@ PLOS|ONE

Check for
updates

G OPEN ACCESS

Citation: Fang Y, Han S, Huang C, Wu R (2019)
TAP: A static analysis model for PHP vulnerabilities
based on token and deep learning technology.
PLoS ONE 14(11): 0225196. https:/doi.org/
10.1371/journal.pone.0225196

Editor: Hua Wang, Victoria University, AUSTRALIA
Received: May 24, 2019

Accepted: October 30, 2019

Published: November 18, 2019

Copyright: © 2019 Fang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
available from GitHub at https:/github.com/das-
lab/TAP.

Funding: This work is supported in part by Key
Research and Development Plan Project of
Sichuan Province (No0.2019YFG0407), and Sichuan
University Postdoc Research Foundation under
Grant 19XJ0002. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

TAP: A static analysis model for PHP
vulnerabilities based on token and deep
learning technology

Yong Fang', Shengjun Han', Cheng Huang®'*, Runpu Wu?

1 College of Cybersecurity, Sichuan University, Chengdu 610065, China, 2 China Information Technology
Security Evaluation Center, Beijing 100085, China

* opcodesec@gmail.com

Abstract

With the widespread usage of Web applications, the security issues of source code are
increasing. The exposed vulnerabilities seriously endanger the interests of service providers
and customers. There are some models for solving this problem. However, most of them
rely on complex graphs generated from source code or regex patterns based on expert
experience. In this paper, TAP, which is based on token mechanism and deep learning tech-
nology, was proposed as an analysis model to discover the vulnerabilities of PHP: Hypertext
Preprocessor (PHP) Web programs conveniently and easily. Based on the token mecha-
nism of PHP language, a custom tokenizer was designed, and it unifies tokens, supports
some features of PHP and optimizes the parsing. Besides, the tokenizer also implements
parameter iteration to achieve data flow analysis. On the Software Assurance Reference
Dataset(SARD) and SQLI-LABS dataset, we trained the deep learning model of TAP by
combining the word2vec model with Long Short-Term Memory (LSTM) network algorithm.
According to the experiment on the dataset of CWE-89, TAP not only achieves the 0.9941
Area Under the Curve(AUC), which is better than other models, but also achieves the high-
est accuracy: 0.9787. Further, compared with RIPS, TAP shows much better in multiclass
classification with 0.8319 Kappa and 0.0840 hamming distance.

Introduction

At present, the Internet plays an important role in politics, economy, culture and social life.
There are various security issues in different emerging Internet environments, such as Internet
applications [1], cloud computing [2], crowdsourcing [3] and so on. With the rapid growth of
open-source website applications, cyber threats are also emerging. According to an F5 Labs
research on 433 major malicious attack incidents spanning 12 years, Web applications are the
origin of 53% of malicious attacks [4]. Therefore, in order to resist intruders effectively, the
security of the Web applications should be ensured at first.

There are 55.2% of Alexa top 10 million websites built on the content management system
(CMS). WordPress, Joomla! and Drupal are the top three most popular CMSs, and their

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 1/19

http://orcid.org/0000-0002-5871-946X
https://doi.org/10.1371/journal.pone.0225196
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225196&domain=pdf&date_stamp=2019-11-18
https://doi.org/10.1371/journal.pone.0225196
https://doi.org/10.1371/journal.pone.0225196
http://creativecommons.org/licenses/by/4.0/
https://github.com/das-lab/TAP
https://github.com/das-lab/TAP

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

market share is 69% [5]. They are all PHP programs and the global usage of PHP programs is
more extensive with the addition of other PHP Web applications. Unfortunately, some PHP

programmers lack the basic knowledge of secure programming, and some vulnerabilities are
difficult to detect, even for programmers with security experience.

PHP is so widely used on the Internet that any few security problems may cause a
global disaster. PHPMailer is probably the most popular PHP email module in the world,
which is used by many open-source projects like WordPress, Drupal, Joomla! and so on.
However, there was a severe security problem—CVE-2017-5223 [6], which could allow any
attackers to read servers’ local files. It affects the file content security of millions of websites
servers around the world, and it would even further affect the administrative security of the
servers. Another PHPMailer’s vulnerability—CVE-2016-10033 [7], could allow hackers to
execute arbitrary code and threaten the security of systems directly. The National Vulnera-
bility Database (NVD) even assigned it a 9.8/10 (CRITICAL) rating because of its great
harm.

As a programming language for millions of websites, the security issue of PHP programs
cannot be ignored. In the past, the security of PHP programs was assured by manual audit-
ing, which was not only complex but also wasting time and labor. Moreover, manual audit-
ing can not cope well with the current large open-source codes. At present, the common
method is the regex pattern, and it depends on vulnerability detective features extracted
from human experts’ experience. Representative tools include RIPS [8] and Pixy [9]. Those
tools are much faster than traditional manual auditing, but they require features to address
vulnerabilities, which is often not feasible for some complicated vulnerabilities. With the
development of machine learning, more and more scholars began to seek methods in
machine learning and deep learning fields. They usually manually extracted some features
for traditional machine learning models or defined lots of sensitive taint functions to auxil-
iary detect vulnerabilities.

Our contributions

In this paper, we proposed a static PHP source code analysis model named TAP, which bases
on token and deep learning technology. TAP neither requires to extract any features vectors
manually, nor defines any sensitive taint functions. In order to facilitate the processing of
machine learning models, a custom tokenizer was designed. The major contributions of this
paper are summarized as follows:

o In this paper, a custom tokenizer was designed based on the token mechanism of PHP. The
tokenizer not only can parse source codes into tokens with more available information, but
also deal with some features of PHP well.

o This paper proposed a new convenient method of performing data flow analysis. Source
codes are transformed into abstract operation sequences by iterating parameter change with-
out executing any codes.

o In this paper, TAP, which is based on the token mechanism and deep learning technology,
was proposed as an analysis model to discover the PHP vulnerabilities. As far as we know,
TAP is the only deep learning model that can deal with more than 7 categories of PHP vul-
nerabilities well. According to our experimental evaluation, TAP achieves 0.9941 AUC and
0.9787 accuracies on the CWE-89 dataset. Compared with contrasts, TAP shows much better
with 0.8319 Kappa in multiclass classification.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 2/19

https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Related work

There are two major categories in the field of source-code static analysis. One is making tools
based on expert knowledge and experience, and another is applying machine learning technol-
ogy to detect vulnerabilities automatically.

