estimation is

omitted here because it is like that of traditional FAGM model.

The time response function and restored values

After linear parameters of PFAGM model are calculated, the time response function and the

restored values of PFAGM can be got by solving Eq (20). Firstly, we consider the homogeneous

differential equation:

dxðrÞðtÞ
dt

þ axðrÞðtÞ ¼ 0: ð26Þ

which is corresponding to the whitening equation of PFAGM model and solve Eq (26). Then

the solution of Eq (26) can be obtained as:

xðrÞðtÞ ¼ Ae� at: ð27Þ

where A is a constant which is determined by initial condition. Let x(r)(t) = A(t)e−at be the
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solution of Eq (20). And substituting it into Eq (20), we have

dAðtÞ
dt

e� at ¼ bert þ c: ð28Þ

Then the solution of Eq (28) can be easily obtained as:

AðtÞ ¼
b

aþ r
eðaþrÞt þ

c
a

eat þ C: ð29Þ

So, the solution of the whitening equation of PFAGM model can be represented as:

xðrÞðtÞ ¼ Ce� at þ
b

aþ r
ert þ

c
a
: ð30Þ

Substituting the initial condition x(r)(1) = x(0)(1) into Eq (30), the arbitrary constant can be

easily determined. And then the time response function of PFAGM model can be derived and

represented as:

xðrÞp kð Þ ¼ xð0Þð1Þ �
b

aþ r
er �

c
a

� �

e� aðk� 1Þ þ
b

aþ r
erk þ

c
a
: ð31Þ

By using inverse r-order accumulated operation, the restored value xð0Þp ðkÞ can be obtained

as:

xð0Þp ðkÞ ¼ ðx
ðrÞ
p ðkÞÞ

ð� rÞ
: ð32Þ

where k = 1, 2, . . ., n.

Searching the optimal order of power-driven fractional accumulated grey

model

In subsection 3.2, the linear parameters are estimated by the least-square method under the

assumption that the order of fractional power-driven grey model has been given. In fact, the

order of PFAGM model needs to be sought out and plays a vital role in boosting its prediction

performance effectively. In order to search for an optimal value of the order, we establish a

constrained optimization problem of which the objective is minimizing the mean absolute per-

centage errors for building the grey model. The constraints of PFAGM model have been

derived in the above-mentioned modeling process. In summary, the optimization problem

can be represented as follow:

minMAPEðrÞ ¼
1

u � 1

Xu

i¼2

j
xp
ð0ÞðiÞ � xð0ÞðiÞ

xð0ÞðiÞ
j � 100%:

s:t:

ða; b; cÞT ¼ ðBT
u BuÞ

� 1BT
u Yu:

xðrÞp kð Þ ¼ xð0Þð1Þ �
b

aþ r
er �

c
a

� �

e� aðk� 1Þ þ
b

aþ r
erk þ

c
a
:

xð0ÞðkÞ ¼ ðxðrÞp Þ
ð� rÞ
; k ¼ 2; 3; . . . ; u:

8
>>>>>>>><

>>>>>>>>:

ð33Þ

where Bu and Yu are defined as Eq (25). It can be clearly noticed that the optimization problem

Eq (33) is a complex nonlinear programming problem with nonlinear objective function and a

few nonlinear constraints. Obviously, it is difficult to derive the exact solution for optimal
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fractional order. However, the optimal value of fractional order plays a very important roles in

boosting the prediction accuracy of existing grey models dramatically. For example, Ma et al.

established a similar optimization problem to optimize the fractional order of FTDGM model

and applied it to forecast energy consumption accurately [51]. Wu et al. also build a similar

optimization problem to obtain the optimal fractional order and power index of FANGBM

and forecasted the renewable energy consumption successfully [37]. These facts have shown

that the optimal fractional order can be used to boost the prediction performance of grey

models.

In order to obtain the optimal order of PFAGM, we adopted a nature-based heuristic intel-

ligent method called Whale Optimization Algorithm (WOA) to solve the nonlinear program-

ming problem Eq (33). WOA algorithm was firstly proposed by Mirjalili et al. in 2016 [56].

The inspiration of WOA is from the social behaviors of whales. It mimics the bubble-net feed-

ing strategy including shrinking encircling, spiral updating position and randomly hunting

behavior. Due to the simple rules and local optimization performance of WOA, it is widely

used in many domains such as feature selection, clustering, classification, image processing

and so on [57]. In this paper, it is assumed by WOA that there is a population with 30 hump-

back whales as search agents in search space. P(k) indicates the position vector of search agents

at iteration k. P�(k) represents the candidate solution which is the best one or near to the opti-

mum. The procedures of searching optimal fractional order with WOA are depicted as follow:

Step 1: Initialize the initial position P(k) of search agent randomly in search space at k = 1 in

search space. And set maximum iterations Tm to be 300. The value of each agent’s position

indicates a possible fractional order of PFAGM model.

Step 2: Compute the fitness of each agent and obtain the candidate solution P�(k) at k = 1.

According to Eq 33, the fitness function is defined as:

Fitness ¼
1

u � 1

Xu

i¼2

xð0Þp ðiÞ � xð0ÞðiÞ
xð0ÞðiÞ

�
�
�
�
�

�
�
�
�
�
� 100%: ð34Þ

The position of search agent with minimum fitness is considered as the candidate solution

at first iteration.

