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Abstract

In a city-scale network, trips are made in thousands of origin-destination (OD) pairs con-
nected by multiple routes, resulting in a large number of alternatives with diverse character-
istics that influence the route choice behaviour of the travellers. As a consequence, to
accurately predict user choices at full network scale, a route choice model should be scal-
able to suit all possible configurations that may be encountered. In this article, a new meth-
odology to obtain such a model is proposed. The main idea is to use clustering analysis to
obtain a small set of representative OD pairs and routes that can be investigated in detail
through computer route choice experiments to collect observations on travellers behaviour.
The results are then scaled-up to all other OD pairs in the network. It was found that 9 OD
pair configurations are sufficient to represent the network of Lyon, France, composed of
96,096 OD pairs and 559,423 routes. The observations, collected over these nine represen-
tative OD pair configurations, were used to estimate three mixed logit models. The predic-
tive accuracy of the three models was tested against the predictive accuracy of the same
models (with the same specification), but estimated over randomly selected OD pair config-
urations. The obtained results show that the models estimated with the representative OD
pairs are superior in predictive accuracy, thus suggesting the scaling-up to the entire net-
work of the choices of the participants over the representative OD pair configurations, and
validating the methodology in this study.

Introduction

Urban congestion occurs when traffic demand locally exceeds the network capacity. The local
demand is the combination of the global travel demand between the different origins and des-
tinations and the travellers’ route choices, which define how many trips are made at the same
place in a given time window. Thus, at a city-scale level, i.e., considering all the OD pairs and
links in the network, route choice is a key determinant of urban transportation network
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performance. Route choice behaviour has been extensively studied in the transportation litera-
ture from two main but different angles. The first, related to human factors and mainly
founded in discrete choice models [1-3], is focused on the identification of the determinants
of travellers’ individual choices. This line of research is based on investigating travellers’ behav-
iour through experiments that consist in either observing their choices in the field (revealed
preference) or asking them what would be their choices in hypothetical scenarios (stated pref-
erence). The second line of research, tackles the problem at full-scale and aims to solve the net-
work loading problem to determine static or dynamic traffic states over all the network links.
In this case, the interactions between the demand and the route choices on all the OD pairs in
the network are considered altogether to define general principles that determine the network
equilibrium. This is, for example, the case of the deterministic network equilibrium principle
[4], that states that the travellers are selfish optimisers who only try to minimise their travel
costs when choosing a route amongst all the alternatives; at the equilibrium, all the used routes
that connect an OD pair have the same minimal cost.

Theoretically, the study of route choice at an individual and network level are consistent,
however, in practice, there is a lack of connection between the two [5]. The reason is that, on
the one hand, studies of route choice behaviour are focused in specific determinants of travel-
lers’ route choice and, therefore, are based on simple scenarios (two or three routes in few OD
pair configurations) that do not cover the multiplicity of situations that are found in a city-
scale transportation network. In these experiments, particular attention has been paid to the
study of how travellers learn from experience [6-8], the impact of advanced travel information
systems (ATIS) [9-15], and the effect of travel time variability and risk attitudes in the travel-
lers choices [16-18]. On the other hand, in the network loading problem, representations have
been designed as a simplified mathematical abstractions that permit to calculate the network
loading under different behavioural principles, such as the deterministic user equilibrium [4],
stochastic user equilibrium [19] or bounded rational user equilibrium [20]. These representa-
tions often assume that the only variable influencing travellers’ route choice behaviour is the
travel time, ignoring other local factors, related to the network OD configuration, that have
been recognised to influence route choice behaviour [21-25]. One of the main reasons for the
gap between research in individual route choice behaviour and network loading is the lack of
observations at large scale over a sufficient number of OD configurations, that would allow
discrete choice models to scale-up at the network level and thus enable the design of network
equilibrium founded in a more user-oriented approach. The ambition of this study is to fulfil
this gap by the selection of OD pairs that are representative of the OD configurations that are
found in a transportation network, and then use these OD pairs in computer experiments to
collect data on travellers’ route choice behaviour.

In a city-scale network, trips are made in thousands of OD pairs connected by several routes
(in the case concerning this study, the city of Lyon in France, the network has 96,096 OD pairs
and 559,423 routes), resulting in a large number of diverse routes, consequence of the topology
of the network. For example, the route alternatives connecting an OD pair located in the cen-
tral part of a city are likely to have short length, a high number of intersections and turns, but
are unlikely to include segments of freeways. In contrast, the routes connecting an OD pair
that traverses the city are longer and are more likely to include routes with fewer number of
intersections and segments of freeways. From the point of view of the design of experiments,
this implies that the number of scenarios must be reduced to a small but representative set of
scenarios, such that the choices of travellers in any scenario found in the network can be
approximated by a choice model estimated with this small set. More specifically, a representa-
tive set of OD pairs and routes is such that, for any randomly sampled OD pair in the network
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itis possible to find an OD pair in the representative set with similar attributes. Thus, assuming
that the choices of travellers are similar for similar situations, an estimated model on the repre-
sentative OD pairs could adequately reproduce the choices in the rest of the OD pairs. The
question addressed in this work is: how to find a set of OD pairs and routes, such that it is rep-
resentative of the OD configurations and route attributes found in the network, while being
small enough so that a sufficient number of observations on route choices can be collected
through computer route choice experiments?