There are some well-known traditional tools. Pixy [9] combines flow-sensitive, interproce-
dural with context-sensitive techniques for detecting vulnerabilities. But Pixy only focuses on
cross-site scripting(XSS), the authors of Pixy consider that Pixy can detect other taint-style vul-
nerabilities like Structured Query Language(SQL) injection and command injection by some
engineering effort. RIPS [8] is different from Pixy which must run in Java environment, RIPS
is a PHP program that uses the inbuilt PHP tokenizer functions, and it focuses on sensitive
functions and taint inputs data flow analysis. SAFERPHP [10] combines taint analysis with
control-flow graph (CFG) [11] to find some semantic vulnerabilities like missing authorization
problems and Denial-of-Service(DoS).

It is very inconvenient to keep on updating new detective modules for these tools. While
there appear new attack skills, experts must immediately find the features of vulnerabilities
and update the sensitive functions lists. For example, RIPS added some PHP magic methods in
the watch list for the Property-Oriented Programming (POP) vulnerability in an update [12].

In recent years, data mining and machine learning have made a lot of progress in the fields
of exploiting vulnerabilities. An earlier study was based on code similarity for C programs,
Yamaguchi et al. [13] embedded Application Program Interface(API) usage patterns in a vec-
tor space and applied Principal Component Analysis(PCA) to detect similar vulnerabilities in
the same type structure as the provided original sample. Soon later, Yamaguchi et al. [14] put
forward the concept of Code Property Graphs (CPGs) which is a joint representation of a pro-
gram’s syntax, control flow, and data flow. Based on this theory, Backs et al. [15] transformed
PHP code into CPGs and identified vulnerabilities via graph traversals. Russell et al. [16] cre-
ated a custom C/C++ lexer. Then they combined feature-extraction approaches of random for-
est(RF) [17] and Convolutional Neural Network (CNN) [18] to develop a function-level
vulnerability detection model. VulDeePecker [19] is a vulnerability detection system based on
deep learning. It focuses on library/API function calls and uses custom code gadgets to trans-
form C/C++ codes into vectors. Through experiments, the authors found Bidirectional LSTM
(BiLSTM) network [20] achieved the best effect. NAVEX [21] checks the sinks, sanitizations,
traversal types and attack strings according to the prescribed dictionaries. Then, it obtains the
data stream by traversing the generated CPGs. Especially, NAVEX combines dynamic execu-
tion methods to generate concrete exploits. NAVEX can detect SQL injection, XSS, Execution
After Redirect(EAR) [22] and command injection vulnerabilities.

Most of the above tools and models are limited to testing a few vulnerabilities, and some of
them use an auxiliary sink list to find possible vulnerability functions. The sink list mechanism
needs experts to find the feature functions triggered by the vulnerability in time when a new
vulnerability occurs. It is the same problem as traditional tools. Most scholars are inclined to
generate complex graphs. However, the cost of building a graph structure is very high, and
most generator is based on third-party tools. For solving those problems, we designed TAP
which is based on the token mechanism and obtains multiclass vulnerabilities knowledge auto-
matically only by inputting vulnerable and safe samples.

Methods

We put forward some tokenized methods to deal with PHP code and data flow. The flow chart
of TAP is shown in the Fig 1. According to features of PHP, our custom tokenizer particularly
parses strings, numbers and functions based on the PHP original token mechanism. After

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 3/19

https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Source
code

? T ? v
;@j T -~ "Lﬁﬁ‘::{ <— Word2vec

Tokenizer
S/@@f @;% . Oooo —
tri N arsin
rings umbers D D D — ::;
<g - ooo —
Functions Unify tokens Iteration
variables

A

o o o

Vulnerabilities LSTM
Fig 1. Overview of TAP.

https://doi.org/10.1371/journal.pone.0225196.9001

unifying tokens, the tokenizer iterates variables to achieve data flow analysis, and it will only
preserve lines of code with functions. Then we use word2vec model to obtain vectors and use
the LSTM network to train TAP. Finally, TAP can recognize more than 7 categories of
vulnerabilities.

The PHP inbuilt function token_get_all() can parse code into PHP tokens by Zend engine
[23]. Each PHP keywords and symbols will be translated into a word which begins with a capi-
tal letter T. As shown in the Fig 2, function token_get_all() can recognize HTML code, com-
ments and composite symbols, and it can also locate the line where the code appears. But this
function will parse any strings into the same token T_CONSTANT_ENCAPSED_STRING, and
it is adverse to extract information from strings because of losses of any string content details.
The same is true of numbers.

Input:

1
2
3 // Out of PHP
4
5

<?php
5 # This is a demo
6 echo "Hello World’;
T >
8
9
10 Onput:

12 Line 1: TINLINE_HTML (’// Out of PHP
14 Line 2: T OPEN_TAG (’<?php

)

16 Line 3: T-COMMENT (’# This is a demo
18 Line 4: T_.ECHO (’echo’)

19 Line 4: T-WHITESPACE (')

0 Line 4: T.CONSTANT_ENCAPSED_STRING ("’Hello World")
Line 4: T-WHITESPACE (’

} Line 5: T.CLOSE_TAG ('7>")

)

)

)

Fig 2. Example of PHP inbuilt function.

https://doi.org/10.1371/journal.pone.0225196.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 4/19

https://doi.org/10.1371/journal.pone.0225196.g001
https://doi.org/10.1371/journal.pone.0225196.g002
https://doi.org/10.1371/journal.pone.0225196

@ PLOS | O N E A static analysis model for PHP vulnerabilities

Besides, function token_get_all() only recognizes PHP keywords and few of functions.
Other functions and identifiers like class names are all parsed into token T_STRING [24], and
it will be very difficult for the deep learning model to recognize PHP code. Thus it is necessary
to optimize standard PHP tokenizer.

Parsing strings

According to our previous knowledge about vulnerabilities, we deem that the boundary sym-
bols of strings are more likely to associate with SQL injection and other vulnerabilities than
the contents of whole strings. So the custom tokenizer scans every string to extract boundary
symbols. For example, a constant string SELECT * FROM A where A.B =" will be only parsed
into T_CONSTANT _ENCAPSED_STRING by inbuilt function token_get_all(), but the tokeni-
zer of TAP will parse it into T_CONSTANT_ENCAPSED_STRING’ for emphasizing the single
quote.

Besides, there is a PHP specific case that variables will be parsed when they are between
double quotation marks. So the boundary symbol does not only mean the first and last charac-
ters of strings, but also means the characters adjacent to variables between double quotation
marks.

