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Abstract

Objective

Although high intensity physical activities may represent a great proportion of the total

energy expenditure in active people, only sparse studies have investigated the accuracy of

wearable monitors to assess activity related energy expenditure (AEE) during high intensity

exercises. Therefore, the purpose of the present study was to investigate the accuracy of

the Actiheart, a light portable monitor estimating AEE based on heart rate (HR) and activity

counts (ACT), during two popular activities (running and cycling) performed at high intensi-

ties. The benefit of an individual calibration of the HR-AEE relationship established during a

preliminary maximal test was also evaluated.

Methods

AEE was estimated in eighteen active adults (4 women and 14 men; 25 ± 4 yr) with indirect

calorimetry using a respiratory gas analysis system (reference method) and the Actiheart

during 5-min running and cycling at 60, 75 and 85% of maximal oxygen uptake (VO2max)

previously determined during a maximal test performed on a treadmill or cycle ergometer.

For the Actiheart, AEE was estimated either using the group or individual calibrated equa-

tions available in the dedicated software, and their respective HR, ACT or combined HR/

ACT algorithms.

Results

When the HR algorithm was used for cycling and the HR or HR/ACT algorithms for running,

AEE measured by the Actiheart increased proportionally to exercise intensity from 60 to

85% VO2max (P<0.001). Compared to indirect calorimetry, the Actiheart group calibrated

equations slightly to moderately underestimated (3 to 20%) AEE for the three exercise inten-

sities (P<0.001). Accuracy of AEE estimation was greatly improved by individual calibration

of the HR-AEE relationship (underestimation below 5% and intraclass correlation coefficient

[ICC]: 0.79–0.93) compared to group calibration (ICC: 0.64–0.79).
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Conclusion

The Actiheart enables to assess AEE during high intensity running and cycling when the

appropriate algorithm is applied. Since an underestimation was present for group calibra-

tion, an individual and sport-specific calibration should be performed when a high accuracy

is required.

Introduction

Quantifying precisely the activity related energy expenditure (AEE) is necessary to check the

adequacy with physical activity recommendations in the general population and is crucial for

athletes in whom AEE represents up to 70% of total energy expenditure [1]. Currently, the

gold standard to assess AEE is indirect calorimetry (IC) which quantifies AEE by measuring

the oxygen consumed (VO2) and the carbon dioxide released (VCO2). The method is however

impractical in the field, and even the portable IC devices are cumbersome and restrict the

mobility [2]. Accurate portable methods, more applicable to field conditions, would thus

enable determining more precisely athletes’ training volume and ensure that the dietary intake

covers the actual energy expenditure.

Several light wearable monitors have been developed which record and convert accelera-

tions and/or heart rate (HR) to AEE based on proprietary algorithms. Monitors integrating

accelerometers counts body movements in one or three axes and can provide valid estimation

of AEE during activities mainly composed of level ambulation [3]. They have however a lim-

ited ability to assess AEE during most sport activities, particularly at higher intensities [2,4–7].

HR is known to increase linearly with VO2 during moderate to high intensity activities [8]

and may be used to predict associated energy expenditure [9]. AEE and the slope of the rela-

tionship between the increase in HR and AEE depends on exercise type and factors such as fit-

ness level, work efficiency, age, sex, height, weight, body composition and hormonal status

[10–12]. Group calibrated equations, available in most wearable monitors, integrates factors

such as subject’s age, sex, height and weight but not most of the other parameters influencing

AEE [13,14]. Therefore, an individualized calibration is recommended to improve the accu-

racy of AEE prediction at the individual level [15], and may be performed in some research-

grade devices (i.e. Actiheart).

Previous studies have suggested that the combination of HR and activity (movement

counts) monitoring may overcome the limitations of each technique used separately [16–21].

Nowadays, some miniaturized consumer devices and research-grade devices (i.e. Actiheart)

record simultaneous HR and activity to quantify AEE. Even though consumer devices are

more affordable, and some of them provide reasonably good estimates of energy expenditure,

their proprietary algorithms are generally unknown and their accuracy is considered as insuffi-

cient to be used for precise guidance on training volume and energy balance [14,22]. Amongst

the research-grade devices, the Actiheart (AH) has been shown to be superior to consumer

devices to quantify energy expenditure during daily activities, during walking and moderate

intensity running and cycling [13,22]. The AH is a compact and light chest-worn device that

combines recording of HR and accelerations at a high resolution. A dedicated software allows

to extract and analyze the HR and accelerations data and uses them concomitantly or sepa-

rately to calculate energy expenditure. The AH has previously been validated against doubly

labeled water and IC during low to moderate intensity activities [20,22–25]. Surprisingly,

while higher intensity activities may represent a great proportion of the total AEE in active
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people, only sparse studies have investigated the validity of the AH during higher intensity

running exercises [26,27]. In addition, although cycling is frequently practiced by recreational

and high-level athletes, to our knowledge, no study has analyzed the accuracy of the AH to esti-

mate AEE during higher intensity cycling exercises.