The solution proposed in this work is based on k-means clustering [26] of the full set of OD
pairs and routes in the network. In cluster analysis, the observations, in this case OD pairs and
routes, are grouped in clusters characterised for having elements that are similar among them-
selves, but dissimilar to the elements in the other clusters. In the problem pertaining this arti-
cle, the elements in a cluster will show similar orientation, length, % of freeway, directness and
number of turns, and thus a cluster C; will be, for example, composed mainly of OD pairs of
short length in the central part of the city, with direct routes and low % of freeway composi-
tion, whereas another cluster C; will be composed of OD pairs representing long trips travers-
ing the city, with some non-direct routes composed mainly of freeways. Assuming that there
are k clusters, the elements of a cluster can be regarded as belonging to a same class of OD pair
configurations, and the whole network as being composed of elements of k different classes.
Therefore, the OD pairs and routes in the network can be represented by elements in the k
clusters. A natural choice to represent the elements in a cluster is the mean element in the clus-
ter (cluster centroid), as it is the point with minimum euclidean distance to all the elements in
the cluster. Thus, the cluster centroids are chosen as representative of the clusters’ elements,
and the k clusters’ centroids as representative of the OD pairs and routes in the whole network.
These OD pairs and routes are then used in computer experiments to collect data on travellers
route choice behaviour. Note that the set representative OD pairs and routes found with k-
means is representative of the attributes of the network, so the question that arises here is if a
model estimated over this representative set can adequately reproduce the choices in the rest
of the OD pairs in the network. To answer this question, three discrete choice models are esti-
mated with the observations over the representative set. The discrete choice model used in this
work is a joint mixed logit model (MXL), which under certain conditions, as is the case in this
study, is equivalent to to the panel data formulation of MXL models [2, 27-29]. The predictive
accuracy of these models are compared against the predictive accuracy of the same models, but
estimated with randomly chosen sets of OD pair configurations in a sort of cross validation
procedure.

The results of the above methodology are that the models estimated with the observa-
tions over the representative OD pair configurations are better in predicting the route
choices on unseen OD pairs, i.e., on OD pairs not used for the estimation process. On the
one hand, these results demonstrate how a careful selection of OD pairs for experiments on
route choice behaviour can improve the results of a choice model in a broader set of OD
pairs and, on the other hand, that cluster analysis can be used to find these OD pair configu-
rations. These findings have direct implications for urban traffic simulators, which solve
the network loading problem to determine the time-evolving traffic states in the network.
The scalable route choice model proposed in this paper can be implemented in such simula-
tors without adding significantly computational complexity, compared to the usual simple
equilibrium rule, e.g., user equilibrium. Furthermore, the use of clustering techniques to
find the most relevant OD pairs and routes in the network, provides an efficient method to
calibrate route choice models that can be easily replicated in any urban transportation
network.
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Materials and methods
Participants in the route choice experiments

The data on route choice behaviour in this article comes from six route choice experiments
carried out between February 2018 and February 2019. The participants in the experiments
were students at the University of Lyon taking part in the courses of traffic theory (66%), staff
from the IFSTTAR (French Institute of Science and Technology for Transport, Development
and Networks) and other universities, who received an invitation by e-mail to remotely join
the experiments via a web browser (34%). All participants have signed, before the experiments
begin, an informed consent form describing the objectives of the study, the data collection and
processing, and the confidentially rules. Participants could opt out of the experiment at any
time. No personal data were mandatory to participate to the experiments as people had the
opportunity to identify themselves by a login of their choice. Finally, all data were fully anon-
ymised and processed as such. At the beginning of the experiments, the participants were
briefed about the objective of the experiment and the interface of the experimental platform;
for the participants that joined the experiments via web, a document with the instructions was
shared. The participants were instructed to choose the route that they consider the best to com-
plete a trip on time.

Three of the six experiments were specifically implemented for the purpose of this work, so
they were configured to obtain observations in the 9 representative OD pairs. The rest of the
experiments were implemented for previous studies, so they were configured over 21 OD pairs
different from the 9 representative set; data coming from these experiments was used to vali-
date the methodology in this work. Throughout the six experiments, 3,334 choices of 483 par-
ticipants were recorded, from which 802 choices of 73 participants were made over the nine
representative OD pairs. In the experiments, the participants were confronted to several route
choice problems in the different OD pairs, the task of the participants was to choose one of the
three alternative routes to complete the trip before a given time.

Obtaining representative OD pairs and routes

Data: The Lyon network. The origins and destinations in the network of the city of Lyon,
France, come from the zoning by the National Institute of Statistics and Economic Studies
(INSEE) [30], and the major entry/exit points to the network. The zones are the geostatistic
units used for the trip demand estimations and represent the origins and destinations of the
trips generated or terminated inside the network. The entry and exit points represent the ori-
gins and destinations of the demand coming or going outside the network. In total, there are
285 zones, 29 entry points and 28 exit points in the Lyon network. The total number of origins
is 313 and of destinations 310 (this quantity does not correspond exactly to the sum of zones
plus entries/exits as there are zones that may have no outgoing or incoming trips), giving a
total number of 96,096 OD pairs (see Fig 1). The most likely routes joining the origins to the
destinations are derived with the A* algorithm looking for the k-shortest paths in free-flow
travel time. This is roughly equivalent to minimising the travel distance, but accounting for the
influence of spacial limits. The total number of routes in the network, obtained with this algo-
rithm, is 559,423, with an average number of 5.82 routes per OD pair.