As shown in Fig 3, $sql1 and $sql2 are the different expressions of the same SQL query sen-
tence. PHP inbuilt function token_get_all() parsed them into different token sequences. In par-
ticular, $sql1 has extra delimiter quotation marks for strings which are meaningless. This
inconsistency would cause the model to handle codes incorrectly.

Our tokenizer can perfectly recognize different boundary situations and the special charac-
ters of the boundary. Besides, our tokenizer unifies tokens of various forms for facilitating
identification.

Parsing numbers

Integer type numbers are usually used in config options, and lots of misconfigure issues just
because of a wrong integer. But if all integers are parsed into the same token T_LNUMBER,
our model will have no idea what the real config options are and cannot locate this type of

I Input:

2

3 <7php

I $sgll =7 select * from admin where id=" $_GET[x] ;”;

5 $sql2 =7 select * from admin where id="" . $_GET[x] . 7;";
6 7>

8 Output of inbuilt function:

0 //$sqll

I "T_ENCAPSED_AND_WHITESPACE T_VARIABLE [T_STRING |T_ENCAPSED_AND_WHITESPACE ”;
2 //$sql2

3 T_CONSTANT_ENCAPSED_STRING .T_-VARIABLE [T_STRING].T_.CONSTANT_ENCAPSED_STRING ;

Output of our tokenizer:

//$sqll

T_CONSTANT_ENCAPSED_STRING ’ T_INPUT [x | T.CONSTANT_ENCAPSED_STRING ;
//%sql2

T_CONSTANT_ENCAPSED_STRING ’ . TINPUT [x] . T_.CONSTANT_ENCAPSED_STRING ;

o

ov W

Fig 3. Comparison of parsing different boundary situations.

https://doi.org/10.1371/journal.pone.0225196.g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 5/19

https://doi.org/10.1371/journal.pone.0225196.g003
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Table 1. List of uniform tokens.
Uniform tokens

T_IGNORE

vulnerability. For solving this problem, we decide to keep the original value of integer type
number, which means the tokenizer of TAP will not parse integers and integer type variables
into tokens.

Parsing functions

Function token_get_all() cannot obtain the information of function names, because all func-
tion names are parsed into token T_STRING. We use function function_exists() to judge
whether they are defined functions or not. Next, our tokenizer will keep the function name
when it is a defined function or its token is T_STRING. Besides, several functions of old ver-
sions are abolished by upgrading PHP 7, so we collect and remain abandoned functions which
are not recognized by PHP 7’s function function_exists() for downward compatibility.

Unifying tokens

The names of functions are different from each other, in fact, some functions implement simi-
lar or even the same purpose. For preventing the deep learning model from getting entangled
in the different names of the same functions, we maintain a list that is used to unify the similar
functions’ tokens. The whole list is shown in Table 1.

For example, in the fifth line of the Table 1, functions include(), include_once(), require()
and require_once() are parsed into 4 different token names by PHP inbuilt function. However,
they all implement the same purpose which is importing another local file, so our tokenizer
parses them into the same token T_INCLUDES. We can not recognize all functions or vari-
ables through token names parsed by inbuilt function. Thus we have to combine token names
with function names to unify tokens.

As a special case, tokens which are unprofitable to analyze will be eliminated, the second
line of Table 1 is the ignored tokens list.

Token names or function names

T_DOC_COMMENT, T_COMMENT, T_INLINE_HTML, T_WHITESPACE, T_OPEN_TAG, T_CLOSE_TAG

T_ASSIGNMENT T_AND_EQUAL, T_CONCAT_EQUAL, T_DIV_EQUAL, T_MINUS_EQUAL, T_MOD_EQUAL, T_MUL_EQUAL, T_OR_EQUAL,

T_COMPARISON

T_PLUS_EQUAL, T_SL_EQUAL, T_SR_EQUAL, T_XOR_EQUAL

T_IS_EQUAL, T_IS_GREATER_OR_EQUAL, T_IS_IDENTICAL, T_IS_NOT_EQUAL, T_IS_NOT_IDENTICAL,

T_IS_SMALLER_OR_EQUAL

T_INCLUDES T_INCLUDE, T_INCLUDE_ONCE, T_REQUIRE, T_REQUIRE_ONCE
T_ECHO T_PRINT, T_ECHO, T_EXIT, T_OPEN_TAG_WITH_ECHO, print_r, printf, vprintf, trigger_error, user_error, odbc_result_all,
ifx_htmltbl_result
T_INPUT $_GET, $_POST, $_COOKIE, $_REQUEST, $_FILES, $_SERVER, $SHTTP_GET_VARS, $SHTTP_POST_VARS, $SHTTP_COOKIE_VARS,
$HTTP_REQUEST_VARS, $SHTTP_POST_FILES, $HTTP_SERVER_VARS, $HTTP_RAW_POST_DATA, $argc, $argv, get_headers,
getallheaders, get_browser, import_request_variables
T_PREG preg_filter, preg_grep, preg_last_error, preg_match_all, preg_match, preg_quote, eregi, preg_replace_callback, preg_replace, ereg_replace, ereg,
eregi_replace,
T_EXEC backticks, exec, expect_popen, passthru, pcntl_exec, popen, eval, proc_open, shell_exec, system,
T_SQL dba_insert, dba_fetch, dba_delete, dbx_query, odbc_do, odbc_exec, odbc_execute, db2_exec, db2_execute, fbsql_db_query, fbsql_query,

ibase_query, ibase_execute, ifx_query, ifx_do, ingres_query, ingres_execute, ingres_unbuffered_query, msql_db_query, msql_query, mssql_query,
sybase_unbuffered_query, mssql_execute, mysql_db_query, mysql_query, mysql_unbuffered_query, mysqli_stmt_execute, mysqli_query,
mysqli_real_query, mysqli_master_query, oci_execute, ociexecute, ovrimos_exec, ovrimos_execute, ora_do, ora_exec, pg_query, pg_send_query,
pg_send_query_params, pg_send_prepare, pg_prepare, sqlite_open, sqlite_popen, sqlite_array_query, arrayQuery, singleQuery, sqlite_query,

https://doi.org/10.1371/journal.pone.0225196.t001

sqlite_exec, sqlite_single_query, sqlite_unbuffered_query, sybase_query,

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 6/19

https://doi.org/10.1371/journal.pone.0225196.t001
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

I Input:
2

<?php

> O

$id = 1;

$sql = ’select * from admin where id=".8id;
7 $result = mysql_query($sql,$conn);