Therefore, the aim of the present study is to investigate the accuracy of the AH during

cycling and running exercises ranging from 60 to 85% of VO2max in recreational athletes and

to evaluate the benefit of an individual calibration of the HR-AEE relationship using a maxi-

mal incremental test. We hypothesized that the combination of HR and activity counts record-

ing would enable AEE estimation during both high intensity running and cycling exercises,

and that individual calibration would improve accuracy at the individual level.

Materials and methods

Participants

Twenty healthy subjects took part in the study. Poor HR signal has generated unreadable HR

data in two subjects. Finally, data of eighteen subjects (four women and fourteen men; age:

25 ± 4 yr; height: 1.77 ± 0.10 m; mass: 70.9 ± 11.7 kg) were analyzed. To take part in the study

subjects had to be between 18 and 40 years old, be in good health, be free of any contraindica-

tion to the practice of sport and have a sufficient fitness level to run and cycle at high intensi-

ties. The experimental protocol was approved by the Hospital-Faculty Ethics Committee of

Erasme-ULB (approval P2018/093). Prior to their participation, all volunteers received oral

and written information regarding the nature and purpose of the study and signed an

informed consent form. All the subjects were staff members or students at the faculty of Motor

Sciences (Université libre de Bruxelles, ULB). To estimate their activity level, we ask them

which sport(s) they practice and how many times a week. They reported to get involved three

to six times a week in various sport activities (running, cycling, football, basketball, rugby,

gymnastics and aerobics classes).

Protocol

All the subjects took part in four experimental sessions spaced by 72 h to one week and con-

ducted for each subject at about the same time in the morning or the afternoon. Two sessions

were dedicated to the maximal incremental running and cycling tests (sessions 1 and 3; Fig 1)

performed respectively on a treadmill (Pulsar 3p; h/p/Cosmos, Nussdorf, Germany) or a cycle

ergometer (Ergoselect II 1200; Ergoline, Bitz, Germany). During the two other sessions, sub-

jects ran or cycled during 5-min stages at three intensities (sessions 2 and 4; Fig 1). The ergom-

eter used for the maximal test during the first session was drawn by lot. During the second

session, subjects performed the 5-min stages on the same ergometer. Session three and four

were dedicated respectively to the maximal test and 5-min stages on the second ergometer

(Fig 1). Subjects were asked not to take part in any sport activity within the 24 h prior to the

experimental sessions and to refrain from food and caffeine intake within the 3 h before the

experiment.

Sleeping HR

Since sleeping HR varies from subject to subject and is lower in fit subjects [9,10], the group

calibrated HR algorithm of the AH (see below for further details) integrates the HR above

sleeping HR (HRaS), instead of raw HR, to reduce the error due to intersubject variance in the

HR–AEE relationship in the calculation of AEE [9]. Since we were not able to measure sleep-

ing HR directly, it was estimated from the lying HR using the following equation: 0.83�lying

High intensity exercise energy expenditure assessment using a heart rate and activity sensor
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HR [18,23,24,28]. Lying HR was measured at the beginning of the first session (Fig 1). To that

aim subjects had to lie down, eyes closed, during 10 min in a quiet place while their HR was

measured using the AH and the average HR from minute 5 to 9 was then calculated [28].

Maximal incremental tests

After a familiarization with the procedures, subjects performed an incremental maximal test

on the treadmill or cycle ergometer (Fig 1). The maximal cycling test started at a workload of

30 W for women and 60 W for men, and was increased by 20 W (women) or 30 W (men)

every minute until volitional exhaustion, i.e. the moment the subject could not maintain a ped-

aling cadence of 60 rpm. During the maximal running test, subjects started with a 3-min

warm-up at a speed of 7 km.h-1 for women and between 7 and 9 km.h-1 for men depending on

their preference. Thereafter, speed was increased every minute by 1 km.h-1 until the subject

was unable to maintain the imposed running speed. To compensate the lack of air resistance,

the inclination of the treadmill was set at 1% [29]. During both tests, subjects were wearing a

facial mask connected to the HypAir Professional respiratory gas analysis system (Medisoft,