Data representation. The selected route features in this study are the informed travel
time, the length, directness, number of turns per kilometre and the percentage of freeway in
the route composition. This features were selected as they are variables relevant in travellers’
route choice behaviour [21-25], and because they are the attributes that participants can
observe in the computer route choice experiments. In the experiments, the number of routes
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Fig 1. Lyon road network. The zones are depicted in different colours with their centroids in blue. The entry/exit
points to the network are depicted with yellow points. There is an average of 5.82 routes connecting each origin and
destination. The geodata used to render the plot is from ©OpenStreetMap contributors, licensed under the Open Data
Commons Open Database License (ODbL). The zones are from Contours. . .Iris® licensed under the Open Licence v1.
0 from Etalab. The maps were rendered using The R Project for Statistical Computing which is distributed as Free
Software under the terms of the Free Software Foundation’s GNU General Public License.

https://doi.org/10.1371/journal.pone.0225069.9001

connecting each OD pair is limited to three. This limitation, however, does not restrict the
scope of the experiments or diminishes the quality of the results for two reasons. First, choice
sets with many alternatives may be burdensome for participants as they may have trouble iden-
tifying the differences between the routes. Second, the low variability between routes attributes
due to the small number of alternatives in the choice set is compensated by the presence of
many OD pairs, that are considered by jointly estimating a random utility model.

An OD pair and three routes connecting the origin and destination, defined as OD-routes,
are characterised by the variables describing the origin and the destination (latitude, longitude
and the euclidean distance between them), and the variables describing the three routes con-
necting them (the length of the route, the number of turns per kilometre, the directness of the
route, and the percentage of freeway in the route). An OD-routes is then defined by 17 vari-
ables: 5 OD pair specific and 12 describing the routes (4 for each route). An OD-routes is rep-
resented as a vector in which the attributes of the three routes appear ordered by length, from
shortest to longest. A depiction of the OD-routes objects is shown in Fig 2.

For the clustering of the OD pairs and routes, and thus the route choice experiments, the
short routes (less than 1.5 km) and highly overlapping routes belonging to the same OD pair
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Fig 2. OD-routes vector. The vector is composed of the attributes of the OD pair and the three routes connecting the origin and destination, with
length(Route_1) < length(Route_2) < length(Route_3).

https://doi.org/10.1371/journal.pone.0225069.9002

(sharing more than 70% of their links) were not considered. The reason is that very short trips
lack of real alternatives: usually there is an unique route to travel from origin to destination.
The highly overlapping routes are removed from the analysis because, from a route choice
experiment perspective, the similarity between the routes may cause participants not to con-
sider some routes as real alternatives and, furthermore, highly overlapping routes lack of the
variability required for a choice model to capture the impact of each route attribute in the
choices. After removal of the very short trips and the high overlapping routes, the OD-routes
are obtained by considering all the possible combinations of three routes from the set of routes
joining that particular OD pair. For example, if there are 5 routes joining an OD pair, then the
total number of OD-routes that are obtained is (3) = 10. The total number of OD-routes in
the network is 624,490.

Clustering of the OD-routes. Before clustering, the data was normalised so that all the
variables describing the OD-routes have the same weight in determining the dissimilarity
between observations; this step is necessary when the range of the variables are not compara-
ble, as is the case in the OD-routes where the directness of the routes takes values in the inter-
val (0, 1), but the length of the routes takes values in the interval (0, 35). The OD-routes are
clustered using k-means with euclidean distance, determining the optimal number of clusters,
k*, using the elbow method [26]. The idea behind the elbow method is to select the optimal
number of clusters k*, such that the mean dissimilarity of the elements in the clusters does not
decrease significantly with the k* + 1 clustering. The measure of dissimilarity of the elements
in a cluster is the within-cluster sum of squares (WCSS), i.e., the sum of the square distance
between the elements in a cluster. One of the OD-routes among the 1% nearest to the theoreti-
cal cluster centroid is selected as the cluster centroid. This is done because the theoretical cen-
troid, i.e., the mean of the variables of the elements in the clusters, may not be part of the data.

Route choice experiments

The route choice experiments were carried out using a computer platform, the mobility deci-
sion game (MDG), that has been developed in the LICIT laboratory to investigate travellers’
decisions in transportation networks at large scale. The network description in the MDG is
based on the full map of a real road network: the city of Lyon in France in our experiment. To
generate the scenarios in which the choices are made, the MDG interacts with a single dynamic
microscopic simulator, based on the LWR traffic model [31], which generates and handles all
the trips that populate the network. To produce the simulated scenarios, the microscopic traf-
fic simulator takes as an input the OD pairs in the network, their corresponding trip demands
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and the most important alternatives connecting the origins to the destinations. In the MDG,
the participants access simultaneously to the experiment through a web interface, consisting of
the map of the city of Lyon, France, road network. Each participant receives periodically new
specific missions, that consist in travelling from an origin to a destination by choosing one of
the three alternative routes that are proposed. The choices of the participants are considered as
updated trip specifications by the microscopic simulator that runs in a central server. This
alters the traffic conditions in the network. During a MDG session, multiple OD pairs are
assigned to the participants, allowing to observe the choices of the same participants in differ-
ent OD pairs. Furthermore, some of the participants receive traffic information as travel time
estimates for the different route options in a given mission, allowing to assess the impact of
travel time information in the decisions of travellers. Thus, the MDG permits to investigate the
determinants of the participants’ decisions under different conditions (traffic conditions, traf-
fic information and route characteristics).