Step 3: Update the position vectors of humpback whales. When humpback whales forage the

prey, they usually move around the prey by shrinking encircling and spiral updating posi-

tion simultaneously. In order to imitate this simultaneous behavior, we assume that there is

a 50% probability to shrink encircling or update position spirally in the iteration of optimi-

zation. In each iteration, it generates a random number in [0, 1] and set it to the parameter

p. If p� 0.5, humpback whales select to shrink encircling. Mathematically, the behavior of

shrinking encircling can be represented as follows:

A
*

¼ 2gðkÞ �r* � gðkÞ: ð35Þ

B
*

¼

�
�
�
�2 �r

*
�P
* �

ðkÞ � P
*

ðkÞ
�
�
�
�: ð36Þ

P
*

ðkþ 1Þ ¼ P
* �

ðkÞ � A
*

�B
*

: ð37Þ

gðkÞ ¼ 2 � 2k=Tm: ð38Þ
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where r* is a random vector in interval [0, 1]. If p> 0.5, the humpback whales will select spi-

ral updating position to imitate the helix-shaped moving behavior in process of optimiza-

tion. The behavior is shown mathematically as follow:

P
*

ðkþ 1Þ ¼ P
* �

ðkÞ � P
*

ðkÞ
�
�
�

�
�
� � eol � cosð2plÞ þP

* �

ðkÞ: ð39Þ

where l denotes a random value in [−1, 1], ω is a constant. In fact, the humpback whales

search for the prey randomly. If jA
*

j > 1, WOA algorithm imitates the behavior and per-

forms a global search. Mathematically, the model is formulated as follows:

C
*

¼ j2 � r � P
*

randðkÞ � P
*

ðkÞj: ð40Þ

P
*

ðkþ 1Þ ¼ P
*

randðkÞ � A
*

�C
*

: ð41Þ

where P
*

randðkÞ is the position of a random search agent.

Step 4: Calculate the fitness of each humpback whales. If there is a better candidate with mini-

mum fitness value, it is needed to update the optimal solution P
* �

.

Step 5: If the ending condition is satisfied, the optimal fractional order is obtained, otherwise

k = k + 1.

Based on the process of building PFAGM model and optimization of the fractional order,

the detailed modeling procedure of power-driven fractional accumulated grey model can be

shown in Fig 1. For enhancing the prediction performance of PFAGM model, the key is to

obtain the optimal values of linear parameters and fractional order. The optimal value of frac-

tional order can be sought out through solving the established optimization problem by WOA

algorithm. Moreover, the linear parameters are estimated by using the least-square method.

Then the established PFAGM model is used to predict future values in different applications.

Applicability analysis of power-driven fractional grey model

Though the classical grey models are effective approaches to predict future values with small

samples, each of these models has a certain scope of application. Similarly, the proposed

power-driven fractional grey model also has its scope of application. Therefore, we construct a

series of sequences, including two kinds of non-homogeneous exponential sequences and

some other sequences with special shapes, to study the applicability of the proposed grey

model. There are three cases studied and compared with GM(1,1), FAGM(1,1), and FAGM

(1,1,k) as follows.

Firstly, we construct a series of non-homogeneous exponential sequences with the larger

values of the development coefficient. These sequences are represented as x(0)(k) = Aeλt + B
(k = 1, 2, . . ., 9) in which A is set to 1, B is set to 10, and a is set to 0.7, 1.0, 1.3, 1.5, 1.7 or 1.8.

The first six digits of each sequence are used to train the grey models. The other three digits of

each sequence are employed to examine the prediction performance of the proposed grey

model. The MAPEs of different grey models for fitting and prediction are filled in Table 1. It

can be noticed that PFAGM model obtains a significant advantage of prediction accuracy over

the other three classical grey models. Meanwhile, PFAGM model has significant advantages in

fitting. Secondly, we construct the other kind of non-homogeneous exponential sequences rep-

resented as x(0)(k) = Aeλt + B(k − 1)(k = 1, 2, . . ., 9) in which A is set to 1, B is set to 5, and a is

set to 0.7, 1.0, 1.3, 1.5, 1.7 or 1.8. Similarly, the first six digits of each sequence are used to

train the grey models. The other three digits of each sequence are employed to examine the
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Fig 1. The flowchart of PFAGM model.

https://doi.org/10.1371/journal.pone.0225362.g001

Table 1. Comparison of different grey models for non-homogeneous exponential sequences with various development coefficients (X(0)(k) = Aeλ(k−1) + B, k = 1, 2, �,

n).

λ MAPE of Fitting MAPE of Prediction

GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

0.7 8.0214 1.4179 2.0788 0.3766 43.4858 5.1797 26.5822 3.9745

1 69.4463 4.6622 5.2342 3.38E-07 88.7597 19.0313 27.3230 1.61E-06

1.3 188.7666 10.4601 11.3918 1.0518 180.0536 46.3293 45.6655 0.9277

1.5 237.1642 15.7192 17.0864 1.9898 193.0147 59.6113 59.0422 2.3112

1.7 249.5205 22.4229 24.1564 3.0308 171.0404 71.1620 70.8141 3.9040

1.8 246.3506 26.4090 28.2787 3.5722 156.4693 76.0759 75.8225 4.7317

https://doi.org/10.1371/journal.pone.0225362.t001
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prediction performance of the proposed grey model. Table 2 shows the MAPEs of different

grey models for fitting and prediction. The results indicate that PFAGM model has a signifi-

cant advantage of fitting ability over the other three classical grey models. PFAGM model also

has a significant superiority of prediction accuracy, especially when the development coeffi-

cient is large. From the above analysis results, it indicates that PFAGM model has better adapt-

ability and applicability for the two kinds of non-homogeneous exponential sequences with

the larger values of the development coefficient.