Dinant, Belgium) to measure breath by breath VO2 and VCO2. HR was measured continu-

ously by a cardio frequency meter (Polar H1, Kempele, Finland) and transferred to the Medi-

soft software installed on the PC using a Heart Rate Monitor Interface (HRMI, SparkFun

Electronics, Niwot, Colorado, USA). Before each test, the system was calibrated with room air

and standardized gas mixture (16% O2 and 4% CO2) and calibrated for volume. For each

or

Maximal test Lying HR  

• Sleeping HR for AH
• VO2 max 
• 5-min stages intensity  
• Individual Calibration

5-min stages 

60%

75%
85%

ergometer 1 ergometer 1
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Maximal test 
ergometer 2

5-min stages 

60%

75%
85%

ergometer 2

Session 1 Session 2 Session 3 Session 4

 
Group models 
(AH2007 and AH2005)

 

• Indirect calorimetry 
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1 and 3
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2 and 4

   
      - Combined HR/ACT
      - HR 
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      - HR 
     

Individual model 
(AH2005IND)

Calibrations

Fig 1. Experimental protocol. All subjects took part in four experimental sessions. Sessions 1 and 3 were dedicated to the recording of lying heart rate

(HR) and maximal test on a treadmill or cycle ergometer in a randomized order. Lying HR was used to set sleeping HR in the AH software. Maximal

tests allowed to determine: VO2max, intensities for the 5-min stages and individual calibration of the HR-AEE relationship for the AH. During sessions

2 and 4, subjects performed 5-min stages at 60, 75, 85% VO2max, while HR and activity counts (ACT) were recorded by the AH and gas exchange by

indirect calorimetry. Before and between the stages, subjects walked at 3.5 km.h-1 or cycled at 60 W. AEE was then calculated offline using the Weir

equation for indirect calorimetry, and the group calibrated models (AH2005 and AH2007) or the individually calibrated model (AH2005IND) and their

respective algorithms (ACT, HR, combined HR/ACT) for the AH.

https://doi.org/10.1371/journal.pone.0224948.g001
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subject, data recorded during the maximal tests were used to determine VO2max, maximal

HR, workloads/speeds for each 5-min stage and individual calibration of the AH.

Five-minute stages

During the sessions dedicated to the 5-min stages, subjects were requested to run or cycle at

intensities corresponding to 60, 75 and 85% of their VO2max determined during the maximal

test on the same ergometer (Fig 1). They were wearing the facial mask connected to the respi-

ratory gas analysis system and the AH during all exercises. Before the first stage, subjects

walked at 3.5 km.h-1 or cycled at 60 W during 5 min to verify the stability of the recordings,

then the speed/load was increased to 60, 75 and 85% VO2max. Between the stages, the intensity

was lowered to 3.5 km.h-1 or 60 W for one minute to allow a short recovery and a clear distinc-

tion between stages to facilitate further analysis.

Energy expenditure assessment

AEE was quantified during running and cycling using indirect calorimetry (IC) and the 4th

version of the AH device (CamNtech limited, Cambridge, UK). To allow a stabilization of gas

exchange, the 2 last minutes of each 5-min running and cycling stage were analyzed [6].

IC was used as the reference method to quantify energy expenditure during the efforts.

Firstly, VO2 and CO2 were measured using the respiratory gas analysis system described

above. The total energy expenditure (TEE) was then calculated using the Weir equation [30]:

TEE ðkcal:min� 1Þ ¼ 3;9�VO2 ðL:min� 1Þ þ 1;1�VCO2 ðL:min� 1Þ

To determine AEE, resting energy expenditure (estimated by the AH software using the

Schofield equation [31]) was calculated for each subject (based on sex, age and weight) and

subtracted from the TEE.

For each subject, age, sex, weight, height and sleeping heart rate were entered in the AH

software and the AH was set-up for short term recording (using a 15-s recording epoch). It

was thereafter placed on subject chest, according to manufacturer’s instructions, using two

adhesive ECG electrodes. Shortly, one extremity of the device was placed just below the apex

of the sternum and the other at the V4 or V5 position. It recorded HR data and uniaxial accel-

erations, converted into activity counts (ACT), during the 5-min stages.