Route choice model

Random utility models (RUM:s) have been broadly used to understand and predict the route
choice of travellers [7, 11, 12, 17, 18]. Joint RUMs arise in situations in which decisions of the
same individuals are observed in several related choice problems, and correlation among their
decisions is suspected. This is the case of surveys, where the answers of individuals to different
questions may be correlated; or in route choice, with decisions of travellers in different OD
pairs. A special case in joint RUMs is when the choice problems share part of their variables.
In this situation, the coefficients of the shared variables in the model can be assumed to be
equal across the choice problems. This problem is encountered when combining different data
sources, as in [32], where the authors developed the techniques to jointly estimate a multino-
mial logit model (MNL) combining reveal preference and stated preference data to study the
switching of mode of transportation of travellers. Other related works can be found in [33-37].
When the choice problems share all of their variables, then the joint RUMs consists of an
unique representation of the utility, given by the variables and their respective coefficients,
which is equivalent to a panel data RUM. This is the case here, as several models are estimated,
one for each OD pair. However, as the OD pairs are described by the same variables, the coeffi-
cients can be assumed to be equal for all the OD pairs. Therefore, the utility of the joint model
is reduced to a single representation, and the model can be estimated as a panel data model.

The joint model for route choice, used in this study, is based on the mixed multinomial
logit model (MXL) for panel data [2, 27-29]. The MXL is a generalisation of the MNL in
which the coefficients are assumed to be random, accounting for the heterogeneity in individ-
uals’ preferences. Furthermore, estimation of MXLs are easily extended to account for observa-
tions of repeated choices by the same individuals, i.e., panel data. Formally, when decisions of
individuals are observed in several choice situations, the utility that an individual 7 gets from
alternative j in the MXL model is written as

Uy = %38 + &5 (1)

where s =1, ..., S; indexes the choice situation in which the observation is made, g are i.i.d.
Gumbel distributed, and ; ~ Fg(b, X) is a vector of random coefficients. Estimating the MXL
means obtaining the parameters b (mean) and X (covariance matrix) of the distribution of the
f’s. The independence of the ;s implies that the individuals are heterogeneous: their tastes
vary following the distribution F4(y, X). The correlation between the responses of the same

individual to different choice situations, s and s, is given by Cov(Uy,, Uyy) = x, Zx;y.
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In Eq (1), the coefficients §; are indexed only by individual, i, and not by choice situation, s,
which means that the tastes of the same individual do not vary between choice situations. This
is equivalent to the panel data formulation of MXLs [2]. Specifically, in the route choice prob-
lem, travellers’ preferences towards the route attributes are equal for all routes regardless of the
OD pair, but the preferences of two different travellers may be different. Also, in the panel data
formulation in Eq (1), the alternatives j are the same in all the choice situations s, i.e., the
choice sets are the same across choice situations. This is not true for route choices in several
OD pairs, where alternatives are OD pair specific, i.e., j. € C(s), where C(s) is the choice set in
situation s. However, since the variables describing the alternatives are the same for all the
choice sets, then the joint mixed logit model can be treated as a MXL for panel data. Condi-
tioning on f;, the joint probability of individual i choosing the sequence of alternatives

JisJas - - -5 s, 18 given by

Si ]
L(Y|B,) :HH r(y;, = 11B,)

e epgh)
- [[Zk (xiB)”

where y;;; = 1 when alternative j, € C(s) is chosen and y;;; = 0 otherwise; and

Y, = s Vi -+ )’ijs,-)T~ The first equality in Eq (2) is guaranteed by the independence of
the g;;’s, and the second because they are identically Gumbel distributed.

Bayesian estimation of panel MXL models. In this work, Bayesian inference is used to
estimate L(Y;|5;). The classical inference method to estimate the MXL requires integrating the
expression in Eq (2) to obtain the unconditional probability L(Y;). Nevertheless, since the inte-
gral has no closed form, it needs to be numerically approximated, which could present conver-
gence problems and be computationally expensive. An alternative approach to estimate MXLs,
is to regard them as Bayesian hierarchical models, which have the advantage of avoiding the
numerical multiple integration [2, 38, 39].

In Bayesian methods, the parameters of the model are assumed to be random variables
rather than fixed values. Inference, in this context, refers to obtaining the joint distribution of
the parameters that best fits the data. To estimate the joint distribution of the parameters, first,
a prior distribution, h, representing the researchers’ beliefs over the values of the parameter, is
defined. Then, when data becomes available, the prior is updated through the likelihood func-
tion to obtain the posterior distribution, H. As a result of the Bayes’ theorem, the posterior dis-
tribution is proportional to the prior multiplied by the likelihood. In the general case, the
posterior distribution H of the parameters is

H(b,Z, B, Vi]Y, X)

TIIL T2, = 1 B0 (Bi0.5) | mb ),
=1 521 jed(s)

where X represents the alternative and individuals’ attributes; Y the observed choices and ¢,,

is the multivariate normal density function of the random coefficients parametrised by b
(mean) and X (covariance matrix). The expression in brackets is the likelihood of the observed
choices and £ is the joint prior distribution of the model’s parameters. The joint priors, h, for
the three MXL models estimated in this work, M1, M2 and M3 (see the Results section for the
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Table 1. Hyperparameters of the prior distribution h.