Finally, we generate a series of non-homogeneous exponential sequences with different

characteristics randomly. The raw data of each sequence is tabulated in Table 3. Fig 2 exhibits

the characteristics of these generated sequences. These sequences are divided into two groups.

The first group, including the first eight digits of each sequence, is used to build grey models.

The second group, including the other four digits of each sequence, is utilized to validate the

prediction performance of the proposed grey model. The MAPEs of the grey models for fitting

and prediction are filled in Table 4. It can be noticed that the prediction accuracy of the pro-

posed grey model is better than those of the other three grey models. The fitting errors of the

proposed grey model are the lowest or very approximate to the lowest.

From the above validations and analysis, it can be drawn that PFAGM model has a

significant superiority to deal with the non-homogeneous exponential sequences (formu-

lated as X(0)(k) = Aeλ(k−1) + B) or X(0)(k) = Aeλ(k−1) + B(k − 1)) compared with the classical

Table 2. Comparison of different grey models for non-homogeneous exponential sequences with various development coefficients (X(0)(k) = Aeλ(k−1) + B(k − 1),

k = 1, 2, �, n).

λ MAPE of Fitting MAPE of Prediction

GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

0.7 5.4555 2.7347 2.4818 0.8435 14.2598 22.5767 14.4327 4.6936

1 26.9863 13.4895 9.2376 2.4296 54.5762 44.7105 36.2111 23.0307

1.3 111.0393 10.5668 9.9856 3.6362 119.3470 29.8071 29.0046 15.3936

1.5 163.5235 9.7733 9.6019 3.9296 144.4912 45.4235 45.0679 9.4585

1.7 190.9126 13.5743 13.7557 3.8576 142.1207 58.5609 58.0279 4.6953

1.8 195.8534 16.2803 16.0250 3.7240 135.6079 72.4797 72.4032 3.0292

https://doi.org/10.1371/journal.pone.0225362.t002

Table 3. Raw data of special non-homogeneous exponential sequences.

Index S1 S2 S3 S4 S5 S6 S7 S8 S9

1 10 10 10 10 10 10 1 1 1

2 13.6138 13.7664 16.7975 8.9671 7.8421 5.9371 1.32435 1.6487 6.6487

3 16.4143 13.4857 19.1673 8.4053 6.9623 4.7812 1.85915 2.7183 12.7183

4 18.7775 12.6666 19.7109 8.0436 6.5948 4.359 2.74085 4.4817 19.4817

5 20.8251 12.0434 19.4351 7.8582 6.5571 4.2515 4.19455 7.3891 27.3891

6 22.6213 11.7834 18.7967 7.8306 6.7771 4.3335 6.59125 12.1825 37.1825

7 24.2093 11.9347 18.0058 7.9513 7.2224 4.5737 10.54275 20.0855 50.0855

8 25.6219 12.5487 17.153 8.2224 7.8808 4.9824 17.05775 33.1155 68.1155

9 26.8853 13.7188 16.2686 8.658 8.7532 5.5959 27.7991 54.5982 94.5982

10 28.0212 15.5993 15.3514 9.2834 9.85 6.4732 45.50855 90.0171 135.0171

11 29.0477 18.4248 14.3833 10.1355 11.19 7.6988 74.7066 148.4132 198.4132

12 29.9801 22.5364 13.3348 11.2646 12.7997 9.3895 122.846 244.6919 299.6919

https://doi.org/10.1371/journal.pone.0225362.t003
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GM(1,1), FAGM(1,1) and FAGM(1,1,k) model. Meanwhile, PFAGM model has a certain

advantage to handle the above-mentioned special sequences. Therefore, PFAGM model has

better adaptability and applicability than the other classical grey models for non-homoge-

neous exponential sequences with larger development coefficients or special shape

characteristics.

Validation of the power-driven grey model

Performance metrics and comparative grey models

In order to evaluate the accuracy of grey prediction models, four performance metrics are

adopted in numerical validation and case studies, including residual percentage error (RPE),

absolute percentage error (APE), mean absolute percentage error (MAPE) and Correlation

coefficient (R) [58, 59]. The metrics RPE and APE are used to validate the prediction accuracy

Fig 2. Different non-homogeneous exponential sequences.

https://doi.org/10.1371/journal.pone.0225362.g002

Table 4. Comparison of different grey models for special non-homogeneous exponential sequences.

a MAPE of Fitting MAPE of Prediction

GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

S1 3.1505 0.0471 0.0311 0.0022 18.4623 0.2208 0.2560 0.0221

S2 2.7926 2.0018 1.4507 0.4060 34.0582 30.6134 25.5486 6.6880

S3 4.4282 0.2048 0.1991 0.1987 22.2005 2.2671 1.0236 0.5911

S4 2.5212 0.4465 0.0444 0.0236 22.5855 28.3267 1.9441 1.2779

S5 5.2952 0.6137 0.0218 0.1080 30.1755 16.2743 1.7891 0.6995

S6 7.7229 0.5409 0.1851 0.2357 41.5405 3.4184 10.1779 1.8713

S7 15.0169 1.5770 2.2206 0.5789 25.0665 5.1843 8.6351 2.3063

S8 4.7913 1.8546 2.3858 0.2575 10.6270 5.3084 7.8210 0.7552

S9 9.0649 2.1075 1.0262 0.5335 5.8343 19.3921 6.9563 4.4094

https://doi.org/10.1371/journal.pone.0225362.t004
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of a grey model for a single data point. Mathematically, they are represented as follows:

