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Abstract

As uncontrolled urban growth has increasingly challenged the sustainable use of urban

land, it is critically important to model urban growth from different perspectives. Using the

SLEUTH (Slope, Land use, Exclusion, Urban, Transportation, and Hill-shade) model, the

historical data of Hefei in 2000, 2005, 2010, and 2015 were collected and input to simulate

urban growth from 2015 to 2040. Three different urban growth scenarios were considered,

namely a historical growth scenario, an urban planning growth scenario, and a land suitabil-

ity growth scenario. Prediction results show that by 2040 urban built-up land would increase

to 1434 km2 in the historical growth scenario, to 1190 km2 in the urban planning growth sce-

nario, and to 1217 km2 in the land suitability growth scenario. We conclude that (1) exclusion

layers without effective limits might result in unreasonable prediction of future built-up land;

(2) based on the general land use map, the urban growth prediction took the governmental

policies into account and could reveal the development hotspots in urban planning; and (3)

the land suitability scenario prediction was the result of the trade-off between ecological

land and built-up land as it used the MCR -based (minimum cumulative resistance model)

land suitability assessment result. It would help to form a compact urban space and avoid

excessive protection of farmland and ecological land. Findings derived from this study may

provide urban planners with interesting insights on formulating urban planning strategies.

Introduction

Recent decades have seen an accelerating urban growth on a global scale. By 2050, the average

urbanization rate is expected to reach 86% in developed countries, and 64% in developing

countries [1]. Since 1978, the beginning of its reform and opening-up policy, China has been

urbanized at an unprecedented pace. China’s urbanization rate was only 20.1% in 1981 while

this figure rose to 57.4% in 2016. Such high-speed urban growth is considered responsible for

PLOS ONE | https://doi.org/10.1371/journal.pone.0224998 November 7, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu Y, Li L, Chen L, Cheng L, Zhou X, Cui

Y, et al. (2019) Urban growth simulation in

different scenarios using the SLEUTH model: A

case study of Hefei, East China. PLoS ONE 14(11):

e0224998. https://doi.org/10.1371/journal.

pone.0224998

Editor: Mingxing Chen, Institute of Geographic

Sciences and Natural Resources Research

(IGSNRR), Chinese Academy of Sciences (CAS),

CHINA

Received: February 1, 2019

Accepted: October 26, 2019

Published: November 7, 2019

Copyright: © 2019 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

available in the Figshare repository at DOI: 10.

6084/m9.figshare.8024873 or URL: https://

figshare.com/s/9f29ed0eed964d17310f.

Funding: This research was supported by the

Fundamental Research Funds for the Central

Universities of China, 2018ZDPY07 to LC.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-7763-1108
https://doi.org/10.1371/journal.pone.0224998
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224998&domain=pdf&date_stamp=2019-11-07
https://doi.org/10.1371/journal.pone.0224998
https://doi.org/10.1371/journal.pone.0224998
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.8024873
https://doi.org/10.6084/m9.figshare.8024873
https://figshare.com/s/9f29ed0eed964d17310f
https://figshare.com/s/9f29ed0eed964d17310f


a variety of issues such as climate change, ecosystem services degradation, and farmland loss,

and challenging to the sustainable use of urban land [2,3]. It is therefore of great practical sig-

nificance to coordinate the contradiction between urbanization and ecological protection and

establish a model to simulate and analyze urban growth.

There exist a variety of urban growth simulation models, such as logistical regression [4–6],

and agent-based model [7], cellular automata (CA) [8]. The logistic regression model can well

explain the relationship between urban growth and various driving factors [4]. However, it is

not explicit in time and does not account for the correlation between driving factors [9].

Although the agent-based modeling has satisfactory applicability in urban growth simulation,

the uncertainty of the initial conditions and the behavioral rules of the agent can produce

highly variable simulation results [9,10]. Among all the models, CA is the most widely used

urban growth modeling approach due mainly to its flexibility, visualization, and capability to

integrate spatial and temporal processes and simulate complex dynamic systems [8,11]. In

addition, CA models can directly use raster data and this allows easy integration with remote

sensing and GIS technologies [12–16].

Several different CA-based urban models have been proposed for urban growth simulation,

land use change simulation, and planning policy evaluation [17,18], such as UrbanSim [19],

ANN -CA (artificial neural network) [20], SVM-CA (support vector machine) [21], RF-CA

(random forest) [22], and SLEUTH model. The UrbanSim model has not been widely used as

it integrates seven submodules and requires huge data support and high requirements for data

organization [19]. Although the conversion rules of CA established by intelligent algorithms

can explore the relationship between urban land use change and driving factors [23], the

resulting conversion rules are only applicable to the local urban growth mode. Consequently,

these models are not suited to define general urban CA [8]. The SLEUTH model, developed by

Clarke et al. [24] with predefined conversion rules applied spatially to gridded maps of the cit-

ies in a set of nested loops [25], has been widely used to simulate the urban growth worldwide

due to its universal applicability and refined over the past decades. In 2007, Dietzel and Clarke

used self-organizing map theory to calibrate the model and proposed goodness of fit metric,

OSM (Optimal SLEUTH Metric), which would provide the most robust results for SLEUTH

calibration [26]. A new version of the SLEUTH model was developed in 2010 by introducing

new fit metrics, expanding the capability of SLEUTH to incorporate policy information and

increasing the speed of model calculations [27]. The SLEUTH model can help create different

future urban growth scenarios by changing the input data or modifying the coefficients of the

model [26,28,29]. In addition, the model can be used as an important planning tool to incorpo-

rate different urban development factors into future urban growth projections [30]. A number

of studies have incorporated policy planning, environmental quality, and hydrological models

into the model to achieve coupling of the SLEUTH model with other data sets or methods

[31–33]. Given its success in urban growth simulation and capability of defining scenarios and

integrating other data and models, we used the SLEUTH model in conjunction with policies

and land assessment for the future urban growth studies.