Actiheart data analysis

At the end of the four 5-min stages, HR data and activity counts (ACT) recorded by the accel-

erometer were downloaded from the device and analyzed offline using the manufacturer soft-

ware (version 4.0.11) to estimate AEE. By default, the software proposes different versions of

group calibrated models that use HR or ACT algorithms proposed by Brage et al. [20,32]. In

addition to HRaS and ACT data, subject’s sex, considered as an important predictor of AEE

[10,11], is included as a variable in those algorithms. The user can choose to use either the HR

or ACT algorithm separately or a branched equation [19] that enables to combine them (HR/

ACT algorithm). When the branched equation is selected, the relative contribution of ACT

and HR algorithms to the calculation of AEE is weighted according to specific ACT and HR

thresholds: when both ACT and HR values are low, ACT algorithm has more weight, whereas

when ACT and HR values are high, HR algorithm is the predominant contributor to AEE esti-

mation [19,23]. If preferred to the default group calibrated models, an individual calibration of

the HR-AEE relationship can be performed, using either the step test built in the software or

another exercise test.

High intensity exercise energy expenditure assessment using a heart rate and activity sensor
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In the present study, we used the two main group calibrated models available for adults in

the AH software: the original version presented by Brage et al. in 2005 [20] (AH2005; termed

“Group ACT/Group HR (old)” in the AH software) and the latest version adapted by Brage

et al. in 2007 [32] (AH2007; termed “Group Cal JAP2007” in the AH software). Each model uses

its own HR and ACT algorithms and a common branched equation described in the AH user

manual. The AH2007 model is currently recommended by the manufacturer. We therefore

wanted to test if it really improves AEE estimation during running and cycling compared to

AH2005. To assess the additional benefit of an individual calibration of the HR-AEE relation-

ship, we used the relation established between AEE and HR data collected during the last 10 s

of each stage of the maximal cycling and running tests. Since individual calibration is only pos-

sible with AH2005, the individually calibrated model (AH2005IND; termed “Group ACT/Ind HR
(old)” in the AH software) shares the group-calibrated ACT algorithm of AH2005 but the HR

algorithm uses the individual HR-AEE relationship determined during the maximal incre-

mental tests.

Statistical analysis

The normality of the data was firstly controlled using a Shapiro-Wilk normality test. A two-

factor (AEE estimation method x exercise intensity) ANOVA with repeated measures was

used to analyze the AEE measured using IC and the different AH models during running and

cycling exercises performed at 60, 75 and 85% VO2max. When a significant main effect was

found, a Bonferroni’s post hoc test was used to compare selected data points. More specifically,

for each exercise intensity, the AEE estimated by each of the AH models (AH2007, AH2005 and

AH2005IND), using the combined HR/ACT, HR or ACT algorithm, was compared to IC. The

sensitivity of the AH to increases in exercise intensity was analyzed by comparing the AEE

between successive stages.

For each exercise intensity, a Bland-Altman analysis was performed to calculate the mean

bias and the 95% limits of agreement (LoA) between AEE measured by IC and the different

AH models and algorithms. The strength of the agreement was assessed by intraclass correla-

tion coefficient (ICC) estimates, and their 95% confidence intervals, calculated using a two-

way mixed-effects model, single-measurement and absolute-agreement [33]. Based on the 95%

confidence interval of the ICC, values less than 0.5, between 0.5 and 0.75, between 0.75 and

0.9, and greater than 0.90 indicate respectively poor, moderate, good, and excellent agreement

[33]. Analyses were performed using GraphPad Prism software version 6 (La Jolla, California,

USA) and MedCalc statistical software Version 18.11.3 (Ostend, Belgium). For all compari-

sons, the statistical level of significance was set at 0.05.

Results

Participants performance characteristics during the maximal running and cycling tests, as well

as during the last 2 min of the 5-min stages at 60, 75 and 85% VO2max, are reported in

Table 1.

The ANOVA for AEE during the running and cycling exercises of different intensities

revealed a main effect for the method, exercise intensity, and an interaction between method

and exercise intensity (P<0.001). The analysis of AEE estimated by the AH during stages of

increasing intensity, revealed that group and individually calibrated models are sensitive to

changes in exercise intensity (Fig 2). Indeed, during the running exercise, regardless of the

algorithm, AEE estimated by the AH increased significantly, and proportionally to the increase

in exercise intensity, from 60 to 75% VO2max and from 75 to 85% VO2max (post-tests P-val-

ues<0.01). This was also true for the cycling exercise when HR/ACT and HR algorithms were

High intensity exercise energy expenditure assessment using a heart rate and activity sensor
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used (P-values <0.001). However, for the ACT algorithm, AEE increased only very slightly

from 60 to 85% VO2max (P-values <0.01).

For the running exercise, when HR/ACT or HR algorithm was used, post hoc tests showed

a significant difference between AEE estimated by IC and by the AH group calibrated models

for all exercise intensities (P-values <0.001; Fig 2A and 2B). Similarly, the ACT algorithm

underestimated AEE (P-values <0.001), except for AH2007 at 60% VO2max (P = 0.83, Fig 2C).