RPEðkÞ ¼
xð0Þp ðkÞ � xð0ÞðkÞ

xð0ÞðkÞ
� 100%: ð42Þ

APEðkÞ ¼ jRPEðkÞj: ð43Þ

where x(0)(k) is raw data, xð0Þp ðkÞ is the value produced by a grey model. Meanwhile, MAPE is

used as a general metric to evaluate the accuracy of a prediction model. The lower value of

MAPE indicates that the model has a better performance. Mathematically, MAPE is repre-

sented as follow:

MAPE ¼
1

n

Xn

k¼1

jAPEðkÞj: ð44Þ

where n is the number of samples. For a raw sequence with n samples, the metric FMAPE is

defined as the simulation performance metric while PMAPE is defined as a prediction perfor-

mance metric. Mathematically, they can be formulated as:

FMAPE ¼
1

v

Xv

k¼1

jAPEðkÞj: ð45Þ

PMAPE ¼
1

n � v

Xn

k¼vþ1

jAPEðkÞj: ð46Þ

where v is the number of samples used to build a model while the rest of the raw sequence is

used to examine the prediction accuracy of the model. The total MAPE is used to evaluate the

whole performance of a model and abbreviated as TMAPE. The correlation coefficient (R) is

used to describe the relationship between raw sequence X(0) and the sequence Xð0Þp produced

by grey models. The mathematical definition of R is represented as:

R ¼
CovðXð0Þ;Xð0Þp Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXð0ÞÞVarðXð0Þp Þ

q : ð47Þ

where Cov(s, t) denotes the covariance of sequence s and t, Var(s) denotes the variances of

sequence s.
For investigating its superiority of performance, PFAGM model compares with three exist-

ing grey models, including traditional integral-order grey model (GM(1, 1)), fractional accu-

mulated grey model (FAGM(1,1)) and the improved fractional accumulated grey model

(FAGM(1,1,k)). The whitening equation of integral-order GM(1,1) model [38] is represented

as:

dxð1ÞðtÞ
dt

þ axð1ÞðtÞ ¼ b: ð48Þ

The whitening equation of FAGM(1,1,k) [34] is written as:

dxðrÞðtÞ
dt

þ axðrÞðtÞ ¼ bt þ c: ð49Þ

The details of FAGM(1,1) model are introduced in section 2. All grey prediction models,

including the new proposed model and the three contrast grey models, are implemented in
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MATLAB and performed on the platform MATLAB 2018. In particular, it needs to highlight

that the orders of the two comparative fractional grey models are also sought out by the opti-

mization algorithm WOA which also is applied in our proposed PFAGM model. In the follow-

ing subsections, the validation experiments on some real-world data sets are conducted to

illustrate the advantages of PFAGM compared with the other three existing grey models.

Example A: Forecasting China’s nuclear energy consumption

In this numerical validation, the raw sequence containing Chinese nuclear energy consump-

tion (NEC) from 2006 to 2017 is obtained from section 8 of reference [34]. The dataset is tabu-

lated in Table 5. The consumption from 2006 to 2012 is used to build a model respectively for

PFAGM model and the other three contrast grey models, while the remainder of the dataset is

used to validate the prediction performance of grey models. Firstly, we obtain the optimal

orders of the three fractional grey models by using WOA algorithm. Then the linear parame-

ters of all grey models are estimated by using the least-square method. The optimal values of

linear and nonlinear parameters for each model are filled in Table 6. From Fig 3, it can be

noticed that WOA algorithm converges rapidly into a stable status after a few iterations. And

the optimal order of PFAGM model is obtained and equal to 0.24794. The results produced by

these established grey models are also filled in Table 7. FMAPE, PMAPE, and TMAPE of

PFAGM model are respectively 1.2024, 2.8591, and 1.8927. As can be noticed from Fig 4 and

Table 7, all evaluation metrics’ values of PFAGM model are lowest compared with those of the

other three contrast grey models. Fig 5 shows the detailed analysis between the raw data and

the values produced by the four grey models. It can be clearly found that the linear regression

line obtained from PFAGM model almost coincides with the equal line of which the point

denotes that raw data is equal to the value produced by the grey model. It indicates that

PFAGM model has a better prediction performance than the other three contrast models.

Example B: Forecasting cumulative oil field production

In this subsection, we consider forecasting the cumulative oil field production of which the

raw data is collected from the paper [60] as a validation example. The raw data contains the

cumulative oil field production from 1999 to 2012 of the RQ block of Huabei oil field company

in China. The raw data is tabulated in Table 8. Then the dataset is divided into two subsets.

Table 5. Raw data in Example A.

Year NEC Year NEC Year NEC

2006 12.4 2010 16.7 2014 30

2007 14.1 2011 19.5 2015 38.6

2008 15.5 2012 22 2016 48.3

2009 15.9 2013 25.3 2017 56.1

https://doi.org/10.1371/journal.pone.0225362.t005

Table 6. The optimal parameters of different grey models in Example A.

Parameters GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

a -0.08907 -0.50681 0.07111 0.80372

b 11.94888 -6.15082 0.67748 3.86999

c - - 1.99915 11.19314

γ 1 -0.11349 -0.2949 0.24794

https://doi.org/10.1371/journal.pone.0225362.t006
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The first subset, including the first 11 samples, is used to build a model for each grey model.