Suitability evaluation of urban built-up land is critical for both urban growth and the proper

utilization of land resources [34]. This study uses the minimum cumulative resistance (MCR)

model to construct an urban land suitability evaluation system. The minimum cumulative

resistance model regards the urban land use change as a horizontal movement of the existing

construction and ecological land on the resistance surface, which is reflected in the competitive

relationship between the built-up land and the ecological land during the urban growth pro-

cess. It would be interesting if the result of the MCR-based ecological suitability evaluation

could be integrated into the SLEUTH model as the exclusion layer.

Urban growth simulation in different scenarios using the SLEUTH model
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The study selected the main urban area of Hefei as the study area. The input data of the

SLEUTH model include urban built-up land layers and traffic road layers in 2000, 2005, 2010,

and 2015, a slope layer, a hill-shade layer, and exclusion layers. By changing the exclusion layer

of the SLEUTH model, three urban growth scenarios were developed, namely a historical

growth scenario, an urban planning growth scenario, and a land suitability growth scenario.

The historical growth scenario only excluded the water. The urban planning growth scenario

incorporated the 2006–2020 general land use planning map. The land suitability growth sce-

nario achieved loose coupling between the MCR model and the SLEUTH model. After the

three scenarios were independently calibrated, and their optimal parameter combinations

were identified, we predicted the urban growth of Hefei from 2015 to 2040 for each scenario.

The ultimate objective of this study is to provide decision-makers and urban planners with

interesting insights on formulating urban management and urban planning strategies through

projections of urban growth in different scenarios.

Study area and data

Study area

Located in the center of east China’s Anhui province (30˚570N~32˚320N, 116˚410E~117˚580E)

(Fig 1A), Hefei covers an area of 11408.48 km2 with an average altitude of 30 m. As the provin-

cial capital, Hefei is also the cultural, commercial, financial, and political center of Anhui. It is

characterized by a subtropical monsoon climate with an average annual temperature of 16˚C

and total annual precipitation of 995.2 mm. The prefectural city of Hefei now comprises four

counties (Changfeng, Feidong, Feixi, and Lujiang), four districts (Yaohai, Luyang, Shusha, and

Baohe), and one county-level city (Chaohu, once an Anhui’s prefectural city incorporated by

Hefei in 2011).

Since 2000, a number of urban development strategies have been implemented, such as the

major development, large construction, large development strategy in 2006, the “141” urban

development strategy in 2007, and the “1331” development strategy in 2013, making Hefei’s

economy and urban extent fast growing. Statistics from the 2000 official census show that the

population and GDP (Gross Domestic Product) of Hefei in 2000 were 4.47 million and 369.16

billion RMB. These figures rose to 7.87 million and 5660.27 billion RMB in 2015, respectively.

Fig 1. Study area. (a) Location of the study area in Anhui, China; (b) urban built-up land growth in Hefei in 2000,

2005, 2010, 2015.

https://doi.org/10.1371/journal.pone.0224998.g001
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Over the 15 years, the built-up area grew by 250.56% from 125 km2 to 438 km2. Demand for

built-up land continues to grow due to priority given to economic development and urban

construction. Land resources and environmental capacity outnumber their supply [35]. Since

limited land resources are hindering the sustainable development of urbanization, among

Hefei’s urgent tasks is to assess the suitability of construction sites and to make reasonable use

of limited land resources. As the capital city of Anhui and one of the central cities in the Yang-

tze Delta Region, Hefei leads the urbanization process in this east Chinese province. In the

context of the National New-type urbanization Plan [36], the experience of its urban develop-

ment will provide valuable insights to its neighboring and similar cities. Therefore, we chose

the urban growth process of Hefei from 2000 to 2015 as the case study.

Data

Data used in this study includes multi-temporal Landsat datasets, Digital Elevation Model

(DEM) data, traffic network vector data, the 2006–2020 land use planning map of Anhui prov-

ince, soil type map and precipitation map. The Landsat datasets and DEM, both at a spatial res-

olution of 30 m, were obtained from the United States Geological Survey website (USGS,

https://earthexplorer.usgs.gov/). The soil and precipitation maps were provided by the Data

Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC,

http://www.resdc.cn/). The four Landsat TM image data from 2000, 2005, 2010, and 2015 were

used for landscape classification. After atmospherically corrected using the FLAASH (Fast

Line-of-sight Atmospheric Analysis of Spectral Hypercubes) utility in ENVI 5.3 and geometri-

cally corrected with total RMS (root mean squared) of less than half a pixel, they were classified

into six broad categories using the support vector machine (SVM) supervised classifier, namely

urban built-up land, farmland, forestland, grassland, water, and other land. The SVM is a

group of theoretically superior machine learning algorithms [37], and has proven accurate for

mapping urban land cover from medium-resolution imagery [38–40]. The SVM classifications

in this study were implemented using an ENVI add-in known as EnMAP-box [41]. To assess

classification accuracy for the 2010 and 2015 classification results, we used high-resolution

Google Earth images, where a total of 400 sample points were randomly selected as reference

data using ArcGIS 10.2’s Create Random Points tool. By the confusion matrices, the Kappa

coefficients were both above 0.8 for the 2010 and 2015 classification results. Due to the lack of

high-resolution remote sensing images, we were not able to perform independent classification

accuracy assessments for the results of 2000 and 2005. However, as the images were all Landsat

data and processed and classified using the same procedure and approach, we thus consider

that similar classification accuracies were obtained for the 2000 and 2005 images [42]. As such,

the Kappa coefficients (>0.8) we obtained indicates that the classification results were accept-

able [43]. All raster and vector data were clipped to the same extent of the study area (Fig 1B),

and the projection coordinate system was uniformly set to WGS_1984_UTM_Zone_50N.