Individual calibration (AH2005IND) improved AEE estimation for both HR/ACT and HR

algorithms. There was indeed no more significant difference with IC for 75 and 85% VO2max

(P-values range: 0.06–0.99) and a very slight difference for 60% VO2max (P-values <0.01; Fig

2A and 2B, and bias in Table 2).

Table 1. Participants performance characteristics during the maximal tests and 5-min stages.

Running Cycling

VO2max (ml.kg-1.min-1) 51.4 [6.6] 46.4 [7.9]

HR max (bpm) 192 [8] 185 [7]

Maximal speed (km.h-1) or load (W) 16.0 [1.7] 266 [60]

Speed (km.h-1) or load (W) at

60% VO2max 9.4 [1.5] 142 [41]

75% VO2max 11.4 [1.5] 177 [44]

85% VO2max 13.3 [1.5] 209 [49]

Mean values and [SD]. Abbreviations: HR, heart rate; VO2max, maximal oxygen uptake.

https://doi.org/10.1371/journal.pone.0224948.t001

Fig 2. Activity related energy expenditure (AEE) during running and cycling measured by indirect calorimetry (IC) and the different Actiheart

models (AH2007, AH2005, AH2005IND) and the activity counts (ACT), heart rate (HR) or combined HR/ACT algorithms. For the HR/ACT and HR

algorithms, AEE estimated by the Actiheart increased significantly from 60 to 85% VO2max during running and cycling (P <0.01). For the ACT

algorithm, AEE also increased with intensity increments during running (P<0.01), but only very slightly and not proportionally to intensity during

cycling. �P<0.05 between AEE measured by the Actiheart and indirect calorimetry.

https://doi.org/10.1371/journal.pone.0224948.g002
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For the cycling exercise, when the HR/ACT or ACT algorithm was used, all group and indi-

vidually calibrated models underestimated AEE as compared to IC (P-values <0.01; Fig 2D

and 2F). This underestimation was much more pronounced for the ACT algorithm (Fig 2F).

Conversely, the HR algorithm improved AEE estimation. Indeed, the underestimation of AEE

measured by AH2005 (P-values <0.001) was reduced for all intensities (Fig 2E, and bias in

Table 2). For AH2007, AEE was similar to IC for most intensities (P-values range: 0.06–0.27),

except 85% VO2max where a slight underestimation was still present (P<0.05). Following

individual calibration (AH2005IND), AEE estimated by the AH was still underestimated for the

HR/ACT algorithm (P-values <0.01; Fig 2D), but was equal to IC for all intensities when the

HR algorithm was applied (P-values range: 0.22–0.99; Fig 2E).

ICCs and bias are presented in Table 2. During both running and cycling, the mean bias

increased with the intensity of exercise for the group calibrated models (AH2005 and AH2007),

but not for the individually calibrated model (AH2005IND; Table 2). When comparing the two

Table 2. Agreement between activity related energy expenditure measured by the Actiheart and indirect calorimetry quantified by ICC estimates (left panel) and

bias (right panel).

ICC and 95% confidence interval Mean bias [SD] and 95% LoA (kcal.min-1)

AH2007 AH2005 AH2005IND AH2007 AH2005 AH2005IND

Running

HR/ACT

60% VO2max 0.78 (0.32, 0.92) 0.65 (-0.07, 0.89) 0.92 (0.77, 0.97) -1.2 [1.5] (-4.0, 1.7) -2.1 [1.6] (-5.3, 1.0) -0.5 [1.0] (-2.5, 1.6)

75% VO2max 0.79 (0.17, 0.93) 0.68 (-0.08, 0.91) 0.93 (0.81, 0.97) -1.5 [1.5] (-4.4, 1.4) -2.3 [1.3] (-4.9, 0.2) 0.0 [1.2] (-2.3, 2.3)

85% VO2max 0.76 (-0.06, 0.94) 0.63 (-0.05, 0.90) 0.93 (0.83, 0.97) -2.3 [1.4] (-5.1, 0.5) -3.3 [1.2] (-5.6, -0.9) -0.4 [1.2] (-2.8, 2.0)

HR

60% VO2max 0.74 (0.24, 0.91) 0.64 (-0.08, 0.89) 0.92 (0.77, 0.97) -1.4 [1.6] (-4.6, 1.9) -2.1 [1.4] (-5.0, 0.7) -0.5 [1.0] (-2.4, 1.4)

75% VO2max 0.79 (0.21, 0.93) 0.68 (-0.08, 0.92) 0.92 (0.80, 0.97) -1.5 [1.6] (-4.5, 1.8) -2.4 [1.3] (-4.9, 0.1) 0.2 [1.2] (-2.2, 2.6)