The other subset, including the last 3 samples, is utilized to examine the accuracy of grey mod-

els. In the stage of building model, the optimal orders of all fractional grey models are obtained

by using WOA algorithm. From Fig 6, it can be obviously noticed that the optimal order of

PFAGM is sought out after a few iterations of WOA. And then the linear parameters of these

models are also obtained by using the least-square method after their orders are determined.

The parameters of the integral order grey model can be directly estimated by using the least-

square method. These optimal parameters are filled in Table 9. Then we utilize these different

established grey models to calculate the fitted production from 1999 to 2009 and the predicted

Fig 3. Searching optimal fractional order of PFAGM by using WOA for Example A.

https://doi.org/10.1371/journal.pone.0225362.g003

Table 7. The results produced by proposed model and other comparative grey models in Example A.

Year Raw data GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

Value RPE Value RPE Value RPE Value RPE

2006 12.4 12.4 0 12.4 0 12.4 0 12.4 0

2007 14.1 13.6523 3.1752 13.9812 0.8422 14.2607 -1.1397 14.1 0

2008 15.5 14.9241 3.7156 15.0733 2.7527 15.0798 2.7112 15.0037 3.2022

2009 15.9 16.3143 -2.6059 16.1486 -1.5633 15.9525 -0.3303 15.9486 -0.3059

2010 16.7 17.8341 -6.7911 17.4546 -4.5184 17.2798 -3.4716 17.3112 -3.6598

2011 19.5 19.4955 0.0233 19.2689 1.1854 19.259 1.2359 19.2864 1.0955

2012 22 21.3116 3.1293 22 0 22 0 22.0337 -0.1531

2013 25.3 23.2969 7.9176 26.3009 -3.9563 25.5662 -1.0521 25.736 -1.7235

2014 30 25.4671 15.1097 33.2414 -10.8046 29.9935 0.0215 30.6283 -2.0943

2015 38.6 27.8395 27.877 44.5882 -15.5136 35.3004 8.5482 37.0175 4.0998

2016 48.3 30.4329 36.992 63.269 -30.9917 41.4932 14.0928 45.3032 6.2045

2017 56.1 33.2679 40.699 94.1392 -67.806 48.5701 13.4223 56.0027 0.1734

FMAPE 2.7772 1.5517 1.2698 1.2024

PMAPE 25.7191 25.8144 7.4274 2.8591

TMAPE 12.3363 11.6612 3.8355 1.8927

R 0.9642 0.9761 0.9959 0.998

https://doi.org/10.1371/journal.pone.0225362.t007
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Fig 4. Performance comparison of the proposed model and other comparative grey models in Example A.

https://doi.org/10.1371/journal.pone.0225362.g004

Fig 5. Analysis of detailed results obtained by using the proposed model and other comparative grey models in

Example A.

https://doi.org/10.1371/journal.pone.0225362.g005
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production from 2010 to 2012, which are filled in Table 10. As can be noticed from Table 10

and Fig 7, the proposed PFAGM model exhibits the most excellent prediction performance

compared with those of the other contrast grey models. Though FMAPE of PFAGM model is

not best, its PMAPE and TMAPE are superior to the other three contrast models. R of FMAPE

is also best among those of these grey models. Meanwhile, it is shown that results produced by

PFAGM almost approximate to the real value, and the regression line is almost coincident

with the equal line for raw sequence and the produced sequence by the model in Fig 8. Above

all, PFAGM model is slightly superior to the other three grey models in the aspect of prediction

accuracy.

Table 8. Raw data of cumulative oil field production in example B.

Year Oil production Year Oil production Year Oil production

1999 73.8217 2004 342.6394 2009 519.8508

2000 136.8817 2005 382.4312 2010 552.6569

2001 195.059 2006 420.0399 2011 581.6092

2002 247.8547 2007 454.043 2012 608.1863

2003 297.0902 2008 485.1171

https://doi.org/10.1371/journal.pone.0225362.t008

Fig 6. Searching optimal fractional order of PFAGM by using WOA for Example B.

https://doi.org/10.1371/journal.pone.0225362.g006

Table 9. The optimal parameters of different grey models in Example B.

Parameters GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

a -0.1142 0.0689 0.0513 0.3618

b 180.4262 73.4323 81.0772 -172.2099

c - - 31.5459 246.4802

γ 1 0.04046 1.12273 -0.08235

https://doi.org/10.1371/journal.pone.0225362.t009
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Example C: Forecasting foundation settlement

In this validation, the raw data of foundation settlement during engineering construction is

obtained from the paper [61], which is tabulated in Table 11. According to the previous prac-

tices, we divide the raw into two groups. The first one consists of the first eight digits of foun-

dation settlement, which are used to build grey models for the proposed model and the

Table 10. The results produced by proposed model and other comparative grey models in Example B.

Year Raw data GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

Value RPE Value RPE Value RPE Value RPE

1999 73.8217 73.8217 0 73.8217 0 73.8217 0 73.8217 0

2000 136.8817 200.0595 46.155 136.8817 0 136.8817 0 136.8817 0

2001 195.059 224.2578 14.9692 194.4272 -0.3239 195.7859 0.3727 194.6208 -0.2247

2002 247.8547 251.3831 1.4236 247.2619 -0.2392 248.754 0.3628 247.4707 -0.1549

2003 297.0902 281.7893 -5.1502 295.9235 -0.3927 297.0427 -0.016 295.9658 -0.3785

2004 342.6394 315.8733 -7.8117 340.8246 -0.5296 341.3715 -0.37 340.6058 -0.5935

2005 382.4312 354.08 -7.4134 382.305 -0.033 382.2394 -0.0501 381.8222 -0.1592

2006 420.0399 396.908 -5.5071 420.656 0.1467 420.025 -0.0036 419.9784 -0.0146

2007 454.043 444.9163 -2.0101 456.1335 0.4604 455.0314 0.2177 455.3797 0.2944

2008 485.1171 498.7315 2.8064 488.9656 0.7933 487.5107 0.4934 488.2846 0.6529

2009 519.8508 559.0559 7.5416 519.3578 -0.0948 517.6779 -0.418 518.9141 -0.1802

2010 552.6569 626.6769 13.3935 547.4965 -0.9337 545.7198 -1.2552 547.4598 -0.9404