Methods

SLEUTH model

The SLEUTH model consists of two sub-models: the urban growth model (UGM), which can

be run independently, and land cover deltatron model (LCD) [15]. The SLEUTH model

requires a minimum of four periods of city-wide layers, two periods of transportation layers,

slope layers, hill- shade layers, and exclusion layers [29]. Based on grid cells, the SLEUTH

model assigns the attributes of the city or non-city to each cell and simulates urban growth by

four conversion rules—spontaneous growth, new spreading center growth, edge growth, and

road-influenced growth [24]. Spontaneous growth defines the occurrence of random

Urban growth simulation in different scenarios using the SLEUTH model
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urbanization of land, i.e., randomly selected non-urbanized cells may be transformed into

urbanized cells when slope conditions are appropriate. An urban spreading center is defined

as a location with three or more adjacent urbanized cells. New spreading center growth deter-

mines whether any of the new, spontaneously urbanized cells would become new urban

spreading centers. Edge growth defines the growth of an existing spreading center, which sim-

ulates the urban’s fill-in growth and the expansion of boundaries [24,28]. Road-influenced

growth encourages urbanized cells to develop along road network, which simulates the impact

of existing transportation infrastructure on urban growth. The mentioned four urban growth

rules are performed sequentially in each growth cycle and are controlled by five growth coeffi-

cients [44], namely dispersion coefficient, breed coefficient, spread coefficient, road gravity

coefficient, and slope coefficient. The relationship between the four growth rules and the five

coefficients is shown in Table 1.

The execution of the SLEUTH model is divided into four major steps (Fig 2): input data

preparation, model calibration, model prediction, and model output [45]. Three urban growth

scenarios were planned by changing the exclusion layer, and both the calibration and predic-

tion of the three scenarios were performed independently. We used the SLEUTH 3.0 beta_p01

module (http://www.ncgia.ucsb.edu/projects/gig/) and completed the model compilation and

operation with the help of the software of Cygwin.

Input data preparation

The input data required by the SLEUTH model include the urban layer, the slope layer, the

hill-shade layer, the transportation layer, and the exclusion layer. Since the study only activated

the UGM module, the land use layer was not included in the input data. Through satellite

image classification, we extracted the urban built-up land and used it as the urban layers for

the years of 2000, 2005, 2010, and 2015 (Fig 3). Both the slope layer and the hill-shade layer

were derived from the DEM, and the unit of the slope was percentage (Fig 4). The road net-

work data was vectorized from the satellite images to produce the transportation layers, and

the road grade information was determined using the traffic thematic map (Fig 5). As roads

may have a different impact on urban growth [46], we divided roads into three levels and

assigned different weights to them. A weight of 100 was given to national highways and rail-

ways as they are highly conducive to urban growth while the weight of provincial highways

was set at 50 due to their medium influence. In addition, the weight of county roads and the

non-road area were determined as 25 and 0 [29]. The exclusion layers were used to discrimi-

nate different urban growth scenarios. The spatial resolution of all input data was uniformly

re-sampled to 60 m in order to reduce the computational workload. This research used the

same spatial resolution in both the model calibration and prediction phases. As required by

the SLEUTH model, all input layers were converted into grayscale GIF (graphics interchange

format) images.

Table 1. Relationship between growth rules and model coefficient in the SLEUTH model.

Growth rules Model coefficients Rule description

Spontaneous growth Dispersion, slope Random conversion of non-urban cell to urban cell

New spreading center

growth

Breed, slope Urban cell from spontaneous growth become new

spreading centers

Edge growth Spread, slope Spreading center edge expansion

Road influenced growth Breed, road-gravity,

dispersion, slope

The attraction of traffic roads to urbanization

https://doi.org/10.1371/journal.pone.0224998.t001
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Scenario setting

The range of gray values for the exclusion layer grid cells was set to 0–100, and the gray pixel

value indicates the probability of the grid cells not being urbanized. Using the exclusion layer,

users can define the probability of urbanization for different areas [26]. For example, the exclu-

sion probability of the ocean would be defined as 100%, while forest parks would be defined as

75%. In this way, users could set up different urban growth scenarios.

The most straightforward practice is setting the exclusion probability for all areas at 0,

though sometimes except for major water bodies [13,29,47]. Another approach is assigning

different exclusion probabilities to land use type according to urban planning [13,25,48].

Among them, high exclusion probability can be set for nature reserves, forest areas and waters

to reflect the protection of ecological land. These two methods were used for constructing two

scenarios in this study for urban growth prediction. However, the two scenarios do not

emphasize the competition between built-up land and ecological land, which plays a key role

in urban growth. We, therefore, made use of the minimum cumulative resistance (MCR)

model to generate a different exclusion layer for constructing the third scenario. This study set

up three different urban growth scenarios: a historical growth scenario, an urban planning

growth scenario, and a land suitability growth scenario.

• Scenario 1: In the historical growth scenario, existing urban areas are expected to expand

simply based on the previous growth pattern. Only large lakes and reservoirs were excluded

(100% non-urbanization probability) and urbanization in other areas was not restricted (Fig

6A).