8 var_dump($result);

7>

13 Variable List:

15 array(4) {

16 [78$id”]=>

17 string(3) 7 17

18 ["$sql”]=>

19 string(34) ” T-CONSTANT_ENCAPSED_STRING . 17

0 ["$conn”]=>

string (15) "T_UNDEFINED_VAR”

[” $result”]=>

string (62) 7 T_SQL (T_-CONSTANT_ENCAPSED_STRING . 1 , T_.UNDEFINED_VAR)”

NN NN
W N =

Fig 4. Example of variable iterations.

https://doi.org/10.1371/journal.pone.0225196.g004

Data flow analysis

It is a nodus that tracking the variable change in static code analysis. The custom tokenizer rec-
ords and iterates the changes of variables when a line of code is an assignment statement. It
sounds like symbolic execution [17], but our method does not execute the PHP code and only

records operations on variables. Our method not only reduces the difficulty of implementation

and time cost but also achieves the work of data flow analysis. As shown in Fig 4, the variable

$result only records that function mysql_query() processed $sql and $con, and it does not

obtain the execution result of this line of codes.

According to our understanding of PHP codes, we found that one line of vulnerable codes
must include at least one function, other code statements such as assignment and definition

will not be directly linked to the vulnerabilities.

Therefore, the tokenizer of TAP will only keep lines of codes with functions and substitute

the iterative variable value for the corresponding variable name. These can conduce to the

deep learning model dealing with parameter passing and discover the lines of codes directly

related to vulnerabilities.

The final result of TAP’s custom tokenizer is shown in Fig 5. Our tokenizer only remains
the last line of codes because it executes a function. Moreover, it can be found that the tokeni-
zer accurately recognizes the parameter content of the echo function is the second item of the

array variable.

Algorithm model

Embedding. One-hot encoding is a primary embedding method that outputs a discrete
sparse matrix. In essence, it is a bag of words model. One-hot encoding ignores the order of
words and assumes that words are independent of each other. Word2vec [25] is a kind of word
embeddings methods that can transform the corpus of text into a vector space by using a neu-

ral network. It can preserve the semantic and syntactic relationships.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019

7/19

https://doi.org/10.1371/journal.pone.0225196.g004
https://doi.org/10.1371/journal.pone.0225196

@ PLOS | O N E A static analysis model for PHP vulnerabilities

I Input:

2

3 <7?php

1

5 *

6 This is a flaw demo.

7 In array $array, only Sarray[l] is tainted, TAP accurately find the correct variable.
8 x/

9

10 $array = array();

11 Sarray[] = ’safe’;
12 Sarray[] = $_GET[userData’];
13 $array[] = ’safe’;

14 $tainted = Sarray|[1];

16 echo $tainted;

18 7>

Onput:

3 T_ECHO T_INPUT [T_CONSTANT_ENCAPSED_STRING];

Fig 5. Example of the TAP’s custom tokenizer.
https://doi.org/10.1371/journal.pone.0225196.9005

We consider that program language is similar to natural language. The meaning of words
influences each other, and the sequence of words should be treated with caution because a dif-
ferent position of a word may make the meaning of a sentence opposite. Besides, our tokenizer
parses user-defined functions as tokens. Vectors will be too sparse and cause dimensional
disasters after one-hot encoding. Thus we choose word2vec rather than one-hot encoding.

Basic model. CNN algorithm supposes that input and output are also independent, and
elements are independent of each other. CNN is often used in image recognition field. Recur-
rent Neural Network(RNN) has an internal state to process input sequences, and it is suitable
for sequencing data such as voice record, text data and so on. But there are the exploding and
vanishing gradient problems in the RNN model.

LSTM network [26] is an improved RNN [27] for dealing with long-term dependencies.
There are an input gate, an output gate and a forget gate in an LSTM network unit to solve the
exploding and vanishing gradient problems in traditional RNN. It means the LSTM model can
remember more history information and distant words than RNN. Thus we consider that the
LSTM network is more suitable for our datasets, the experience also proves it.

Experimental
Dataset

SARD. Bertrand Stivalet and Elizabeth Fong [28] proposed a method to generate PHP test
cases automatically. The generated PHP test cases were uploaded to the SARD, which is a sub-
ject of the National Institute of Standards and Technology(NIST) [29].

All 42212 files are consisting of 29258 safe samples and 12954 unsafe samples in provided
datasets. Those vulnerable samples contain 12 categories of Common Weakness Enumeration
(CWE) vulnerabilities, such as CWE-78: OS Command Injection, CWE-79 Cross-site Script-
ing and so on. It is necessary for deep learning model to be offered sufficient data, so we had to
discard three subsets of less than 10 samples, which are CWE-209: Information Exposure

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 8/19

https://doi.org/10.1371/journal.pone.0225196.g005
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Table 2. The statistics of datasets.

CWEs Safe samples Vulnerable samples Totals
CWE-78: OS Command Injection 1872 624 2496
CWE-79: Cross-site Scripting 5728 4352 10080
CWE-89: SQL Injection 8640 912 9552
CWE-90: LDAP Injection 1728 2112 3840
CWE-91: XML Injection 4784 1264 6048
CWE-95: Eval Injection 1296 336 1632
CWE-98: PHP Remote File Inclusion 2592 672 3264
CWE-601: Open Redirect 2208 2592 4800
CWE-862: Missing Authorization 400 80 480
Totals 29248 12944 42192

https:/doi.org/10.1371/journal.pone.0225196.t002

Table 3. Errors found by manul check.

Through an Error Message, CWE-311: Missing Encryption of Sensitive Data and CWE-327:
Use of a Broken or Risky Cryptographic Algorithm.

The statistics of PHP test cases we used are shown in Table 2. In our experiment, the data-
sets are divided into the training dataset, validation dataset and test dataset with the ratio of
7:1:2.

SQLI-LABS. SQLI-LABS is a CWE-89 SQL injection training application for the security
researcher, and it contains SQL injection vulnerability in more than ten different situations.
We have sorted out 69 sample files related to vulnerability. Also, the datasets are divided into
the training dataset, validation dataset and test dataset with the ratio of 7:1:2.

Experiments

To evaluate TAP, we performed experiments by using a Ubuntu server with a 4-core 3.6 GHz
Intel Core i7-7700 processor, a 6GB GeForce GTX 1060 Graphics Processing Unit(GPU) and
16GB memory.

