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Abstract

The function of Late Archaic period (5000–3000 B.P.) shell rings has been a focus of debate

among archaeologists for decades. These rings have been variously interpreted as a prod-

uct of seasonal feasting/ceremonial gatherings, quotidian food refuse generated by perma-

nent dwellers, or a combination of seasonal and perennial activities. Seasonality of shell

rings can be assessed by reconstructing the harvest time of oysters (Crassostrea virginica),

the primary faunal component of shell rings. We estimated the timing of oyster harvest at

St. Catherines Shell Ring (Georgia, USA) by statistical modeling of size frequency distribu-

tions of the impressed odostome (Boonea impressa), a parasitic snail inadvertently gath-

ered by Archaic peoples with its oyster host. The odostome samples from three

archaeological excavation units were evaluated against resampling models based on

monthly demographic data obtained for present-day populations of Boonea impressa. For

all samples, the harvest was unlikely to start earlier than late fall and end later than late

spring, indicating that shell deposits at St. Catherines Shell Ring formed seasonally with

substantial harvesting activities restricted to non-summer months. For all samples, the

resampling models indicated that harvesting activities likely occurred during multiple

months. However, these analytical outcomes would also be expected in the case of exten-

sively time-averaged records of short-term, non-summer harvest events. Regardless of the

exact harvest duration, the results point to seasonal harvesting and suggest that Archaic

populations may have opted out of consuming summer oysters to focus on other resources,

avoid unpalatable food, decrease pathogen risks, or ensure sustainable harvesting.

Introduction

Shell rings are circular or arcuate accumulations of shell, bone, artifacts, soil and other anthropo-

genic sediments deposited along the coasts of Florida, Georgia, South Carolina, and Mississippi

[1,2]. Three interpretations dominate the discussion on shell ring use and occupation. The first

hypothesis posits that shell rings represent daily food refuse discarded behind or underneath

households constructed on top or inside shell ring walls [3,4]. Under this scenario, shell rings

represent gradually accumulated deposits, representative of the domestic refuse of daily village

life. The second hypothesis posits that shell rings represent intermittently occupied, large scale,
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communal feasting sites that developed in concert with other manifestations of monumentality,

such as hierarchical social structures [5–7]. This hypothesis posits that ring deposits would be

highly seasonal in nature reflecting intermittent use during feasting and ceremony. Under this

scenario, shell rings formed by quick deposition of large amounts of shell, experienced little post-

depositional crushing, and contain higher frequencies of decorated pottery than contemporane-

ous non-ring, shell midden sites [6–8] (see also [9] for further discussion). Finally, the third

hypothesis postulates that shell rings formed as a result of both mundane and ritual practice and

that site use practices may have changed over time [10]. Understanding the timing of deposition

of shell ring refuse is essential to assessing these three hypotheses. Here, using a computer-inten-

sive statistical approach, we assessed seasonality and duration of shellfish harvesting for one shell

ring. Whereas the improved understanding of harvest timing cannot fully resolve the rival

hypotheses regarding the origin and function of shell rings, it should augment our understanding

of the seasonal dynamics of shellfish gathering and shell-ring building activities.

Oysters (Crassostrea virginica) are the most numerous shellfish species in nearly all shell

rings, suggesting that they were a key component of the practices that contributed to ring for-

mation [11]. Consequently, determining the season(s) of death of oysters deposited in shell

rings is crucial for evaluating the timing of ring building practices and, in combination with

other data types, can augment our understanding of ring formation and use over time. Cur-

rently, stable isotope methods are the most common strategy for assessing oyster harvest time.

However, the cost necessary for this type of analysis can limit sample size. Additionally, the

use of shell morphology (e.g., growth rings) to assess ontogenetic age and seasonal growth pat-

terns in oysters is affected by interpretative uncertainties [12]. Consequently, combining iso-

tope approaches with other independent strategies can augment our ability to estimate the

timing of oyster harvests.