• Scenario 2: In the urban planning growth scenario on the 2006–2020 general land use plan-

ning map of Hefei is used as the basic data. By summarizing the influence of different land

planning types on urban growth [39,41], each types of exclusion probability were

Fig 2. Technical flowchart of the study.

https://doi.org/10.1371/journal.pone.0224998.g002
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determined. The exclusion probability of land permitted for construction (LPC; the land

that is allowed to be used as construction land for urban and rural construction [49]) in

urban areas and rural areas was defined as 0 while the exclusion probability of land condi-

tionally permitted for construction (LCPC; the land where urban and rural construction can

Fig 3. Inputs data: Urban built-up land of Hefei in 2000, 2005, 2010, and 2015.

https://doi.org/10.1371/journal.pone.0224998.g003

Fig 4. Input data: Slope layer and hill-shade layer.

https://doi.org/10.1371/journal.pone.0224998.g004
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be carried out after meeting certain conditions [49]) was defined as 30%. The exclusion

probability was defined as 60% for cultural heritage reserve, and 90% for basic farmland, for-

estry areas, animal husbandry areas, water areas, and natural reserves (Fig 6B).

• Scenario 3: In the land suitability growth scenario, the result of the MCR-based urban land

suitability zoning was integrated into the exclusion layer. While detailed land suitability zon-

ing would more objectively reflect the impact of land suitability on urban expansion and

avoid overestimation or underestimation of suitability in certain areas, the computational

cost would be considerably increased. As a comprise between prediction accuracy and

computational cost, we, therefore, divided the urban land suitability zoning map into 20

grades according to the order of suitability from small to large. The area of each level was

evenly assigned the corresponding gray value ranging from 0 to 100 (Fig 6C). The following

sections provide a detailed description on producing the exclusion layer for the land suitabil-

ity growth scenario.

Minimum cumulative resistance model. Originating from the study of dispersion pro-

cesses of species [50], the minimum cumulative resistance refers to the minimum cost involved

in the process of crossing a heterogeneous landscape between a source and a target and reflects

the spatial accessibility between the source and the target [51,52]. Some researchers have

recently applied the MCR model to the studies of urban spatial growth and land ecological

Fig 5. Input data: Road network of Hefei in 2000, 2005, 2010, and 2015.

https://doi.org/10.1371/journal.pone.0224998.g005
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suitability evaluation [21]. Traditional ecological suitability evaluation methods, such as map

superposition and logical rule combination, superimpose the evaluation factors of landscape

units and emphasize the vertical process of landscape units while ignoring the trend of various

landscape horizontal directions [53]. The MCR model regards land expansion as horizontal

spatial movements on the resistance surface. As such, it offset the disadvantage of the tradi-

tional methods, i.e., only considering vertical landscape evaluation. Proposed by Knaapen

et al., this model was improved by Yu et al. [54], which is given by:

MCR ¼ fmin

Xi¼m

j¼n

Dij � Ri

where MCR is the minimum cumulative resistance value, f is some unknown but monotoni-

cally decreasing function, Dij and Ri represent the spatial distance and relative resistance value

respectively when a species travels from source j through landscape type i to any point on a

landscape surface [34,55]. The minimum cumulative resistance is obtained through the Cost

Distance function in the ArcGIS’s Spatial Analyst tool.

Expansion source and resistance surface. In this study, we assumed that land could be

divided into two broad categories: ecological land suitable for establishing natural ecosystems

and built-up land suitable for urban facilities construction. The expansion of the two land

Fig 6. Input data: Exclusion layer for three scenarios. (a) Scenario 1, the historical growth scenario; (b) Scenario 2,

urban planning growth scenario; (c) Scenario 3, land suitability growth scenario.

https://doi.org/10.1371/journal.pone.0224998.g006
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types could be seen as a spatial movement on the ecological/built-up land expansion resistance

surface.

a. Source selection. The source region with internal homogeneity and spatial expansion

capability is the starting point for an expansion movement [56]. The source of ecological land

expansion is set as land with rich biodiversity and ecosystem services, e.g., lakes, rivers, green

spaces, and wetlands. The ecological land sources in the study area include Chaohu Lake,

Wabu Lake, Dongpu reservoir, Dafang reservoir, Lushan Forest Park, Zipeng mountain forest

park, and Fucha Mountain. The urban built-up land in 2015 was set as the source of built-up

land expansion.

b. Resistance surface. A resistance value indicates the difficulty of converting a land type

into another type under the influence of certain environmental factors [57]. The resistance

value in the same environment varies with the type of expansion. The resistance value is a rela-

tive value rather than an absolute value. Five evaluation factors of topography, ecological func-

tion, landscape type, soil erosion sensitivity, and ecological value were selected to establish a

landscape process resistance evaluation system [57–59]. The resistance value of each evaluation

factor was divided into five levels, which were assigned 1, 2, 3, 4, and 5, respectively. A higher

level means greater resistance to a certain expansion type. The expansion motion of the two

sources was performed in the resistance plane of the same evaluation system, but the resistance

values of the two resistance surfaces were opposite. As water and vegetation are essential indi-

cators of ecological values, the normalized vegetation index (NDVI) and the distance from

water bodies were analyzed using a classification matrix [57]. Soil erosion sensitivity accounted

for slope, vegetation coverage, soil type, and precipitation. Areas with strong ecological func-

tions such as nature reserve, forest parks, and basic farmland were given the high resistance to

built-up land expansion. The resistance scores of each evaluation factor are shown in Table 2.

In this study, the extremum method was used to form the ecological/built-up resistance sur-

face. The minimum values of the five resistance factors were used as the expansion resistance

of ecological land, and the maximum values were used as the expansion resistance of built-up

land.