First of all, we manually checked all the datasets and found many errors in the PHP test
cases. As shown in the Table 3, we found 800 variable misused errors in 800 files and replaced
the undefined constant “checked_data” with the right variable “$tainted” which is a tainted
input according to context. We found 192 handwriting errors in 96 files, “tainted” was wrongly
written as “tained” in those files. In 192 safe sample files, we found another 960 handwriting
errors that the assignment symbol in the array was written as “= >” whose correct form is
“=>”. Another problem is quotation marks misuse errors. There are the curly double open
quote and curly double close quote which the PHP program cannot recognize in 4 files.

We trained two models to compare the binary classification models and the multiclass clas-
sification models, respectively.

Errors Corrections Safe samples Vulnerable samples Totals
(errors/files) (errors/files) (errors/files)
checked_data $tainted 448/448 352/352 800/800
tained tainted 192/96 0/0 192/96
=> => 960/192 0/0 960/192
7 4/2 4/2 8/4
« 4/2 4/2 8/4

https://doi.org/10.1371/journal.pone.0225196.t003

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019

9/19

https://doi.org/10.1371/journal.pone.0225196.t002
https://doi.org/10.1371/journal.pone.0225196.t003
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Binary classification model. We compared TAP with other algorithms on CWE-89 sam-
ples of the SARD and SQLI-LABS vulnerability dataset to prove the superiority of TAP in the
binary classification.

After parsing, the word2vec model was trained based on training data. We thought every
word had meaning even if it appeared only once, so parameter min_count is set to 1. The max-
imum distance between the current word and the prediction word in a sequence is 20. Each
word will be translated into 256 dimensions via our word2vec model. To take into account the
effect of all vectors, the maximum input length is set to 835 which is a litter larger than the
maximum length of sequences. Since the LSTM network must input a fixed-length sequence,
the insufficient input tokens will be padded with zeros.

The number of safe samples is more than 9 times that of vulnerability samples. In fact, itis a
very common situation in the real world, most of the codes are safe, and some type of vulnera-
bilities are rare. Imbalanced positive and negative samples will lead to a biased model, so the
weight of each category should be adjusted. We increased the weight of categories with fewer
samples and reduced the weight of categories with more samples. The weight is inversely pro-
portional to the amount of data and all weights add up to 1.

We added an LSTM network layer and a 50% dropout layer for preventing overfitting.
The last layer is a 1 unit dense layer with “sigmoid” activation. We performed dozens of
comparative experiments to evaluate the parameters and selected a few key parameters to
make an intuitive graph as shown in the Fig 6. By comparing the results, we decided to
adopt the following values of parameters. The dimension of vector is set to 256, the number
of LSTM units is set to 128, the value of batch size is set to 512, the epochs are set to 60, the
loss function is set to “mse”, the optimizer is “adam” and the number of learning rate is set
to 0.0001.

Multiclass classfication model. TAP was compared with other tools on all categories of
the SARD datasets to prove the ability of multiclass classifications.

After correcting errors, all the datasets are divided into 10 categories, including 9 categories
of CWE vulnerabilities and a safe category comprises all safe samples. Next, we parsed raw
codes into tokens by our custom tokenizer.

Other parameters are the same as the binary classifier model, except some config of neural
network. The length of the longest input sequence is set to 350. Besides, this is a 10 categories
classification problem, so the last output layer is a 10 units dense layer with “softmax” activa-
tion, and loss function is set to “categorical_crossentropy”.

Evaluation
Evaluation criteria

F1 score. The F1 score is an important metric of evaluating security models [30]. It also
takes into account the accuracy and recall rate of the classification model.

First, we will introduce some basic concepts:

True Positive(TP) is the number of samples where the predicted and the real label are both
positive.

False Positive(FP) is the number of samples where the predicted label is positive, but the
real label is negative.

True Negative(TN) is the number of samples where the predicted and the real label are
both negative.

False Negative(FN) is the number of samples where the predicted label is negative, but the
real label is positive.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 10/19

https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Accuracy
o o
w w
N >

©
o

0.88

0.86

0.84

0.98

0.975

Accuracy
o
o
~

>4
[
a
w

0.96

0.955

Learning Rate

T T T 1

0.01 0001 0.0001 0.00001 0.000001
Learning rate

(@)
Units

/\

e

/

r'd

32 64 128 256 512
Units

(©

Fig 6. Control experiments of model parameters.

088

0.975

0.97

0.965

Accuracy

0.955

0.95

098

0.978

0.976

0.974

Accuracy
o
w0
~N
N

0.97

0.968

0.966

0.964

0.962

Batch size

A\
\

\

T T T T 1

64 128 256 512 1024
Batch size

()

Vector dimension

32 64 128 256 512
Vector dimension
(]

https:/doi.org/10.1371/journal.pone.0225196.9006

The formulas for precision and recall are as follows:

Precision =

Thus, the complete F1 score formula are as follows:

Fl1 =2

precision - recall
precision + recall

TP
P P (1)
+ FP
TP
N (2)
TP + FN

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019

11/19

https://doi.org/10.1371/journal.pone.0225196.g006
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Table 4. Effect evaluation of Kappa statistic.

Kappa Statistic
Strength of Agreement

https://doi.org/10.1371/journal.pone.0225196.t004

ROC. Receiver Operating Characteristic(ROC) [31] curve is usually used to evaluate the
diagnostic ability of binary classifiers. The x-axis is the False Positive Rate(FPR) and the y-axis
is the True Positive Rate(TPR). According to the predicted probability value and the real label
of each test sample, different points predicted by the model can be obtained by adjusting the
threshold. These points can be connected to a curve, which is called the ROC curve. The larger
the AUC, the better the effect of the model.

TP

TPR = —— 4

TP + FN 4)

FPR = — 1T (5)
"~ FP+ TN

Confusion matrix. Multiclass classification models usually use the confusion matrix to
illustrate diagnostic ability. The confusion matrix is a unique table used to show the classifica-
tion effect of models visually. The rows and columns of the table are the real categories and the
categories predicted by the model, respectively. Assuming that x-axis is predicted category and
y-axis is the real category, then the numbers in cells of row i and column j represent the num-
ber of samples that belongs to category i but are predicted to category j. Thus, the data on the
diagonal from the top left to the bottom right shows that the number of correct classifications.

In general, specific numerical values are filled in the form, and sometimes the regularized
results can also be filled in. The regularized number in the cell of row i and column j is the
number in the cell of row i and column j divides by the sum of the numbers of cells in row i.