85% VO2max 0.77 (-0.03, 0.94) 0.64 (-0.06, 0.91) 0.93 (0.82, 0.97) -2.2 [1.5] (-5.2, 0.8) -3.2 [1.2] (-5.5, -0.8) 0.0 [1.3] (-2.6, 2.6)

ACT

60% VO2max 0.81 (0.55, 0.92) 0.81 (0.55, 0.93) - - - - - - -0.2 [1.7] (-3.4, 3.1) -0.7 [1.5] (-3.7, 2.3) - - - - - -

75% VO2max 0.72 (0.10, 0.91) 0.66 (-0.09, 0.90) - - - - - - -1.6 [1.6] (-4.7, 1.5) -2.3 [1.5] (-5.2, 0.5) - - - - - -

85% VO2max 0.53 (-0.21, 0.92) 0.45 (-0.15, 0.90) - - - - - - -3.3 [1.8] (-6.8, 0.3) -4.1 [1.7] (-7.5, -0.7) - - - - - -

Cycling

HR/ACT

60% VO2max 0.51 (0.04, 0.79) 0.47 (-0.09, 0.79) 0.51 (-0.06, 0.81) -1.9 [2.6] (-6.9, 3.1) -2.5 [2.1] (-6.6, 1.7) -2.2 [2.1] (-6.2, 1.9)

75% VO2max 0.64 (0.17, 0.86) 0.55 (-0.07, 0.84) 0.63 (0.12, 0.85) -1.5 [2.1] (-5.7, 2.6) -2.2 [1.9] (-5.8, 1.4) -1.3 [2.0] (-5.2, 2.7)

85% VO2max 0.63 (0.03, 0.87) 0.52 (-0.10, 0.83) 0.86 (0.56, 0.95) -2.1 [2.1] (-6.3, 2.1) -2.8 [2.0] (-6.7, 1.1) -0.9 [1.3] (-3.4, 1.7)

HR

60% VO2max 0.73 (0.41, 0.89) 0.68 (0.30, 0.87) 0.79 (0.52, 0.91) -0.3 [2.0] (-4.2, 3.6) -1.0 [1.8] (-4.5, 2.5) -0.5 [1.5] (-3.4, 2.4)

75% VO2max 0.70 (0.37, 0.88) 0.66 (0.25, 0.86) 0.81 (0.57, 0.93) -0.4 [2.3] (-4.9, 4.1) -1.2 [2.0] (-5.2, 2.8) 0.2 [1.6] (-3.0, 3.3)

85% VO2max 0.73 (0.41, 0.89) 0.64 (0.12, 0.87) 0.88 (0.72, 0.95) -0.9 [2.3] (-5.5, 3.7) -1.8 [2.1] (-5.9, 2.4) 0.3 [1.4] (-2.4, 3.1)

ACT

60% VO2max 0.02 (-0.02, 0.12) 0.04 (-0.02, 0.18) - - - - - - -8.5 [1.9] (-12.3, -4.7) -8.6 [1.7] (-11.9, -5.3) - - - - - -

75% VO2max 0.02 (-0.01, 0.11) 0.03 (-0.01, 0.16) - - - - - - -10.5 [2.1] (-14.5, -6.5) -10.5 [1.8] (-14.0, -7.0) - - - - - -

85% VO2max 0.03 (-0.01, 0.14) 0.03 (-0.01, 0.17) - - - - - - -11.8 [2.2] (-16.0, -7.5) -11.8 [2.0] (-15.6, -7.9) - - - - - -

Abbreviations: ICC, intraclass correlation coefficient; LoA, limits of agreement; AH, Actiheart; AH2005, original group calibrated model termed “Group ACT/Group HR

(old)” in the Actiheart software; AH2007; latest group calibrated model termed “Group Cal JAP2007” in the Actiheart software; AH2005IND, individually calibrated

model termed “Group ACT/Ind HR (old)” in the Actiheart software; HR/ACT, HR and ACT, algorithm using respectively combined heart rate and activity data, only

heart rate data and only activity data.

https://doi.org/10.1371/journal.pone.0224948.t002
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group calibrated models, except for the ACT algorithm during cycling, ICCs estimates and

mean bias indicated a higher agreement with IC for AH2007 compared to AH2005 for all intensi-

ties. In contrast, the 95% LoA of bias were generally slightly larger for AH2007 (Table 2).