Russo [12] developed an indirect method of estimating oyster season of capture by focusing

on the odostome snail (Boonea impressa), a pyramidellid endoparasitic gastropod that preferen-

tially feeds on the soft tissue of oysters and is widely distributed along the coasts of the Gulf of

Mexico and Atlantic [13]. B. impressa lives for approximately one year and spawns principally

in late spring [14,15]. The principal cohort grows in length throughout the year until death and

is then replaced by the new cohort [15]. Previous studies on contemporary odostome popula-

tions from North Carolina and Texas [15] report comparable reproduction and growth patterns

with the majority of juveniles occurring in the mid-summer months. The annual life span and

invariant growth across populations from different regions and habitats [16,17] may make

odostomes a suitable candidate for estimating the timing and duration of oyster harvest (but see

[18]). Whereas this strategy was employed successfully in interpreting season of oyster harvest

for archaeological sites in Florida and Georgia [12,19,20], its potential to provide detailed quan-

titative estimates of not only approximate harvest time, but also harvest duration, has not been

exploited. Using R [21], we employ computer-intensive statistical modeling to assess demogra-

phy of archaeological samples of B. impressa in the quantitative reference framework provided

by monthly census samples of recent conspecific populations collected from the same location.

Using this strategy, we report high-resolution, quantitative estimates of both the duration and

seasonal timing of oyster harvesting by Archaic period peoples. These quantitative estimates of

the temporal structure of shell accumulations provide a statistical approach toward evaluating

the formation of the Archaic shell ring structures. We focus here on an extensively studied

exemplar shell ring (St. Catherines Shell Ring, Georgia, USA).

Due to constraints of sample size on statistical analysis, sets of individual archaeological

samples have been pooled and are therefore analytically time averaged. The pooling of samples

is not ideal for season of harvest determination over smaller time scales however the challenge

lies in assuring statistically adequate numbers of snail specimens at appropriate resolutions.

Seasonal oyster harvesting during the Archaic period
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Given this limitation, there are three hypotheses that can be postulated for extensively time-

averaged samples:

1. The harvest occurs randomly or continuously throughout the year–in this case time-aver-

aged archaeological samples will correctly fail to indicate seasonal harvest.

2. The harvest occurs non-randomly through the year (seasonally), but this non-random pat-

tern changes over decades or centuries represented by each low resolution sample–in this

case time-averaged archaeological samples will incorrectly indicate continuous harvest and

fail to detect the fact that the harvest was actually seasonal in any given year. However, the

comparative analyses of multiple samples would likely point to significant among-sample

differences correctly indicating that harvesting patterns varied through time.

3. The harvest occurs non-randomly through the year (seasonally) and this pattern persists

through the multiple decades/centuries represented by each sample–in this case the time-aver-

aged archaeological samples should correctly support non-random (seasonal) harvesting as

well as the long-term (multi-centennial) persistence of that seasonal harvesting pattern. How-

ever, substantial, potentially multi-centennial time-averaging could result in making short-

term (1-month or less) harvesting appear more prolonged. That is, if harvest occurred season-

ally once a year (e.g., a few winter days but with exact timing varying by weeks or months from

year to year), time-averaging could produce the record that suggests multiple months of har-

vest. Moreover, because not only the harvest time, but also the spawning time and growth rate

of Boonea impressa could vary subtly from year to year depending on environmental fluctua-

tions, a multi-monthly signature could emerge even if harvesting occurred briefly and always

in the same month. Thus, in the case of the third hypotheses, seasonality can be detected but

the exact duration of harvest suggested by the data may be difficult to estimate precisely.

Note that the above hypotheses indicate that the seasonal signal in time-averaged samples is

only possible to detect when consistent, seasonal harvesting persisted through time (the third

hypothesis). The predictions of hypotheses 1 and 2 cannot be readily resolved using the pro-

posed approach due to inadequate temporal resolution of pooled sample sets.

In most cases, it is not appropriate to pool zooarchaeological samples across time and space

because combining samples hampers our ability to detect variations in seasonal deposition of

discrete or synchronous deposits. However, in the specific case of the hypotheses evaluated in

this study, pooling of samples is a conservative approach. This is because, in pooled samples

analytically time-averaged over decades or centuries, seasonal patterns are detectable only if

harvest seasonality is persistent through time and harvest seasons are highly consistent across

years. Additionally, column samples may not be representative of a deposit or an entire site

but, when combined can contribute to our overall understanding of site composition and

deposition [22]. We utilize this approach here because it is a logistic prerequisite for acquiring

adequate sample size and because, more importantly, pooling represents a maximally conser-

vative approach for detecting harvest seasonality. The approach proposed here is reproducible

and the analytical and sampling methodology are transferrable to other archaeological sites

and site types as long as the tested hypotheses focus on long-term processes such as multi-cen-

tennial persistence of seasonal harvest.