2011 581.6092 702.477 20.7816 573.5516 -1.3854 571.8011 -1.6864 574.0897 -1.2929

2012 608.1863 787.4456 29.4744 597.6785 -1.7277 596.0686 -1.9924 598.9529 -1.5182

FMAPE 9.1626 0.274 0.2095 0.2412

PMAPE 21.2165 1.349 1.6447 1.2505

TMAPE 11.7456 0.5043 0.517 0.4575

R 0.9657 0.9998 0.9998 0.9999

https://doi.org/10.1371/journal.pone.0225362.t010

Fig 7. Performance comparison of the proposed model and other comparative grey models in Example B.

https://doi.org/10.1371/journal.pone.0225362.g007
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contrast grey models. The second one consists of the last two digits used to validate the predic-

tion accuracy of each grey model. Firstly, the optimal orders of the fractional accumulated grey

models are found out by using WOA algorithm. Then their linear parameters are estimated by

using the least-square method under their determined fractional order. The parameters of GM

(1,1) model are obtained by the least-square method directly. These optimal parameters are

listed in Table 12. In Fig 9, it is shown that the convergence curve of WOA declines rapidly

and then stays a constant stably after about 20 iterations. The results produced by these grey

models are also tabulated in Table 13. From Table 13 and Fig 10, it can be apparently found

that PFAGM model has the lowest PMAPE and TMAPE compared with the other three con-

trast grey models and has the second-lowest FMAPE which is almost approximate to the low-

est FMAPE of FAGM(1,1,k) model. Meanwhile, it can be clearly seen from Fig 11 that the

regression line between raw data and calculated values is almost coincident with their equal

line. In brief, it can be concluded that PFAGM model has better prediction performance than

the other three grey models in this example.

Fig 8. Analysis of detailed results obtained by using the proposed model and other comparative grey models in

Example B.

https://doi.org/10.1371/journal.pone.0225362.g008

Table 11. Raw data of foundation settlement in Example C.

Index Observed value Index Observed value Index Observed value

1 43.19 6 99.73 9 112.19

2 58.73 7 105.08 10 113.45

3 70.87 8 109.73

4 83.71 5 92.91

https://doi.org/10.1371/journal.pone.0225362.t011
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Table 12. The optimal parameters of different grey models in Example C.

Parameters GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

a -0.0920 0.1274 0.0421 0.0126

b 59.2681 30.1302 -1.3201 42.9745

c - - 15.6763 -25.9805

γ 0.95251 0.99867 0.99978 0.99980

https://doi.org/10.1371/journal.pone.0225362.t012

Fig 9. Searching optimal fractional order of PFAGM by using WOA for Example C.

https://doi.org/10.1371/journal.pone.0225362.g009

Table 13. The results produced by proposed model and other comparative grey models in Example C.

Index Raw data GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

Value RPE Value RPE Value RPE Value RPE

1 43.19 43.19 0 43.19 0 43.19 0 43.19 0

2 58.73 66.243 12.7925 58.8407 0.1884 58.73 0 58.6616 -0.1164

3 70.87 72.6275 2.4798 72.1069 1.7453 71.7718 1.2724 71.8027 1.3161

4 83.71 79.6272 -4.8773 82.9702 -0.8838 82.8814 -0.9899 82.9569 -0.8997

5 92.91 87.3016 -6.0364 91.8531 -1.1376 92.1827 -0.7828 92.2435 -0.7173

6 99.73 95.7156 -4.0253 99.1141 -0.6176 99.7299 -0.0001 99.7491 0.0191

7 105.08 104.9405 -0.1327 105.0387 -0.0393 105.5627 0.4593 105.5524 0.4496

8 109.73 115.0546 4.8524 109.8553 0.1141 109.7181 -0.0108 109.73 0

9 112.19 126.1434 12.4373 113.749 1.3896 112.2341 0.0393 112.3567 0.1486

10 113.45 138.3009 21.9048 116.8717 3.0161 113.1498 -0.2646 113.5059 0.0493

FMAPE 4.3996 0.5908 0.4394 0.4398

PMAPE 17.171 2.2029 0.152 0.0989

TMAPE 6.9539 0.9132 0.3819 0.3716

R 0.9525 0.9987 0.9998 0.9999

https://doi.org/10.1371/journal.pone.0225362.t013
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Fig 10. Performance comparison of the proposed model and other comparative grey models in Example C.

https://doi.org/10.1371/journal.pone.0225362.g010

Fig 11. Analysis of detailed results obtained by using the proposed model and other comparative grey models in

Example C.

https://doi.org/10.1371/journal.pone.0225362.g011
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Analysis and discussion

According to the results of the above three validation experiments, we can conclude that

PFAGM model has a better prediction accuracy than the other three contrast grey model.