For all intensities of the running exercise, whatever the model, ICCs, bias and 95% LoA

were similar for the HR/ACT and HR algorithms. When the ACT algorithm was used, ICCs

and bias of the two group calibrated models indicated a better agreement with IC for 60%

VO2max, a similar agreement for 75% and a lower agreement for 85% VO2max compared to

the HR/ACT and HR algorithms (Table 2). For the cycling exercise, ICCs, bias and 95% LoA

indicated a higher agreement for the HR as compared to the HR/ACT algorithm, and a very

low agreement for the ACT algorithm at all intensities (Table 2).

During both exercises, individual calibration greatly improved ICCs, bias and 95% LoA. It

was however less effective for the cycling compared to running, as illustrated by the lower

ICCs for AH2005IND (AH2005IND; Table 2), particularly when the HR/ACT algorithm was

applied.

Discussion

Since active subjects and high-level athletes are frequently involved in higher intensity exer-

cises, the purpose of this study was to test the accuracy of the group calibrated models of the

AH to quantify AEE during higher intensity running and cycling, and the additional benefit of

an individual calibration of the HR-AEE relationship. Our results show that the AH is sensitive

to each successive increase of exercise intensity when the HR or the combined HR/ACT algo-

rithm is used. Group calibrated models however underestimate AEE for intensities ranging

from 60 to 85% of VO2max, even though the more recent model (AH2007) slightly improves

AEE estimation as compared to the original model (AH2005). The best agreement with the ref-

erence method was obtained following individual calibration (AH2005IND). For both group

and individually calibrated models, accuracy of the HR algorithm was similar to the combined

HR/ACT algorithm during running and was superior during cycling.

Actiheart algorithms and accelerometer

Our results related to the ACT algorithm support the observations of several previous studies

showing that accelerometers underestimate AEE of most physical activities, except walking

and slow running [2,3,5,6,34,35]. The underestimation depends on exercise intensity and a

plateau in AEE estimation has been reported for higher intensities [3,5,6]. Concomitantly, our

results showed that AH HR and HR/ACT algorithms did not suffer from the ceiling effect

reported for accelerometers, as indicated by an increase in the estimated AEE proportional to

intensity increments up to 85% VO2max.

Although it was suggested that combining ACT and HR data could improve AEE estima-

tion during daily life activities and light to moderate intensity walking/running [17,18,20,23],

our results do not support the superiority of the HR/ACT algorithm, as compared to the HR

algorithm, during higher intensity exercises. The lack of improvement could be partly

explained by the positioning of the AH accelerometer on the chest that does not allow to per-

ceive lower limbs movements during cycling and attenuates acceleration signal during running

[23,28] or to the uniaxial design [26–28,36]. In February 2019, the manufacturer released a

fifth version of the AH device equipped with a tri-axial accelerometer. This fifth version how-

ever still operates with the algorithms developed for the uniaxial device. Therefore, further

investigation is required to test the validity of the new device and to ascertain the real benefit

of a chest mounted tri-axial accelerometer since it greatly shortens the maximal recording

time.
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Despite these limitations, our observation of a similar or greater accuracy of the HR algo-

rithm for higher intensity running and cycling respectively, and the better accuracy reported

for the combined algorithm for light to moderate intensity exercises suggest that a monitor

enabling to choose the adequate algorithm for AEE analysis, according to activity type and

intensity, represents an attractive option to improve AEE estimation during exercises of vari-

ous intensities.

Accuracy of group calibrated models at higher intensities

Most of the studies investigating the accuracy of the AH to estimate AEE mainly focused

on low to moderate intensity exercises and rarely included very active subjects [22–

24,28,34,35,37]. Compared to IC, they generally reported mean AEE under- or overestima-

tions ranging from 3 to 20% for the group calibrated models using HR and HR/ACT algo-

rithms during walking and jogging. Amongst those studies, the rare that investigated cycling

exercises [22,23,34] generally reported a slightly higher error (8 to 28%).

Only two studies analyzed the accuracy of the AH during higher intensity exercises using

a group calibrated model (version not specified) and the combined HR/ACT algorithm

[26,27]. In addition, they limited their investigation to running. Koehler et al. [27] quantified

AEE using IC and AH in men endurance athletes during an incremental running exercise

which started at 10 km. h-1 and ended at 17 km.h-1 or at individual exhaustion. Running

speed was increased by 1.4 km.h-1 every 5 min with 30 s rest between each stage. Nichols and

al. [26] tested the AH in female adolescent cross-country runners during three 8 min stages

of treadmill running at individualized speeds corresponding to recovery, moderate and

5-km race speed. Both studies reported a significant underestimation of AEE ranging from 9

up to 36% for the higher running speeds. The underestimation reported in the present study

was similar for the HR/ACT and HR algorithms and was lower (10 to 20%) than reported by

the two previous studies. This discrepancy could be partly due to a difference in running

economy [26] and the lower speed attained by our subjects during the highest stage. How-

ever, another factor that influences the estimation of AEE by the AH group calibrated mod-

els is the value set for the sleeping HR in the software. While Koehler et al. [27] clearly

specified they were unable to determine sleeping HR for logistic reasons, Nichols et al. [26]

did not mention this methodological aspect. Since the sleeping HR is lower in trained endur-

ance athletes, this may also have contributed to the greater underestimation reported by the

authors.