Hyperparameter Description

o = 0; 0o = 10, 000 Prior guesses of the mean and variance of the b parameter
79 =0.001; L = 0.001 Prior guesses of the shape and rate of the o parameter

i = 10, 000, Zo;; = 0 for i # j Prior guess of the covariance of the b parameter
loi=4,10;j=0,i#jiko=4 (1/ko)I, is the prior guess of the covariance X

https://doi.org/10.1371/journal.pone.0225069.t001

specification of the models), are, respectively,

h(b,,00,p=1,...,5) = H¢(bi|:u“07 o0)fi6(07 Iy, )
i1

6
h(bpa O'f,ap =1,...,6) = H¢(bi|ﬂm 0)fi6(07 Iy, o)

i=1

h(bpyza 0'2,[7 =5,...,6) = &, (b1 _altte, Zo)fiw (Zl Ly, ky)

* O (b5, 7)fi (93170, Xo) (B |0, 77)

where ¢ is the density function of the normal distribution, ¢,, of the n-variate normal distribu-
tion, fi; the density of the inverse-Gamma distribution and fry of the inverse-Wishart distri-
bution. The inverse-Gamma is the conjugate prior for the variance of the normal distribution,
and the inverse-Wishart its generalisation for the multivariate case.

The right hand side in Eq (3) has no closed form, however samples from the joint posterior
distribution H can be obtained using the Gibbs sampling method [40]. In this study, the Gibbs
sampler software JAGS [41] and the R [42] package rjags were used to obtain 10000 samples of
the posterior distribution H after a burn-in period of 20000 samples. The values of the hyper-
parameters yo, 0(2), 70> Mo» 20> Ip and ko, which define the priors, were chosen to be weakly-infor-

mative (very high variances). In other words, it is assumed high uncertainty on the real values
of the parameters that are being estimated. They are shown in Table 1.

Results
Clustering

To determine the optimal number of clusters, k-means algorithm, with k =1, . . ., 30, was per-
formed over the 624,490 OD-routes in the network. The mean within-cluster sum of squares
(WCSS) is plotted against the number of clusters k in Fig 3. In the results, the optimal number
of clusters is not clear, according to the elbow method: big improvements happen for the first
values of k (k < 4); for values 5 < k < 9 the improvement is mediocre; and for k > 10 the
improvements are rather small. In terms of the purpose of this article, choosing a small num-
ber of k has the risk of sub-representing the OD-routes in the network and, more important, a
small number of OD-routes in the route choice experiments implies that the variability in the
route attributes is also small, posing a problem in estimating a route choice model (overfit-
ting). In this sense, choosing high values of k is preferable, even if some of the clusters are simi-
lar. However, the needed number of observations in the route choice experiment increases
with the number of OD-routes, implying higher costs in the organisation of the experiments,
not to mention the difficulties to recruit participants. In view of these limitations, the number
of clusters is set to k = 9. The clustering results are presented in Table 2 and the centroids are
depicted in the map shown in Fig 4.
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Fig 3. Determining the number of clusters k. The sum of squared errors for k-means clustering of the 624,490 OD-routes with k =1, .. ., 30. After

k =9 the decrease in the mean WCSS is marginal.
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With k = 9, the variability of the full set of OD-routes is reduced in 46.4%. If well, this
reduction may not be big in terms of clustering analysis, it can be seen (Fig 5) that the road
attributes of the cluster centroids cover likely values to be observed in the network. To be
more specific, 83% of the values of the attributes of the OD-routes in the network lie in the
range of the centroids: 83% for the euclidean distance and the directness, 89% for the freeway
composition, 85% for the number of turns per kilometre and 90% for the route length. Fur-
thermore, the resulting p-values of the two-sample Kolmogorov-Smirnov test (Fig 5) are high:
p — value > 0.1 for the five variables, suggesting that there is not enough statistical evidence
(with a significance level of & = 0.1) to reject the null hypothesis that the values of the attributes
of the centroids and the full network come from the same distribution. This implies that a ran-
dom selected OD pair or route in the network is likely to have attributes similar to one of the
nine OD-routes used in the route choice experiments. In this sense, the nine cluster centroids
can be regarded as representative of the network.

A further characterisation of the nine clusters, based on their elements’ attributes (see S1
and S2 Figs), is proposed as follows:

Table 2. Cluster analyis results.

Cluster 1 2 3 4 5

No. obs 62,479 86,004 60,063 63,101 44,130
WCSS 564,188 578,003 569,158 527,322 464,730
Variance 9.03 6.72 9.48 8.36 10.5

https://doi.org/10.1371/journal.pone.0225069.t002

6
49,956
491,656
9.84

7

53,036
535,509
10.1

8
119,557
759,205
6.35

9

86,164
663,009
7.69

Total
624,490
5,152,782
15.38
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Clust. C;: Medium-range direct trips going from south to north, with routes having small
number of turns per kilometre and some freeway segments.

Clust. C,: Short non direct trips mainly in the central part of the network, with routes having a
lot of turns per kilometre and no freeway segments.

Clust. C5: Medium-range direct trips going from north to south, with routes having small
number of turns per kilometre and some freeway segments.

Clust. C;: Medium-range direct trips mostly in the central part of the network, with routes
having average number of turns per kilometre and with longest route highly composed of
freeway segments.

Clust. Cs: Long trips going from east to west, with routes having a small number of turns and
with large portions of freeway.

Clust. C4: Long trips going from west to east, with routes having a small number of turns and
with large portions of freeway.

Clust. C;: Medium-range non direct trips in the central part of the network, with routes with
average number of turns per kilometre and high portions of freeway.

Clust. Cq: Short direct trips mainly in the central part of the network with routes with low
number of turns per kilometre (among short trips) and no freeway segments.

Clust. Co: Short non direct trips mainly in the central part of the network, with routes with low
number of turns per kilometre (among short trips) and some freeway segments.