From an overall perspective, the prediction performances of fractional grey models are supe-

rior to the classical GM(1,1) model. In Example A, the MAPE of PFAGM model for fitting is

only slightly lower than the other grey models. However, the MAPE of PFAGM for prediction

reaches 1.8927%, which is significantly lower than those of the other models. In Example B,

the MAPE of PFAGM model for fitting is very closed to the lowest value though it is not the

lowest. Moreover, the prediction performance of PFAGM model is slightly better than FAGM

(1,1) and FAGM(1,1,k) model, and significantly better than GM(1,1) model. In Example C,

PFAGM model obtains the secondary lowest MAPE of fitting which is also very closed to the

lowest one among the four models. PFAGM model also achieves the lowest MAPE of predic-

tion. Meanwhile, the overall MAPEs and correlation coefficients of PFAGM model in the

three validation are lowest among all grey models. Such indicates that PFAGM model has bet-

ter stability and adaptability. Fig 12 shows the rankings of various grey models for fitting and

prediction performance. It can be clearly noticed that the prediction performance and overall

performance of PFAGM is the best in the three validations. Moreover, the nuclear energy con-

sumption of China is used to validate the performance of PFAGM model which obtains better

accuracy in Example A. It indicates that PFAGM model can be applied in forecasting renew-

able energy consumption. In the next section, we apply the novel PFAGM model to predict

Chinese wind energy consumption to provide a reference for corresponding decision

departments.

Application

Wind energy is safe, renewable, green, and economical. It is worth developing in all countries

all over the world. The13th Five-Year Plan (2016-2020) of China pointed out that the target of

total wind installed capacity will be over 210GW at the end of 2020. However, the cumulative

Fig 12. Rankings of different grey models in validations.

https://doi.org/10.1371/journal.pone.0225362.g012
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wind installed capacity of China has reached 211GW at the end of 2018, according to Global

Wind Report 2018 of the GWEC. This means that the target of wind energy was achieved two

years ahead of schedule. There is little room for wind energy growth in 2019 and 2020. To pro-

vide reference data for government, accurately predicting the wind energy is significant and

necessary for formulating or adjusting corresponding wind energy policy. In this section, we

focus on forecasting the annual wind energy consumption of China from macro perspectives.

Because of small samples and some uncertainty, the grey prediction model is selected to apply

in this application. According to the validation of the previous section, PFAGM model has a

competitive edge compared with the other three grey models and can be used to forecast wind

energy consumption. In this application, we collect the raw wind energy consumption of

China from the BP Statistical Review of World Energy 2019. The wind energy consumption

from 2009 to 2018, which are tabulated in Table 14, is used to forecast the consumption of the

next three years. From Table 14, it can be apparently noticed that wind energy consumption

increases rapidly. In 2018, the total wind energy consumption reached 82.8 million tonnes oil

equivalent, which is 13.4 times as much as ten years ago. Meanwhile, wind energy is one of the

cheapest forms of energy in many countries and is a kind of renewable energy used widely.

Therefore, accurately forecasting wind energy consumption plays a vital role in reducing

energy expenditure and carbon emissions. Firstly, we partition the raw sequence into two

groups to build a model and test the model. The first group, including the consumption from

2009 to 2017, is used to build models for the four grey models separately. The second group,

including wind energy consumption in 2018, is used to verify the prediction accuracy of these

grey models. The linear parameters of GM(1,1) model can be estimated by using the least-

square method. They are -0.22512 and 11.19559. The time response function (TRF) of GM

(1,1) model can be represented as:

xð1ÞðkÞ ¼ 55:9317e� 0:2251ðk� 1Þ � 49:7317 ð50Þ

For fractional grey models, their fractional orders should be determined to obtain optimal

values. The optimal orders of FAGM(1,1), FAGM(1,1,k), and PFAGM model are searched by

using WOA algorithm, which are filled in Table 15. Fig 13 shows than the optimal order of

PFAGM model is obtained after a few iterations of WOA algorithm. Then the linear parame-

ters of each fractional grey model can be calculated by using the least-square method, which

also are listed in Table 15. The time response function of the three fractional grey models can

be respectively represented as follows. The TRF of FAGM(1,1) model is

xð0:36871ÞðkÞ ¼ 37:55924e0:17072ðk� 1Þ � 31:35924: ð51Þ

Table 14. Raw data of China’s wind energy consumption (million tonnes oil equivalent).

Year Wind energy consumption Year Wind energy consumption

2009 6.2 2014 35.3

2010 10.1 2015 42

2011 15.9 2016 53.6

2012 21.7 2017 66.8

2013 31.9 2018 82.8

https://doi.org/10.1371/journal.pone.0225362.t014
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The TRF of FAGM(1,1,k) model is

xð1:13366ÞðkÞ ¼ 283:1282e0:13851ðk� 1Þ � 30:4471k � 246:4811: ð52Þ

The TRF of PFAGM model is

xð0:17874ÞðkÞ ¼ 19:6961e0:17874k � 14:4727e� 0:08124ðk� 1Þ � 2:8781: ð53Þ

By using inverse fractional or integral order accumulated operation, the restored results of

the four grey models can be easily obtained and tabulated in Table 16. From Table 16 and Fig

14, FMAPE, PMAPE and TMAEP of PFAGM model are 3.1100, 2.1456 and 3.0136 respectively

while those of GM(1,1) model are 8.3600, 3.2696 and 7.8510, those of FAGM(1,1) model are

3.1559, 3.3757 and 3.1779, and those of FAGM(1,1,k) model are 3.1901, 6.0252 and 3.4736. It

can be clearly noticed that the total, fitting and validation MAPE of PFAGM are lowest. Mean-

while, Fig 15 shows that the regression line almost coincides with the equal line. The fitted

points of PFAGM model almost are on the regression line, while more fitted points of other

grey models deviate from the regression line. R of PFAGM model is also best among the four

grey models. Above all, all the above-mentioned evidences suggest that the prediction perfor-

mance of PFAGM model is better than the other three grey models, and PFAGM model can

be used to forecast the wind energy consumption of the future. Then we utilize these estab-

lished grey models to forecast the wind energy consumption in the next three years. The pre-

dicted wind energy consumptions from 2019 to 2021 are tabulated in Table 17. The predicted

Table 15. The optimal parameters of different grey models for forecasting Chinese wind energy consumption.