Materials and methods

Study site

St. Catherines Shell Ring, one of two contemporaneous shell rings on St. Catherines Island off

the coast of Georgia, USA (Fig 1), counts among the most extensively studied shell rings in the

Seasonal oyster harvesting during the Archaic period
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southeast. This study site has produced large datasets of substantial interpretative value,

including ceramic, lithic, geophysical, faunal and botanical data. The ring, located on the west-

ern marsh, is 70 m across, its interior spans 34 m, and consist of shell deposits that vary from

25cm to 1m in thickness [23]. The faunal and artifact composition of the ring are similar to

those of other Late Archaic shell rings in the southeast [23,24]. Radiocarbon dates of shell

deposits from St. Catherines Shell Ring date to 2230–2030 cal B.C., indicating that ring deposi-

tion took place over a period of ~200 years [23]. All calibrated radiocarbon dates available for

the study site have been reported previously ([23]; Table 3.1 therein).

Sampling recent and archaeological populations of Boonea impressa
The described study did not involve endangered or protected species and no permits were

required. This study combines two distinct types of data: (1) Recent samples of live-collected

specimens that were acquired monthly and (2) archaeological samples from shell layers pre-

served within the St. Catherines Island Shell Ring structure. Recent and archaeological samples

are conspecific and geographically sympatric.

To obtain a modern comparative proxy, live specimens of B. impressa, live oyster clumps

(~30 oysters per clump) were randomly collected monthly from July 2006 to June 2008 from

Cemetery Road Marsh, an intertidal oyster reef located on the eastern side of St. Catherines

Island (Fig 1). Odostomes are small and difficult to see because exposed intertidal oysters are

covered in mud deposited from the receding high tide, so it is challenging to collect them indi-

vidually in the field. Thus, oyster clumps were transported back to the Environmental Archae-

ology Lab at the Florida Museum of Natural History where they were soaked in water,

separated into individuals, brushed and rinsed to dislodge all odostomes from their oyster

host. The resulting silt and water was wet-sieved through nested geological sieves of 6.8 mm,

3.3 mm, 1.168 mm, and 250 μm to facilitate separation of odostomes from larger shell frag-

ments, mud and other debris. Odostomes were recovered only from the 1.168 mm and 250 μm

sieves and identified using low power microscopy to assure that specimens were not broken or

dead at the time of collection. Because of this sampling strategy, a direct assessment of infesta-

tion burden (i.e., percentage of snail-infested oysters) is not possible. However, the fact that

~4500 specimens were recovered from 720 oysters and virtually all clumps of oysters produced

sieved residuals with substantial numbers of snails indicate that infestation rates were exceed-

ingly high and persistent seasonally. This is consistent with ecological studies from multiple

regions which all suggest that Boonea impressa tends to be ubiquitous, infesting oysters

throughout the year [25,26], with single oyster host supporting aggregates of as many as 100

parasitic snails [27]. The previous studies also suggest that the spatial distribution of snails is

independent of host population density and tend to aggregate based on the presence of other

snails [13]. The oyster reef within the Cemetery Road Marsh was a densely packed reef, which

should have further facilitated widespread infestation by odostomes. Oyster clumps were gath-

ered from various areas of the reef representing varying shell lengths so as not to bias collec-

tions toward older or larger individuals as well as potential differences in spatial distributions.

Given its ubiquity and continued presence through the seasons, Boonea impressa is expected

to be an effective harvest proxy.

All gastropod specimens identified as Boonea impressa were distinguished from congeneric

species by the channeled sutures, spiral grooves and flared aperture [28]. Identifications were

made using the zooarchaeology comparative collection at the Florida Museum of Natural His-

tory, University of Florida, Gainesville. Modern odostomes and archaeological collections

described in this study are on loan from the Laboratory of Archaeology, University of Georgia,

Seasonal oyster harvesting during the Archaic period
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Athens. All specimens are housed temporarily in the Environmental Archaeology Laboratory

at the Florida Museum of Natural History (Table B in S1 Appendix).