Experiment results

Three route choice experiment sessions were carried out using the nine OD pairs and routes
obtained from the clustering analysis of the network. In total, 73 individuals participated in
the three sessions, from these participants, 56 (77%) received estimates of the travel times in
each route. Participants recorded a total number of 802 choices in the nine defined OD-
routes, with an average number of 11 choices per participant, and an average number of 89
choices in each OD-routes. The choices of the participants are presented in Fig 6, where it
can be immediately noticed that travel time information changes the behaviour of the
participants.

Route choice model estimation

Three panel data mixed logit models are estimated using the observations collected in the
route choice experiments. Five variables are used in the specification of the models. Four of
these variables correspond to the variables used in the selection of the representative OD-
routes for the route choice experiments, which will help to test if the choices in the representa-
tive OD-routes (cluster centroids) can approximate the choices in other OD-routes. The fifth
variable is the estimated travel time that the participants received during the experiments.
These variables are known to influence the route choice behaviour of travellers and that can be
observed by the participants in the computer route choice experiments.

Let the individuals and alternatives be indexed by i and j, respectively. Since participants
were allowed to repeat decisions in the same OD pair, the choice situation, indexed by s,
represents the pair (od, t), where od is the OD pair in which the decision was made and ¢
indexes the moment of the choice. The explanatory variables considered in the model are
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between origin and destination;

» FRW,, the percentage of freeway that composes the route j;

 TNR;, the number of turns per kilometre in the route j;

® ITT:]'S)

« DIR;, the directness of the route j, defined as the length of j divided by the euclidean distance

the informed travel time in the route j in OD pair and moment s, the variable is nor-

malised by OD pair by dividing the informed travel time by the free flow travel time in the
fastest of the three routes;

o INF;, binary variable indicating if participant i received information; and

+ LEN;, the length (in km) of the route j.

The specifications of the three models M1, M2 and M3 are

Uijs = ﬁilFRVVj + ﬁiZDIRj + ﬂiSTNRj + ﬁi4LEI\]j + ﬁisITT}sINFi + Eiis» (Ml)

Uijs = ﬁﬂFRI/V]. + ﬂiQDIRj + ,BiSTNRj + ﬁi4LEI\Tj+ (MZ)
ﬁiE}ITTjsINFi + ﬁiGITTstENjINF,. + £y

Uijs = ﬁilFRVVj + ﬁiZDIRj + ﬁiBTNRj + Bi4LENi+ (M3)

BITT,INF, + BITT,LENINF, + €, .

In models M1 and M2, the coefficients B, for p = 1, .., 6 are independent and normally distrib-
uted, i.e,, f,, ~ N(b,, o). In model M3, the coefficient f is fixed for all individuals (not ran-
dom), and the coefficients f;, are correlated for p = 1, .., 4, i.e., B; ~ Ny(b, ), but independent
from fi;; ~ N(b;,02). Model M1 is the simplest MXL model considering the five variables. In
models M2 and M3 the interactions between the route length and the travel time information
are taken into account, allowing for the preference towards the length of the route to change
depending on the informed travel time. In model M3 the correlations between the coefficients

Bipforp=1,..., 4 are also estimated. In MXL models, the parameters that are estimated are
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Table 3. MXL models estimation results.

Coefficient M1 M2 M3

b, (FRW)) 1.96 (0.85) 2.01 (0.74) 2.11 (0.80)
,, (DIR) 4.61 (1.65) 4.00 (2.10) 4.56 (1.87)
b, (TNR)) -0.15 (0.26) -0.14 (0.26) -0.20 (0.30)
1 (LEN) 0.01 (0.12) -0.11 (0.13) -0.14 (0.16)

b, (TT,) -3.86 (0.85) -4.58 (1.01) -5.28 (1.24)

b, (ITT, " LEN) - 0.08 (0.06) 0.13 (0.10)
7, (FRW)) 0.61 (0.61) 0.58 (0.62) 2.33 (1.15)
7, (DIR) 1.10 (1.00) 0.88 (0.98) 3.00 (2.66)
d, (TN, ) 0.72 (0.39) 0.76 (0.40) 1.24 (0.29)
d, UTT}) 0.11 (0.05) 0.10 (0.06) 0.51 (0.13)
o (ITT, ) 4.62 (0.87) 4.64 (0.90) 4.72(0.91)

g, (ITT LEN) - 0.07 (0.04) -

d,, (FRW;-DIR)) - - 1.96 (8.73)
o, (FRW;-TNR)) - - 1.21 (1.60)
o\, (FRWSITT}) - - -0.36 (0.65)

7, (DIR-TNR;) - - 0.63 (2.28)

7, (DIR/-ITT},) , . 0.83 (2.06)
, (TNR-ITT) - . 0.00 (0.19)

Mean (standard deviation) of the sampled posterior distributions of the parameters of the MXL models.

https://doi.org/10.1371/journal.pone.0225069.t1003

the means and variances (covariances) of the coefficients’ distributions, b;, 6 and X. The esti-
mated parameters for the three models are shown in Table 3; more detailed result of the poste-
rior distribution of the parameters can be found in S1 Table, and the details of the
computational effort for the estimation process in S2 Table.