To our knowledge, our study is the first to investigate the accuracy of the AH to estimate

AEE during high intensity cycling. Our results showed an underestimation for the group cali-

brated models ranging from 12 to 26% for the HR/ACT algorithm and from 3 to 12% for the

HR algorithm. As compared to the running exercises at high intensity, this underestimation

range is thus slightly greater for the HR/ACT algorithm and lower for the HR algorithm.

Benefit of the individual calibration

AEE and the HR-AEE relationship depend on exercise type and different individual factors

[9–12]. Besides subject’s sex, these factors are not included as predictive variables of AEE in

the AH group calibrated algorithms [20,32]. The only way to take them into account is to cre-

ate new algorithms, which was not the aim of the present study, or to use individual calibra-

tion. In the present study, we therefore tested the benefit of the individual calibration of the

HR-AEE relationship determined during a maximal cycling or running test.

Koehler et al. [27] reported that individual calibration of the HR-AEE relationship,

using the built-in step test, reduces the mean underestimation in AEE by the AH, but the
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95% LoA and validity correlation were not improved compared to the group calibration. In

the present study, the individual calibration, based on the relationship between HR and AEE

during the maximal running or cycling test, enables to considerably improve the agreement

with IC for running and cycling exercises from 60 to 85% VO2max (Fig 2 and Table 2). Dur-

ing running, based on the 95% confidence intervals of ICCs (Table 2), the agreement

changed indeed from “poor to excellent” for group calibration to “excellent” for individual

calibration [33]. During the cycling exercise, agreement was only slightly improved by

individual calibration for the HR/ACT algorithm, whereas it was substantially better for the

HR algorithm, passing from a “poor to moderate” to a “moderate to excellent” agreement

(Table 2). The greater improvement in AEE when using a specific calibration as compared

to the built-in step test calibration confirms the lack of accuracy of the step test in deriving

the individual HR-AEE relationship for higher intensity exercises [27,36] and states the need

for an individual calibration established during an exercise as close as possible to the sport

and intensities performed by the subject. In practice, this calibration is suitable for athletes

involved predominantly in one sport, and performing periodically maximal tests, but would

be more complicated to implement for athletes taking part in different kind of sport

activities.

Some considerations must be taken into account when interpreting our results and using

the device for field measurements. Firstly, to ensure the feasibility of the individual calibra-

tion procedure and the precise determination of the load/speed corresponding to each

intensity, our investigation was performed in a laboratory setting and was limited to running

and cycling. Although these two physical activities are frequently practiced by most athletes

and active subjects, we must acknowledge that our conclusions are not directly transposable

to other sport activities. Secondly, our sample was composed of fit young subjects who are

representative of the athletic population in whom an accurate assessment of AEE is needed

for guidance on training volume and food intake. However, this observation warrants fur-

ther studies to verify if the present conclusions are generalizable to individuals of different

age and fitness levels. In addition, since body composition and physiological responses to

exercise may differ between men and women [38] and influence AEE, a comparison of the

accuracy of the AH group calibrated equations in subjects of both sex would be relevant.

Finally, one practical problem encountered with the AH, in our and previous studies

[21,36], is the loss of HR records in some subjects. During intense exercise, fast body move-

ments and sweating may alter contact of ECG electrodes and induce ECG signal artifacts

affecting the quality of HR data or leading to the loss of signal detection. This issue may

limit the use of the AH in some athletes engaged in long sessions of high intensity exercise

[36].

In conclusion, whilst taking into account the above-mentioned limitations, the present

results indicate that the AH group calibrated models enable to estimate AEE during running

and cycling exercises of higher intensity when the adapted algorithm is used and subject’s

sleeping HR is correctly set in the software. Combining HR and ACT does not appear to

improve AEE estimation compared to using HR alone for higher intensities cycling and run-

ning. An individual calibration of the HR-AEE relationship, specific to the sport activity and

intensity range, greatly improves AEE estimation. When a high accuracy in AEE quantification

is needed, an individual calibration is therefore recommended.
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