Kappa statistic. Kappa statistic is used for checking consistency and measuring classifica-
tion accuracy. The calculation of the kappa coefficient is based on the confusion matrix.

p=ph, Ll-p,
R) ©

Do is the overall classification accuracy. p, represents the probability that the prediction results
are consistent with the monitoring results by accident. Assuming that k is the total number of
categories and N is the total number of samples, 7;; indicates the number of categories i but
predicted to be j.

1k
Po =75 2 M (7)
N

p. = %Z(anz;”;) (8)

i=1

Kappa value ranges from -1 to 1, but it is generally between 0 and 1 to evaluate the effect
[32]. The detailed evaluation standard is shown in Table 4.

Hamming distance. Hamming distance measures the degree of inconsistency between
the predicted categories and the real categories of samples. If y is a test dataset, y; is the real

0.00-0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.00
Slight Fair Moderate Substantial Almost Perfect

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 12/19

https://doi.org/10.1371/journal.pone.0225196.t004
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

value of a given sample of j-th label, y; is the predicted value, 7 is the number of labels, and 1

(x) is the indicator function, then the Hamming distance is
1 n—1
DHumming(j)7y) :;Zl(j)} #)ﬁ) (9)
=0

The distance is 0 when the prediction result is completely consistent with the true situation.
When the prediction result is completely inconsistent with the true situation, the distance is 1;
when the prediction result is partially correct, the distance is between 0 and 1. The smaller the
value, the better.

Results and discussion

Comparison of binary classification models. First, the custom tokenizer of TAP was
compared with the inbuilt function of PHP on the CWE-89 dataset to prove the effectiveness
of the custom tokenizer. The datasets includes the CWE-89 dataset of SARD and samples of
SQLI-LABS. Since the length of the tokens parsed by the two models is different, the other
parameters are the same except that the maximum input length.

The AUC of builtin function token_get_all() is less than 0.5, so we reverse the result. The
ROC curves of the two models are shown in the Fig 7. Besides, other evaluation criteria are
listed in Table 5, we can find that the custom tokenizer of TAP is much better than function
token_get all() in multiple metrics. In the vulnerable sample, the precision of token_get_all()
model is perfectly 1, but the recall is almost zero. Thus the high precision is little significance,
the F1 score also proves this.

Next, we compared TAP with other models to prove the superiority of TAP. The models
include BiLSTM, CNN, RNN, Gated Recurrent Unit(GRU), RIPS and WIRECAML [33].
WIRECAML is a static code analysis model based on machine learning and data-flow analysis.
The author of WIRECAML compared WIRECAML with other machine learning algorithms
such as random forest, logistic regression, naive Bayes and so on. WIRECAML performs best
in all the machine learning algorithms, so we consider that WIRECAML represents one of the
best static code analysis models based on machine learning. The hyper-parameters of TAP,
BiLSTM, CNN, GRU and RNN are the same.

We modified WIRECAML [34] program to keep the datasets consistent and obtain the
required intermediate variables. WIRECAML predicts vulnerabilities per line of codes and
gives an overall result. In order to get the predicted probability value of a single file, we select
the maximum probability value of the source code file as the probability of the whole file.

For evaluating RIPS [35], we ran RIPS on the test dataset and selected the detected SQL
injection vulnerabilities as evaluation criteria without other possible vulnerabilities. Besides,
RIPS does not judge vulnerability based on probability values, so we can not calculate the ROC
and AUC of RIPS.

The ROCs are shown in Fig 8. As we can see, the GRU model appears the worst, TAP
which used the LSTM network algorithm is the best.

Other evaluation criteria are listed in Table 6, the values in bold type are the best of the sin-
gle standard. In the identification of security samples, the results of each model are good, but
there is a big difference in the ability to identify vulnerable samples which we regard as more
important. RIPS did not perform well on the test dataset, WIRECAML also had a low F1 score
on vulnerable samples. GRU algorithm gets two perfect scores, but the F1 of vulnerable sam-
ples and AUC are too bad. The results of LSTM, BiLSTM and CNN are very similar. After
comprehensive consideration, we consider that LSTM is the best.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 13/19

https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

Table 5. Results comparison with TAP and token_get_all().

True Positive Rate

1.0 -
0.8 -
0.6 -
0.4 -
0.2 1
’ - TAP (area = 0.9941)
77 —— token_get all() (area = 0.7449)
0-0 -K T 1 T 1
0.0 0.2 04 0.6 0.8

Fig 7. Comparison of TAP and token_get_all().

False Positive Rate

1.0

https://doi.org/10.1371/journal.pone.0225196.9007

Comparison of multiclass classification models. In order to prove TAP’s ability to mul-
ticlass classification problems, we designed experiments on TAP and RIPS. We used RIPS to
detect the 10 types of data subsets separately, and then manually counted and analyzed the
results. The datasets are extremely imbalanced, the confusion matrix without normalization
does not look intuitive and is not easy to evaluate the classification effect, so we use the nor-
malized confusion matrix.

Method Safe samples Vulnerable samples accuracy AUC
Precision Recall F1 Precision Recall F1
TAP 0.9773 0.9988 0.9880 0.9874 0.7970 0.8820 0.9782 0.9941
token_get_all() 0.9047 1.0 0.9499 1.0 0.0761 0.1415 0.9055 0.7449
https://doi.org/10.1371/journal.pone.0225196.t005
PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 14/19

https://doi.org/10.1371/journal.pone.0225196.g007
https://doi.org/10.1371/journal.pone.0225196.t005
https://doi.org/10.1371/journal.pone.0225196