The estimated parameters b; represent the mean preferences in the population. The positive

sign of the estimates b, , and b; in the three models is interpreted as the average traveller prefers
routes with high composition of freeways, and direct routes. On the contrary, the negative signs

of b, and bi) mean that the average traveller avoids routes with many turns and higher travel
times. These results are in line with the findings in [24], and provide more evidence in favour
of travel time as the most important variable in route choice. Note that in the three models

b, ~ 0, but with large standard deviations &, meaning that (i) the sign is positive for a large
number of participants (near half), and that (ii) even when the mean of the coefficient is close
to zero, this variable is still important for a large percentage of the participants, specially in
model M3, where Pr(|8;3] > 1) = 0.42. The case for the length of the route is different, as the
standard deviations are smaller: for models M1 and M2 this implies that the length of the
route is not important for the majority of the participants, Pr(|B.4] < 0.2) = 0.93 and Pr(|Bi4] <
0.2) = 0.81, respectively; but for model M3 it is, Pr(|B:4] < 0.2) = 0.29. Finally, note that in mod-
els M2 and M3 the mean preference for the length of the routes can be written as (by + bgITT;s
INF;), with b, < 0 and bs > 0, meaning that the informed travel time diminishes the preference
for shorter routes.

Choices on representative OD-routes

Until now, the discussion on the representativeness of the nine selected OD-routes (the cluster
centroids) has been in terms of the route attributes. In this section, the representativeness of
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the OD-routes is assessed in terms of how well a choice model, estimated using the cluster cen-
troids, can be generalised to the entire road network or, in other words, how well it scales-up
the travellers’ choices to other OD pairs in the network. The hypothesis is that if the choices in
the nine cluster centroids are representative of the choices in the entire network, then the pre-
dictive accuracy of a model, estimated with observations in the nine cluster centroids, should
be higher than the predictive accuracy of models (with the same specification) estimated with
observations in random sets of OD-routes. To this end, data collected in other route choice
experiments carried out with the MDG platform is used. The data consists of route choice
observations in 21 OD-routes, defined with a different methodology for previous experiments,
and not comprising the representative OD pairs.

The methodology to validate the representative OD-routes is based on bootstrapping for
model validation: at each step, a random part of the data is left-out of the estimation process,
and then used to measure the predictive accuracy of the model. However, in this case, the pre-
dictive accuracy of the models obtained at each iteration are compared to the predictive accu-
racy of the model estimated with the nine cluster centroids. Let C be the set of choice
observations in the 9 cluster centroids and T the set of observations in the 21 test OD-routes.
Denote by M* the model (it can be either M1, M2 or M3) estimated with observations on the
nine cluster centroids, C. Atiterationr,r=1, ..., 40,

1. obtain T, C (C U T), composed of all the observations from nine randomly sampled OD-
routes;

2. estimate the model M, (M1, M2 or M3) with the observations in T}

3. for each OD-routes od € (CU T) — T,, compute the prediction error of models M* and M,,
ie., e, (M*, od) and e (M,, od), where

3
e, (M*,od) = Zmax((), obs, — pred,) ; (4)

i=1

4. obtain the mean prediction error for iteration r, defined as

MPE,(M,) = 3w, (M, 0d) (5)

odeT,

where the weight w,, is the percentage of OD-routes in the cluster to which od belongs,
multiplied by the inverse of the number of OD-routes in (C U T) that belong to that cluster.
The weighting is done to adjust for the probability of observing an OD-routes in the net-
work like od. This follows since some clusters are over-represented in T, as the OD-routes
in T were not randomly selected from the network, but they were selected following a dif-
ferent methodology in previous studies.

Note that the error measure, e,(M*, od) has a direct interpretation in terms of traffic
assignment: the percentage of trips that are wrongly distributed amongst the three alternative
routes.

The MPE,(M*) is compared against the MPE,(M,), r =1, .. ., 40 for the three model specifi-
cations. In Fig 7, MPE,(M*) is plotted against MPE,(M,), with blue dots when MPE,(M*) <
MPE,(M,), and red otherwise. The models estimated with the clusters’ centroids performed
better in predicting the choices of travellers than most of the models estimated with randomly
selected OD-routes. To be more specific, MPE (M*) < MPE,(M,) in 35 out of 40 cases (87.5%)
for models M1 and M2, and in 31 cases (77.5%) for model M3. Furthermore, in the cases when
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the model estimated with the centroids performed worst, i.e., MPE,(M*) < MPE,(M,), the
errors were close to those of the models estimated with randomly selected OD-routes. Define
the improvement of M* with respect to M, as a, = (MPE(M,) — MPE,(M*))/MPE(M,). Then,
the mean improvements, &, are 14% for model M1, 14.5% for model M2 and 9.9% for model
M3. In 20% of the test cases, @, is at least 26%, 25% and 22% for models M1, M2 and M3,
respectively; and o, reaches 52%, 48% and 43% in the worst case scenarios. This results high-
lights the importance of a careful selection of OD pairs in route choice model estimation. As
the MPE represents the percentage of trips that are not assigned to the right route, and since
the total number of trips at a city level can be very high, about 1 million in the Lyon Metropolis
during one day, even low a, values may have an impact on how the traffic is distributed on the
network.

If the MPE is analysed by whether or not the participants received travel time information
(Fig 8), it can be seen that the models M* are better than the models M, for the not informed
participants than for the informed ones. For models M1 and M3, MPE,(M*) < MPE(M,) in
97.5% of the cases, and for model M2 in 95%; and when the participants were informed,
MPE,(M*) < MPE,(M,) in 65% for model M1, 77.5% for model M2 and 67.5% for M3. In the
case of the not informed participants the values of & are 20%, 14% and 15%, respectively for
models M1, M2 and M3. The high performance of the models M* for the not informed partici-
pants implies that the models are capable of approximating the choices of this group in a vari-
ety of scenarios, i.e., the models estimated with the nine centroids generalise well to other OD-
routes for this group. Moreover, considering that the informed travel time was not part of the
variables used in the clustering of the OD-routes (% of freeway, directness, no. of turn per kilo-
metre, distance), this result suggests that the choices in the cluster centroids are representative
of the choices in the entire network, thus validating the methodology proposed in this article.