Assessment of land suitability. The MCR model was used to find the minimum cumula-

tive resistance surface of two expansion type. This study assumes the change of land type as the

result of mutual competition between ecological land expansion and built-up land expansion.

To reflect the spatial demand competitive relationship between ecological land and built-up

land, the difference between the minimum cumulative resistance of ecological land expansion

and the minimum cumulative resistance of built-up land expansion was calculated in a GIS

environment. The formula is as follows:

MCRdiff ¼ MCRecolo � MCRbuilt

where MCRecolo and the MCRbuilt indicate the minimum cumulative resistance of ecological

land expansion and built-up land expansion, and the MCRdiff indicates the difference between

the two minimum cumulative resistances.

In Fig 7, Curve L and Curve P indicate the minimum cumulative resistance of ecological

land expansion and built-up land expansion, respectively. Positive MCRdiff in the A area

means that the expansion resistance of ecological land is greater than the expansion resistance

of built-up land while negative MCRdiff in the B area means the opposite. In other words, a

smaller MCRdiff suggests a more suitable area is for the expansion of ecological land and a

larger the MCRdiff suggests a more suitable area for the expansion of built-up land. Arranged

in ascending order of MCRdiff, the natural breaks (Jenks) classification method was used to

divide the negative MCRdiff into ten levels, i.e., 1 to 10 levels, representing a gradual decrease in

Urban growth simulation in different scenarios using the SLEUTH model
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the suitability of ecological land expansion. Similarly, the positive MCRdiff was divided into 10

levels, i.e., 11 to 20 levels, representing to a gradual increase in the suitability of built-up land

expansion. The minimum cumulative resistance surface of ecological land and built-up land

and minimum cumulative resistance difference surface can be found in S1 Fig.

Table 2. The evaluation system for resistance factors to ecological land and built-up land. [53].

Ecological value Resistance value of

ecological land

(Resistance value of built-up

land)

Distance from adjacent water

0~50 50~100 100~150 150~200 >200

NDVI 0.8~1.0 1 (5) 1 (5) 2 (4) 2 (4) 2 (4)

0.6~0.8 1 (5) 2 (4) 2 (4) 3 (3) 3 (3)

0.4~0.6 2 (4) 3 (3) 3 (3) 4 (2) 4 (2)

0.2~0.4 2 (4) 3 (3) 4 (2) 4 (2) 4 (2)

0~0.2 3 (3) 4 (2) 5 (1) 5 (1) 5 (1)

Resistance value of ecological land expansion 1 2 3 4 5

Resistance value of built-up land expansion 5 4 3 2 1

Topography Mountain - Hills - Plain

Soil erosion

sensitivity

Slope (degree) >25 15~25 8~15 3~8 0~3

Vegetation coverage (%) 80~100 60~80 40~60 20~40 0~20

Soil type Skeleton soil Alluvial soil, brown soil,

purple soil

Yellow cinnamon soil,

lime soil

- Paddy

soil

Precipitation (mm) 1000~1200 900~1000 <900 - -

Ecological function Nature reserve, forest

park

Basic farmland - - Others

Landscape type Forest, water Farmland, grassland Shrub Bare

land

Built-

up land

https://doi.org/10.1371/journal.pone.0224998.t002

Fig 7. Balance of minimum cumulative resistance between ecological land and built-up land. [57].

https://doi.org/10.1371/journal.pone.0224998.g007
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Model calibration and prediction

As the most important step in the SLEUTH modeling process [25], model calibration aims to

derive an optimal combination of the five coefficients. Using the earliest urban extent layer as

the seed layer, the optimal coefficient combination is used to effectively simulate the urban

growth during a historical period. Model calibration is implemented through a multi-stage,

automated, and sequential process using a forced Monte Carlo iterative method [60]. The cali-

bration process is divided into three phases: coarse calibration, fine calibration, and final cali-

bration. First, users determine the iteration interval and iteration step size of the coefficients in

the coarse calibration phase. Then each possible coefficient combination is tested for its ability

to reproduce the historical growth patterns that took place between the input data years [61].

In the fine calibration and final calibration phase, based on the coarse calibration results, the

range of the model coefficients and the iteration step size are sequentially reduced, and the

optimal coefficients values are finally identified.

In order to assess the degree of fitting between simulated urban growth and actual urban

growth, the model produces eight least-squares regression estimates for the calibration of each

coefficient combination, i.e. Compare, Population, Edges, Clusters, Lee Sallee, Slope, X-mean,

and Y-mean (descriptions given in Table 3) [26]. For each set of parameter combinations in

the Monte Carlo iteration, the model counts the measurements of the simulated urban extent

of the control year in its time series. The measurements of the simulated urban extent are com-

pared to the actual urban extent to produce multiple least squares regression measurements

[29]. Lee Sallee, the ratio of the intersection and the union of the simulated and actual urban

extent, is a measurement of spatial fit [62]. These statistics are calculated internally in the

model and output as log files. Despite a variety of methods for reducing the iteration interval,

none has been ever considered the most effective [16]. In this study, the optimal coefficient

combination of each calibration phase was selected by the Optimal SLEUTH Metric (OSM)

parameter. The OSM parameter (product of seven parameters of Compare, Population, Edges,

Clusters, Slope, X-mean, and Y-mean) developed by Dietzel and Clarke can provide reliable

calibration results for the SLEUTH model [6,12]. The calibration process of this study are

described as follows:

• Coarse calibration. The iteration range of coefficients was set from 0 to 100, the step size was

set at 25, and the number of the Monte Carlo iterations was set at 4. The results of the cali-

bration were sorted in ascending order of the OSM parameter, and the top three highest

scoring results were used to narrow the iteration interval.