Parameters GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

a -0.22512 -0.17072 -0.13851 0.08124

b 11.19559 5.35365 4.21723 5.11976

c - - 3.69298 -0.23365

γ 1 0.36871 1.13366 0.17874

https://doi.org/10.1371/journal.pone.0225362.t015

Fig 13. Searching optimal order of PFAGM by using WOA for forecasting Chinese wind energy consumption.

https://doi.org/10.1371/journal.pone.0225362.g013

Forecasting wind energy consumption with a novel PFAGM model

PLOS ONE | https://doi.org/10.1371/journal.pone.0225362 December 5, 2019 27 / 33

https://doi.org/10.1371/journal.pone.0225362.t015
https://doi.org/10.1371/journal.pone.0225362.g013
https://doi.org/10.1371/journal.pone.0225362


results of PFAGM model are respectively 98.0472, 118.2918, and 142.4003 in the next three

years.

Conclusion

In this paper, a novel fractional grey model called PFAGM is put forward based on the grey

action quantity optimization of the classic fractional grey model with an exponential term. For

fractional order accumulated grey models, it is the key to seek out their optimal orders to

Table 16. The results produced by different grey models for Chinese wind energy consumption.

Year Raw data GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

Value RPE Value RPE Value RPE Value RPE

2009 6.2 6.2 0 6.2 0 6.2 0 6.2 0

2010 10.1 14.1212 39.8135 10.906 7.9799 10.7861 6.7928 10.8293 7.2208

2011 15.9 17.6863 11.2346 15.9 0 15.9521 0.328 15.9 0

2012 21.7 22.1515 2.0808 21.4735 -1.0437 21.7572 0.2637 21.5801 -0.5525

2013 31.9 27.7441 -13.028 27.8494 -12.6977 28.3244 -11.2087 28.0626 -12.0295

2014 35.3 34.7486 -1.5622 35.2399 -0.1702 35.7865 1.3782 35.5569 0.7278

2015 42 43.5214 3.6225 43.8725 4.4584 44.2901 5.4525 44.3002 5.4767

2016 53.6 54.5092 1.6963 54.0042 0.7541 53.9998 0.746 54.5674 1.8049

2017 66.8 68.271 2.2021 65.9324 -1.2989 65.1026 -2.541 66.6812 -0.1778

2018 82.8 85.5073 3.2696 80.0049 -3.3757 77.8112 -6.0252 81.0234 -2.1456

FMAPE 8.36 3.1559 3.1901 3.11

PMAPE 3.2696 3.3757 6.0252 2.1456

TMAPE 7.851 3.1779 3.4736 3.0136

R 0.9964 0.9978 0.9971 0.9979

https://doi.org/10.1371/journal.pone.0225362.t016

Fig 14. Performance comparison of the proposed and other comparative grey models for forecasting Chinese

wind energy consumption.

https://doi.org/10.1371/journal.pone.0225362.g014
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obtain the best prediction accuracy. In PFAGM model, WOA algorithm is adopted to search

its optimal order. Moreover, its linear parameters are estimated by using the least-square

method on the basis of the optimal order. Meanwhile, there are some various structures of the

grey model behind PFAGM model, which can be reduced into GM(1,1) and FAGM(1,1) easily.

It maybe indicates that PFAGM model has more predictive power than traditional grey mod-

els. The results of validation experiments on real-life datasets show that PFAGM model has

better prediction performance than the other three grey models. So PFAGM model is used to

predict Chinese wind energy consumption. The predicted values of GM(1,1) in the next 3

years are 107.0951, 134.1331, 167.9974 respectively while those of FAGM(1,1) are 96.6314,

116.2954, 139.5689 and those of FAGM(1,1,k) are 92.3688, 109.0540, 128.1861 respectively. It

indicates that the results of GM(1,1), FAGM(1,1,k) maybe have more some deviation from the

truth. Results of PFAGM model are in the middle of the other grey models’ results. So, its

Fig 15. Analysis of detailed results obtained by using the proposed model and other comparative grey models for

forecasting Chinese wind energy consumption.

https://doi.org/10.1371/journal.pone.0225362.g015

Table 17. China’s wind energy consumptions from 2019 to 2021 predicted by different grey models.

Year GM(1,1) FAGM(1,1) FAGM(1,1,k) PFAGM

2019 107.0951 96.6314 92.3688 98.0472

2020 134.1331 116.2954 109.054 118.2918

2021 167.9974 139.5689 128.1861 142.4003

https://doi.org/10.1371/journal.pone.0225362.t017
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predicted results can be as reference data of adjusting wind energy policy. Above all, it can be

drawn that PFAGM model is efficient to realize short term prediction for time series, especially

the sequence with small samples or uncertainty. In the future, the novel PFAGM model can be

applied in more applications such as carbon emission forecasting, management of the petro-

leum reservoirs and so on.
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