The predictive errors of the representative models, M*, and the test models, M,, can be dis-
aggregated by OD-routes. In the results, shown in Fig 9, it is clear that the magnitude and the
variance of the predictive errors depend on the OD-routes where the choices are being pre-
dicted. The choices in some OD-routes are difficult to predict, regardless of the training set
used to estimate the models. Furthermore, there is no clear pattern indicating that these errors
are associated with the road characteristics of the OD-routes: two OD-routes belonging to the
same cluster, i.e., having similar route attributes, may have a low and a high prediction error.
Such is the case of OD-routes c3_od2 and ¢3_od3, both belonging to cluster Cs, but with errors
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Fig 8. Mean predictive errors by information group. The models estimated with the cluster centroids are clearly better in predicting the choices for
the not informed participants.
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below 0.1 for the former and above 0.2 for the later. Similar cases can be found in cluster Cs
and Cg. An important observation is that the models estimated with the cluster centroids M*
are not as accurate in predicting the choices in individual OD-routes as the models M,, for
some values of r. In fact, their prediction errors are amongst the lowest 25% in only 8 out of 21
test OD-routes for models M1 and M3, and in 6 for model M2. However, at the same time, the
individual errors are almost never amongst the highest 75%: in 0 OD-routes for model M1, in
2 for model M2, and in 1 for M3. Moreover, when the individual errors are averaged to obtain
the MPE (as in the previous analysis), the models M* outperform the models M, for the major-
ity of values of r. This result implies that a model M, having low prediction errors for some
OD-routes has also high prediction errors in other OD-routes, and therefore its mean predic-
tive accuracy is reduced. In this sense, the models estimated with the cluster centroids, M*, are
preferred, as they will show a relative better global prediction accuracy without incurring in
large errors in individual OD-routes.

The models estimated with the representative OD-routes, M*, are compared in terms of
their prediction errors over the 21 validation OD-routes. The error distribution of the three
models, depicted in Fig 10, show that, practically, there is no difference in the predictive accu-
racy. This means that the interaction between the informed travel time and length of the route
in models M2 and M3 does not improve the predictive accuracy; nor considering the correla-
tions in model M3 does.
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Fig 9. Distributions of the predictive errors the 21 validation OD-routes. The level and the variability of the errors amongst the different OD-routes
imply that the choices in some OD-routes are difficult to predict, regardless of the training set used to estimate the models.
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Discussion

In this study, it was demonstrated that the choices of participants in a route choice experiment
over a small but representative set of OD configurations can be scaled-up to the entire net-
work. To obtain the set of representative OD configurations, a new methodology based on k-
means cluster analysis is proposed. First, the OD configurations in the network, i.e., the OD
pairs and three connecting routes, are represented in vector form according to the attributes of
the OD pairs and routes. Then, these OD configurations are clustered in order to obtain a par-
tition of the road network and the cluster centroids selected as representative of the entire net-
work. The main hypothesis is that the choices of travellers over the entire network can be
approximated with route choice models estimated using data collected for the representative
set. The obtained results point in this direction.

In the current study, for the city of Lyon in France, 9 OD pairs and their connecting routes
were used as representative of 624,490 OD configurations. These nine representative OD con-
figurations cover around 83% of the values of the attributes of the OD-routes in the network.
The predictions of the models estimated with the representative set were superior in most of the
test cases (87.5% and 77.5% in the general case). For the not informed participants, whose deci-
sions were based on the same attributes used in the clustering, the predictions are better in at
least 95% of the test cases. By estimating the route choice model with the cluster centroids, the
mean prediction errors are reduced by up to 14.5% for model M1 (similar results are observed
for models M2 and M3). The reduction of the prediction error is more than 22% for the 20% of
the test cases, and it goes up to 51% in the worst case. This demonstrates that a careful selection
of the OD configurations significantly improves the prediction accuracy, independently of the
model specification. Another significant finding, is that the models estimated with the represen-
tative OD configurations are more robust than the ones obtained from the models with random
OD configurations. The models estimated with the representative set never show extreme errors
for individual OD pairs, contrary to the models estimated with random sets of OD configura-
tions. This implies that the models estimated with the representative set will show a relative bet-
ter global prediction accuracy without incurring in large errors on individual OD-routes. This
result is important when predicting the trip distribution over the network, as high errors in
individual OD pairs may have significant impact in local traffic conditions, causing spreading.

The last finding is that estimating the models with the representative OD pairs leads to an
average prediction error of 12.7%. This value can be considered quite low when considering
the scale of the city, the heterogeneity of OD configurations, and the actual performance of
user equilibrium approaches.

From the clustering analysis in this study, it is clear that there are OD pairs in the network
that are not well represented by the representative set of nine OD configurations. Therefore, it
cannot be claimed that the choices in these non-represented OD pairs can be well approxi-
mated by the set of nine OD pairs found in this study. However, these non-represented OD
pairs are those with attributes not covered by the representative set, which are no more than
17% of the OD configurations in the network. Note that this result does not hinder the useful-
ness of the proposed methodology, as it can be extended by either using other clustering tech-
niques that allow taking into account for these atypical OD configurations or by including
more clusters in the representative set.

Supporting information

S1 Fig. Distribution of the route attributes in the nine clusters.
(TTF)
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S2 Fig. Origins and destinations in the network.
(TIF)

§1 Table. Complete estimation results of the MXL models.
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S2 Table. Computational effort in the estimation of the MXL models.
(PDF)
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