Table 3. The parameters assessing the model calibration for the three scenarios. [63].

Parameter Description Scenario 1 Scenario 2 Scenario 3

Compare Modeled population for final year/actual population for final year 0.999 0.723 0.952

Population Least squares regression score for modeled urbanization compared to actual urbanization for the control years 0.997 0.999 0.997

Edges Least squares regression score for modeled urban edge count compared

to actual urban edge count for the control years

0.836 0.854 0.831

Cluster Least squares regression score for modeled urban clustering compared

to known urban clustering for the control years=2

0.996 0.999 0.992

Lee-Salle A shape index, a measure of spatial fit between the model’s growth and the known urban extent for the control years 0.349 0.431 0.380

Slope Least squares regression of average slope for modeled urbanized cells

compared to the average slope of known urban cells for the control years

0.957 0.933 0.947

X-mean Least squares regression of average x-values for modeled urbanized cells compared to average x-values of known

urban cells for the control years

0.993 0.998 0.998

Y-mean Least squares regression of average y-values for modeled urbanized cells compared to average y-values of known

urban cells for the control years

0.999 0.986 0.976

https://doi.org/10.1371/journal.pone.0224998.t003
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• Fine calibration. The iteration interval was set based on the coarse calibration result. The

step size was set at 5~15, and the number of the Monte Carlo iterations was set at 8. The

coarse calibration work was repeated to get a new narrower iteration interval.

• Final calibration. The final iteration interval was obtained from the fine calibration results.

The step size was set at 1~2, and the number of the Monte Carlo iterations was set at 12. The

coefficient combination with the highest OSM parameter was selected as the optimal coeffi-

cient combination.

Due to the self-modifying nature of the SLEUTH model, the initial coefficient combination

of the model is changed during the simulation process. Therefore, the optimal coefficient com-

bination for obtaining the final calibration was used as the starting and stopping values for the

iteration interval, and 100 Monte Carlo iterations were performed to obtain the optimal results

[15,29].

The calibration process resulted in the optimal coefficient combination for urban growth.

These optimal coefficient combinations were incorporated into the prediction module of the

model as initialization coefficients. In the model prediction phase, the 2015 urban built-up

land was used as the seed layer, the number of the Monte Carlo iterations was set at 100, and

the urbanization probability threshold was set at 50%~100%. Finally, the prediction module of

the SLEUTH model was used to predict urban growth from 2015 to 2040 in the three growth

scenarios.

Results

Model calibration

Using the historical data from 2000 to 2015, model calibration was separately performed for

the three scenarios, each of which had its own exclusion layer. The results of model calibration

for the three scenarios are given in Table 4, Table 5, and Table 6. The optimal coefficient com-

bination was 100, 75, 64, 39, and 73 for dispersion, breed, spread, slope, and road gravity in

Scenario 1, 98, 99, 100, 2, and 82 in Scenario 2, and was 99, 100, 100, 1, and 62 in Scenario 3.

Parameter values for the three phases of the calibration mode (coarse, fine, final) for each sce-

nario are presented in Tables 3–5, which lists the highest OSM value from thousands of model

calibration runs. The OSM parameter increased from 0.785 to 0.788 in Scenairo1, from 0.564

to 0.576 in Scenario 2, and from 0.710 to 0.716 in Scenario 3. Each round of calibration pro-

duced a higher SOM value, indicating that the model calibration was valid.

Table 4. Model calibration for the historical growth scenarios.

Historical growth scenarios

Model coefficient Coarse Fine Final Optimal coefficient combination

Number of iterations = 4 Number of iterations = 8 Number of iterations = 12

OSM parameter = 0.785 OSM parameter = 0.787 OSM parameter = 0.788

Range Step Range Step Range Step

Dispersion 0~100 25 75~100 5 95~100 1 100

Breed 0~100 25 75~100 5 75~80 1 75

Spread 0~100 25 50~100 10 50~60 2 64

Slope 0~100 25 25~50 5 45~50 1 39

Road gravity 0~100 25 50~100 10 60~90 6 73

https://doi.org/10.1371/journal.pone.0224998.t004
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A practicable way to assess the accuracy of the SLETUH model, as done in most of previous

studies, is examining whether the model can reproduce a similar urban extent of a historical

year. Table 3 shows the assessment of the model calibration for the three scenarios. The Com-

parison and Population parameters represent the similarity between the actual urban area and

the predicted urban area based on the final year. The values of the Compare parameter for Sce-

nario 1 and Scenario 3 reached 0.999 and 0.952 respectively, both higher than that for Scenario

2 (0.72). The values of the Population parameter were all above 0.99. The values of the Edges

parameter, indicating the correlation between the urban edge of the actual year and the urban

edge of the simulated year, were 0.83,0.85,0.83, and the values of the Clusters parameter were

all above 0.99 for the three scenarios, showing the capability of the model to simulate accu-

rately both the changes of urban shape and urban clusters. The values of the Lee-Salle parame-

ter were overall slightly low (ranging from 0.35 to 0.43) but acceptable (0.3 ~ 0.7). The values

of the X-mean parameter and Y-mean parameter were all above 0.97, showing the high corre-

lation between the urbanized cells location of the actual year and the urban of the simulated

year. The results of each parameters evaluation show that the calibration results have satisfac-

tory simulation effects in terms of the urban area, urban shape, urban cluster, urban location,

etc., which allows us to be confident in using the SLEUTH model to predict the urban extent

in the year of 2040.