A static analysis model for PHP vulnerabilities

@ PLOS |IONE

1.0 1 — J
I—r"_ y
4
’
/
/
’
/7
//
0.8 /’
/
4
/
’
’
/
V] //
© s
e 0.6 1 //
g ’
=] ,/
3 ’
a ,/
(]
> |"‘ /7
= g
0.4
/
’
’
/’
’
/
/
P -~ GRU (area = 0.8764)
0.2 - 2 RNN (area = 0.8777)
27 Wirecaml| (area = 0.9229)
g CNN (area = 0.9883)
e ——— BiLSTM (area = 0.9924)
P —— LSTM(TAP) (area = 0.9941)
0-0 -K 1 1 T 1
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Fig 8. ROC comparison of binary classification model.
https://doi.org/10.1371/journal.pone.0225196.9008
Table 6. Evaluation criteria of binary classification model.
Algorithms Safe samples Vulnerable samples accuracy AUC
Precision Recall F1 Precision Recall F1
LSTM(TAP) 0.9773 0.9988 0.9880 0.9874 0.7970 0.8820 0.9782 0.9941
BiLSTM 0.9740 0.9902 0.9856 0.9061 0.8325 0.8677 0.9740 0.9924
CNN 0.9789 0.9942 0.9865 0.9412 0.8122 0.8719 0.9756 0.9883
GRU 0.9020 1.0 0.9485 1.0 0.1376 0.2419 0.9035 0.8764
RNN 0.9324 0.9896 0.9601 0.8022 0.3706 0.5069 0.9262 0.8777
WIRECAML 0.9631 0.9879 0.9753 0.8478 0.6393 0.7290 0.9548 0.9229
RIPS 0.9101 0.8027 0.8530 0.1496 0.3046 0.2007 0.7517 -

https://doi.org/10.1371/journal.pone.0225196.t006

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019

15/19

https://doi.org/10.1371/journal.pone.0225196.g008
https://doi.org/10.1371/journal.pone.0225196.t006
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

True label

Safe 10.36 0.01 0.45 0.06 0.02 0.00 0.01 0.02 0.00 0.07 o
CWE-78 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CWE-79 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o8
CWE-89 10.00 0.000.26 0.00 0.00 0.00 0.00 0.00 0.00
CWE-90 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 - o0
CWE-91 0.41 0.00@0.00 0.00 0.00 0.00 0.00 0.00 0.00
CWE-95 {¥¥#40.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 04
CWE-98 {4¥£30.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00
CWE-601 M0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 02
CWE-862 ¥4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
. T . . . | - - . 0.0

IR A AR AR SAIR SRR AR SRS o
N o oV ¢

Predicted label

Fig 9. Normalized confusion matrix of RIPS.

https://doi.org/10.1371/journal.pone.0225196.9009

The classification results of RIPS and TAP are shown in Figs 9 and 10. RIPS mislabels some
samples as vulnerabilities that are not included in the test dataset, and it also mislabels a single
sample into multiclass vulnerabilities. In order to ensure the total number is correspond, we
adjusted the number of mislabeled samples to the number which was obtained by subtracting
the number of correctly identified samples from the total number of samples. For the samples
with the safe label, we classify these mislabeled undefined vulnerabilities samples into CWE-
862, and for the samples with the vulnerable label, we classify these mislabeled undefined vul-
nerabilities samples into safe. Because the built-in rules do not contain CWE-601 and CWE-
862, RIPS mislabels all these two types of vulnerabilities. On the safe dataset, more than half of
the samples are judged as vulnerable. On vulnerable dataset, most of them are judged as safe. It
is obviously that RIPS cannot complete the multiclass classification task well on the test dataset
with a very high misjudgment rate.

Opverall, the multiclass classification ability of TAP is well. However, lots of samples of
CWE-862 are mislabeled, and even almost all CWE-95 samples are mislabeled. After analysis,
we think the most likely reason is that the numbers of these two categories of datasets are too
few compared to other categories. Another possible reason is that the training datasets of
CWE-91 and CWE-95 are similar in content or form after parsing.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 16/19

https://doi.org/10.1371/journal.pone.0225196.g009
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

True label

Safe M0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00
CWE-78 10.04 [0&£:1 0.08 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.8
CWE-79 40.11 0.000.00 0.00 0.00 0.00 0.00 0.00 0.01
CWE-89 40.14 0.00 0.000.02 0.00 0.00 0.00 0.00 0.00 0.6
CWE-90 40.13 0.00 0.00 0.00 {(¢&5:¢ 0.15 0.03 0.00 0.00 0.00
CWE-91 40.03 0.00 0.00 0.00 0.03 [*&:£30.07 0.03 0.00 0.00 Yy
CWE-95 40.03 0.00 0.00 0.00 0.12 f*}430.07 0.05 0.00 0.00 |
CWE-98 10.08 0.00 0.00 0.00 0.00 0.13 0.00 j*Ay4<20.00 0.00 0
CWE-601 40.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 [eAcF3 0.00 .
CWE-862 414/ 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.44
T . u . . . - - - T 0.0

P EEE L
N W ¢

Predicted label

Fig 10. Normalized confusion matrix of TAP.
https://doi.org/10.1371/journal.pone.0225196.9010

Table 7. Evaluation criteria of multiclass classification model.

Kappa Hamming Distance
TAP 0.8319 0.0840
RIPS -0.0985 0.6965

https://doi.org/10.1371/journal.pone.0225196.t007

Kappa and hamming distance of two models are shown in Table 7. According to Table 4,
the Kappa of TAP indicates almost perfect, and the hamming distance is small enough. On the
contrary, RIPS perform poorly both on Kappa and hamming distance.

Conclusion

This paper presents a static PHP source code analysis model named TAP, which based on the
deep learning algorithm. It can help security researchers find vulnerabilities quickly. There is a
custom tokenizer in TAP based on PHP inbuilt token mechanism. The tokenizer improves the
parsing ability, completes parameter iteration and analyzes data flow. Experiments show that
our optimization is indeed effective and the LSTM-based model TAP is superior to CNN,

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019

17/19

https://doi.org/10.1371/journal.pone.0225196.g010
https://doi.org/10.1371/journal.pone.0225196.t007
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

RNN, GRU, BiLSTM, WIRECAML and RIPS in vulnerable binary classification and multiclass
classification.

For future work, we will support for processing object and more types of vulnerabilities.
Besides, we want to extend TAP to the complex real-world environment.

Author Contributions

Conceptualization: Yong Fang, Cheng Huang, Runpu Wu.
Data curation: Shengjun Han, Runpu Wu.

Investigation: Shengjun Han, Cheng Huang.
Methodology: Yong Fang, Shengjun Han, Cheng Huang.
Software: Shengjun Han, Runpu Wu.

Writing - original draft: Shengjun Han.

Writing - review & editing: Cheng Huang.

References

1. Cheswick WR, Bellovin SM, Rubin AD. Firewalls and Internet security: repelling the wily hacker. Addi-
son-Wesley Longman Publishing Co., Inc.; 2003.

2. WangY, ShenY, Wang H, Cao J, Jiang X. MtMR: Ensuring MapReduce Computation Integrity with
Merkle Tree-based Verifications. IEEE Transactions on Big Data. 2016; 4(3):418—431. https://doi.org/
10.1109/TBDATA.2016.2599928

3. ShuJ,JiaX, Yang K, Wang H. Privacy-preserving task recommendation services for crowdsourcing.
IEEE Transactions on Services Computing. 2018;. https://doi.org/10.1109/TSC.2018.2791601

4. F5Labs 2018 Application Protection Report;. Available from: https://www.f5.com/content/dam/f5/f5-
labs/articles/20180725_app_protect_report/F5_Labs_2018_Application_Protection_Report.pdf.