Model prediction

Using the 2015 urban area as the seed layer, we used the SLEUTH model to predict Hefei’s

urban growth in 2040 in three different urban growth scenarios (Fig 8).

Table 5. Model calibration for the urban planning growth scenario.

Urban planning growth scenario

Model coefficient Coarse Fine Final Optimal coefficient combination

Number of iterations = 4 Number of iterations = 8 Number of iterations = 12

OSM parameter = 0.564 OSM parameter = 0.564 OSM parameter = 0.567

Range Step Range Step Range Step

Dispersion 0~100 25 75~100 5 95~100 1 98

Breed 0~100 25 75~100 5 95~100 1 99

Spread 0~100 25 75~100 5 95~100 1 100

Slope 0~100 25 25~50 5 1~10 2 2

Road gravity 0~100 25 50~100 10 70~85 3 82

https://doi.org/10.1371/journal.pone.0224998.t005

Table 6. Model calibration for the land suitability growth scenario.

Land suitability growth scenario

Model coefficient Coarse Fine Final Optimal coefficient combination

Number of iterations = 4 Number of iterations = 8 Number of iterations = 12

OSM parameter = 0.710 OSM parameter = 0.714 OSM parameter = 0.719

Range Step Range Step Range Step

Dispersion 0~100 25 75~100 5 95~100 1 99

Breed 0~100 25 75~100 5 95~100 1 100

Spread 0~100 25 75~100 5 95~100 1 100

Slope 0~100 25 0~25 5 1~10 2 1

Road gravity 0~100 25 25~100 15 20~30 2 62

https://doi.org/10.1371/journal.pone.0224998.t006
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In the historical growth scenario (Fig 8A), the urban built-up land area in 2040 would

increase to 1434 km2 and gain 748 km2 newly added built-up land compared with 2015, with

an average annual urban growth rate of 3.12%. Such an increase would be at the expense of

other types of land, e.g., farmland decreased by 13.89%, forest land decreased by 4.32%, and

grassland decreased by 15.67% (Table 7). In this scenario, the exclusion layer only set water as

non-urbanizable areas, with few restrictions on urban growth. The urban growth would be

based entirely on the trends of historical growth. The urban boundary expansion would be

obvious, and the expansion distance would be uniform. Newly added urban built-up land of

Fig 8. Urban built-up area predicted for three scenarios in 2040. (a) Scenario 1, the historical growth scenario; (b)

Scenario 2, the urban planning growth scenario; (c) Scenario 3, the land suitability growth scenario.

https://doi.org/10.1371/journal.pone.0224998.g008

Table 7. Urban built-up land area predicted for 2040 in the three scenarios and the source of the newly added urban built-up land.

Scenarios Urban built-up land

(km2)

Average annual urban

growth rate (%)

Obtained by occupying

farmland (km2)

Obtained by occupying

forestland (km2)

Obtained by occupying

grassland (km2)

Scenario

1

1434 3.12 567.457 (13.89%) 4.572 (4.32%) 10.192 (15.67%)

Scenario

2

1190 2.32 355.327 (8.70%) 3.146 (2.98%) 6.901 (10.61%)

Scenario

3

1217 2.41 388.141 (9.49%) 2.415 (2.28%) 7.581 (11.65%)

Note: The percentages indicate the contributions of each source to newly added built-up land. The average annual urban growth rate R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2040=S2015

24
p

� 1, where S2015

and S2040 represent the urban built-up land area of 2015 and 2040, respectively.

https://doi.org/10.1371/journal.pone.0224998.t007
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large areas would occur along major traffic roads while much newly added urban built-up land

of small areas would be scattered non-water areas.

In the urban planning growth scenario (Fig 8B), by 2040, the urban built-up area would

increase to 1190 km2, an increase of 504 km2 over 2015, with an average annual urban growth

rate of 2.32%. Compared with the prediction from Scenario 1, it is clear that less farmland, for-

est, and grassland would be lost. According to Hefei’s 2006–2020 general land use planning

map, 46.05% of the newly added urban built-up land would be from the LPC and LCPC.

Newly added urban built-up land would be concentrated in the hot spots for urban develop-

ment Feidong Economic Development Area (east of the main urban area), the Shushan Eco-

nomic Development Area (west of the main urban area), and the Hefei Economic and

Technological Development Area (south of the main urban area).

In the land suitability growth scenario (Fig 8C), the urban built-up land area in 2040 would

be 1217 km2—there would be 531 km2 of newly added urban built-up land with an average

annual urban growth rate of 2.41%. The contributions of farmland, forestland, and grassland

to the newly added urban built-up land in Scenario 3 are quite similar to those in Scenario 2.

Due to the limitation of ecological suitability, the marginal expansion of urban would be not

uniform. As far as the main urban area is concerned, the eastern and northeastern borders

would be more vigorously expanded. The impact of the road network on urban growth would

be significant but, unlike Scenario 1, the growth along the road network in this scenario would

occur mostly in the suburbs of Hefei.

Discussion

Optimal coefficient combination

The optimal coefficient combination reveals the historical expansion patterns and constraints

of the urban area and determines how the future urban growth would expand [13]. In previous

research, the optimal coefficient combination from a simple exclusion layer, like Scenario 1, is

often used by other complex scenarios [15,46]. In this case, the simulation from complex sce-

narios may be underestimated [64]. Thus, the three exclusion layers in this study were sepa-

rately calibrated and predicted. The calibration results show that the optimal coefficient

combination varies with different the scenario. In other words, model calibration is sensitive

to the exclusion layer.

Between 2000 and 2015, Hefei accelerated the revival of existing townships and construc-

tion of new ones. This explains why the values of the Dispersion coefficients were high for all

scenarios (Tables 3–5). According to the urban development strategy of Hefei, four urban

groups were gradually formed in the east, north, west, and southwest of the main urban area of

Hefei. This urban spatial structure was evident in the urban extent layer of the year 2010 (Fig

3C). The high values of the Breed coefficient reflect the new growth center growth as the main

way of urban growth. Scenario 1 did not limit the expansion of the urban edge. The urban

margins of Scenario 2 and Scenario 3, however, were set to different urbanization exclusion

probabilities. Edge growth was greatly limited. Thus, the SLEUTH model countered the limita-

tions of the exclusion layer on historical expansion trends in Scenario 2 and Scenario 3 by sig-

nificantly increasing the Spread coefficient. Similarly, the Slope coefficient in Scenario 2 and

Scenario 3 had dropped to a very low level to increase the probability of urbanization. The

Slope coefficient of the three scenarios was relatively low, which shows that urban extent tends

to grow in flat areas, and terrain is not a major obstacle to urban growth. The high values of

the Road Gravity coefficient in the three scenarios implied the strong attraction of transporta-

tion to urban growth.
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Impact of exclusion layer on prediction

As shown in Table 7 and Fig 8, the exclusion layer has a significant impact on the rate and spa-

tial structure of urban growth. The speed of urban simulation growth under the three scenarios

is lower than the historical expansion speed. In particular, the expansion of urban built-up

land in Scenario 2 and Scenario 3 would be regulated, and farmland, forestland, and grassland

would be overall protected. In terms of urban spatial pattern, the urban area predicted from

Scenario 1 would be clearly not ideal, because the impact of spontaneous growth and road net-

work on urban growth would be overestimated. Unconstrained exclusion layers in some cases

may lead to unreasonable predictions from the SLEUTH model.

Nevertheless, the exclusion layers of Scenario 2 and Scenario 3 would direct urban growth

from the perspective of urban planning and land suitability. Scenario 2 would clearly illustrate

the hot spots of future urban development, such as the southwest, north, and east parts of the

main urban area. To some extent, we think that Scenario 2 agrees with planning policies of

urban growth. Although the optimal coefficient combination of Scenario 2 and Scenario 3

were not remarkably different, the prediction was contrasting due to the different exclusion

layers. Urban growth in Scenario 2 would be limited to areas of high suitability for built-up

land. In the MCR-based land suitability assessment, the spatial distance is regarded as an

important factor for the expansion of the source. The closer to the built-up land source, the

higher the suitability of the built-up land expansion. Therefore, the edge growth of Scenario 3

would be obvious, and the spatial structure of urban growth would also be closer.

In previous researches, the setting of the exclusion layer was relatively simplified as they

usually assigned a few different exclusion probabilities. Examples include the simulation of

Busan in South Korea where the exclusion probabilities for the three levels were 100% for a

greenbelt and 75%, and 0% for two levels of legal conservation areas, respectively [48], and a

study of Shanghai in China where the exclusion probability was divided into three levels, 100%

for water areas and wetlands, 80% for farmlands, and 60% for grassland [65]. By dividing the

MCR-based land suitability assessment map into 20 grades in our study, the exclusion proba-

bility was however continuously changed, from 0% to 100%, and the exclusion layer that we

generated for Scenario 3 would better characterize the suitability of land for urbanization. The

land suitability urban growth would avoid the scattered distribution of small-area built-up

land as well as excessive protection of farmland ecological land.

Limitations

Using a decreased data resolution (60 m) facilitate data processing, but it might lower the accu-

racy of urban growth prediction. Although urban planning was incorporated into the exclu-

sion layer for Scenario 2 to represent the role of governmental policies in urban growth, it did

not consider may other socioeconomic factors, e.g., population, agricultural land value and

industrialization [66,67]. As such, adding more urban growth drivers to the SLEUTH model

can be a direction for future work.

Conclusions

Using the SLEUTH model, we predicted the expansion of urban built-up land in Hefei from

2015 to 2040 in three different urban growth scenarios, each of which had its own exclusion

layer and optimal coefficient combination. Results of each scenario were compared and ana-

lyzed. The main findings and conclusions are summarized as follows:

• Compared with the other two scenarios, the historical growth scenario produces an

improper urban built-up land distribution, the highest urban growth rate, and the highest
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loss of farmland, forestland, and grassland. It suggests that exclusion layers without effective

restrictions may result in unreasonable urban growth predictions.

• Despite a medium urban growth rate, the urban planning growth scenario would occupy the

least amount of other land. Based on the general land use map, the urban growth prediction

took the governmental policies into account and could reveal the development hotspots in

urban planning.

• The land suitability scenario prediction was the result of the trade-off between ecological

land and built-up land as it used the MCR-based land suitability assessment result. This sce-

nario predicts the lowest urban growth rate and a medium loss of farmland, forestland, and

grassland. It would help to form a compact urban space and avoid excessive protection of

farmland and ecological land.

In summary, the urban built-up land in Hefei remains in a rapid growth stage in the next

two decades. The expansion of built-up land would be at the expense of main farmland, and to

a lesser extent, of ecological land. Coordinating the contradiction between urban growth and

the protection of farmland and ecological land would be the key to sustainable urban develop-

ment in Hefei. At the same time, the planning of urban space should be given importance.

Findings of this study provide useful insights into the characteristics of urban development

and formulating urban development plans.

Supporting information

S1 Fig. Results of the minimum cumulative resistance evaluation. (a) Minimum cumulative

resistance surface of ecological land; (b) Minimum cumulative resistance surface of built-up

land; (c) Minimum cumulative resistance difference surface.

(TIF)
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