5. Usage of content management systems for websites; 2019. Available from: https://w3techs.com/
technologies/overview/content_management/all/.

6. CVE-2017-5223;2017. Available from: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-
5223.

NVD—CVE-2016-10033; 2016. Available from: https://nvd.nist.gov/vuln/detail/CVE-2016-10033.

8. Dahse J, Schwenk J. RIPS-A static source code analyser for vulnerabilities in PHP scripts. In: Seminar
Work (Seminer Galismasi). Horst Gortz Institute Ruhr-University Bochum; 2010.

9. Jovanovic N, Kruegel C, Kirda E. Pixy: A static analysis tool for detecting web application vulnerabilities.
In: 2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE; 2006. p. 6—pp.

10. Son S, Shmatikov V. SAFERPHP: Finding semantic vulnerabilities in PHP applications. In: Proceedings
of the ACM SIGPLAN 6th Workshop on Programming Languages and Analysis for Security. ACM;
2011.p. 8.

11. Tip F. A survey of program slicing techniques. Centrum voor Wiskunde en Informatica; 1994.

12. Dahse J, Krein N, Holz T. Code reuse attacks in php: Automated pop chain generation. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM; 2014. p. 42—
53.

13. YamaguchiF, Lindner F, Rieck K. Vulnerability extrapolation: assisted discovery of vulnerabilities using
machine learning. In: Proceedings of the 5th USENIX conference on Offensive technologies. USENIX
Association; 2011. p. 13—13.

14. Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and discovering vulnerabilities with code property
graphs. In: 2014 IEEE Symposium on Security and Privacy. IEEE; 2014. p. 590-604.

15. Backes M, Rieck K, Skoruppa M, Stock B, Yamaguchi F. Efficient and flexible discovery of php applica-
tion vulnerabilities. In: 2017 IEEE european symposium on security and privacy (EuroS&P). IEEE;
2017. p. 334-349.

16. Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, et al. Automated Vulnerability Detection
in Source Code Using Deep Representation Learning. In: 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE; 2018. p. 757-762.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 18/19

https://doi.org/10.1109/TBDATA.2016.2599928
https://doi.org/10.1109/TBDATA.2016.2599928
https://doi.org/10.1109/TSC.2018.2791601
https://www.f5.com/content/dam/f5/f5-labs/articles/20180725_app_protect_report/F5_Labs_2018_Application_Protection_Report.pdf
https://www.f5.com/content/dam/f5/f5-labs/articles/20180725_app_protect_report/F5_Labs_2018_Application_Protection_Report.pdf
https://w3techs.com/technologies/overview/content_management/all/
https://w3techs.com/technologies/overview/content_management/all/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5223
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5223
https://nvd.nist.gov/vuln/detail/CVE-2016-10033
https://doi.org/10.1371/journal.pone.0225196

@ PLOS|ONE

A static analysis model for PHP vulnerabilities

17.

18.

19.

20.

21,

22,

23.
24,
25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

King JC. Symbolic execution and program testing. Communications of the ACM. 1976; 19(7):385-394.
https://doi.org/10.1145/360248.360252

Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural-network approach.
IEEE transactions on neural networks. 1997; 8(1):98—113. https://doi.org/10.1109/72.554195 PMID:
18255614

LiZ, Zou D, Xu S, Ou X, Jin H, Wang S, et al. VulDeePecker: A deep learning-based system for vulnera-
bility detection. arXiv preprint arXiv:180101681. 2018;.
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Networks. 2005; 18(5-6):602—610. https://doi.org/10.1016/j.neunet.2005.
06.042 PMID: 16112549

Alhuzali A, Gjomemo R, Eshete B, Venkatakrishnan V. NAVEX: Precise and Scalable Exploit Genera-
tion for Dynamic Web Applications. In: 27th USENIX Security Symposium (USENIX Security 18); 2018.
p. 377-392.

Doupé A, Boe B, Kruegel C, Vigna G. Fear the EAR: discovering and mitigating execution after redirect
vulnerabilities. In: Proceedings of the 18th ACM conference on Computer and communications security.
ACM; 2011. p. 251-262.

PHP: token_get_all—Manual;. Available from: http://www.php.net/token-get-all.
PHP: List of Parser Tokens—Manual;. Available from: http://php.net/manual/en/tokens.php.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases
and their compositionality. In: Advances in neural information processing systems; 2013. p. 3111-3119.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8):1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

Zaremba W, Sutskever |, Vinyals O. Recurrent neural network regularization. arXiv preprint
arXiv:14092329. 2014;.

Stivalet B, Fong E. Large scale generation of complex and faulty PHP test cases. In: 2016 IEEE Interna-
tional conference on software testing, verification and validation (ICST). IEEE; 2016. p. 409-415.

Software Assurance Reference Dataset;. Available from: https:/samate.nist.gov/SARD/index.php.

Pendleton M, Garcia-Lebron R, Cho JH, Xu S. A survey on systems security metrics. ACM Computing
Surveys (CSUR). 2017; 49(4):62.

Fawcett T. An introduction to ROC analysis. Pattern recognition letters. 2006; 27(8):861-874. https://
doi.org/10.1016/j.patrec.2005.10.010

Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics. 1977;
p. 159-174.

Kronjee J, Hommersom A, Vranken H. Discovering software vulnerabilities using data-flow analysis and
machine learning. In: Proceedings of the 13th International Conference on Availability, Reliability and
Security. acm; 2018. p. 6.

jorkro/wirecaml: Weakness Identification Research Employing CFG Analysis and Machine Learning;.
Available from: https://github.com/jorkro/wirecaml.

ripsscanner/rips: RIPS—A static source code analyser for vulnerabilities in PHP scripts;. Available
from: https://github.com/ripsscanner/rips.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225196 November 18, 2019 19/19

https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/72.554195
http://www.ncbi.nlm.nih.gov/pubmed/18255614
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://www.php.net/token-get-all
http://php.net/manual/en/tokens.php
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://samate.nist.gov/SARD/index.php
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://github.com/jorkro/wirecaml
https://github.com/ripsscanner/rips
https://doi.org/10.1371/journal.pone.0225196