To obtain archaeological samples, three 25x25x10 cm column samples were excavated from

three shell-rich units within the ring: Trench 281-W83S2 (281-W83S2), 784N811E, and

N789E801. Trench 281-W83S2 and N789E801 extended over 1m below site datum and

784N811E extended 0.76m below site datum. The deposits in each unit are variable but the

base of each unit consisted of a sand layer atop a buried A horizon upon which the ring ini-

tially formed [26]. As standard practice, the surface layers of all units were not included in the

faunal analysis and were therefore not included in the subsequent analyses. Trench 281-

W83S2 is located on the western side of the shell arc, along a historic agricultural boundary

ditch. As a result, the upper 30 cm was disturbed and is not included in the study (Fig 2, SL1-

1). The undisturbed layer below consisted primarily of a mix of whole and fragmented oysters,

clams, periwinkles, crushed mussels, and bone with little soil (Fig 2, SL5). This shell-rich layer

lays directly above a sand layer (Fig 2, SL9). Throughout the ring, the sand layer ranges in

color from yellowish-brown to pale brown and varies in composition from sand, sandy loam

or loamy sand [26].

Unit 789N801E is located in the thickest portion of the northern part of the ring. The col-

umn sample for this study was taken from the southern wall of the unit and consisted of seven

Fig 1. Location of St. Catherines Island. (A-B) Location of St. Catherines Island. (C) St. Catherines Shell Ring and Boonea impressa
collection site, Cemetery Road Marsh.

https://doi.org/10.1371/journal.pone.0224666.g001
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stratigraphic layers. Above the sand layer (Fig 2, SL9) and A horizon (Fig 2, SL8), there is a

thin layer of highly fragmented shells mixed with light gray sand (Fig 2, SL6). The stratum

above is a dense accumulation of shell, including whole oysters, clams, periwinkles, mussel

fragments, and bone mixed with light gray sand (Fig 2, SL5). The shell deposit is less dense in

the stratum directly above, which consists of sand and mostly fragmented shells (Fig 2, SL3).

The uppermost layer below the surface (Fig 2, SL1) is sandy loam (Fig 2, SL2). Here, the den-

sity of shell material increases again and is dominated by whole and fragmented oysters, clams,

periwinkles, mussels, and bone (Fig 2, SL2).

Unit 784N811E is located east of 789N801E. The column sample was taken from the north-

ern wall of the unit and consisted of seven stratigraphic layers. Directly above the buried sand

layer (Fig 2, SL9) and A horizon (Fig 2, SL8), is a thin layer of highly crushed shell and sand

(Fig 2, SL7) that underlies a stratum of primarily whole mollusk shells within a light gray

sandy matrix (Fig 2, SL5). The overlying stratum, shared with 789N801E and Trench

281-W83S2, is a sandy loam containing whole and fragmented oysters, clams, periwinkles,

mussels, and other faunas (Fig 2, SL5). The stratigraphic unit directly above is a layer of sand

Fig 2. Stratigraphic profiles. Profiles detailing the stratigraphy of the three units from which column samples were excavated. SL1-1 consists of overburden

from a historic trench; SL2 is a sandy loam with whole and fragmented oysters, clams, periwinkles, mussels, and bone; SL3 is a sand layer with relatively

abundant, but highly fragmented, shell material; SL4 consists of sand with sparsely dispersed shell fragments; SL5 is a sandy loam soil with a dense

concentration of shells consisting of whole and fragmented oysters, clams, periwinkles, mussels, and other faunas; SL6 is a light gray sand layer with highly

fragmented shell material; SL7 is a sand layer with abundant but heavily fragmented shell material; SL8 is a buried A horizon, and SL9 is a variable sand layer.

Modified from Sanger 2015 [26].

https://doi.org/10.1371/journal.pone.0224666.g002
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with sparsely dispersed and highly fragmented shell debris (Fig 2, SL4). The last stratum below

the surface layer (Fig 2, SL1) is a gray sand unit with densely packed and crushed shell (Fig 2,

SL3).

Each column sample was excavated in arbitrary 10 cm levels and all material was water-

screened through nested sieves of 6.35 mm, 3.18 mm and 1.59 mm gauge. The invertebrate

fauna were consistent in species composition throughout the three columns, containing pri-

marily oysters, ribbed mussel (Geukensia demissa), and marsh periwinkle (Littorina irrorata)

(Table A in S1 Appendix). Odostomes were recovered and identified during zooarchaeological

analysis of the invertebrate fauna. Odostomes were primarily concentrated in 1/16th, and

rarely the 1/8, screen fractions. Each specimen was checked for breakage prior to measure-

ment. Following Russo [12] shell height was measured from the apex to the abapical end (Fig

3) using electronic calipers with precision of +/- 0.02 mm. All live-collected specimens

included the apex and abapical end and could be measured reliably.

Because individual 10 cm levels did not contain enough snails for statistical analysis, the

column samples were pooled by excavation unit to obtain the three samples used in the final

analyses (281-W83S2, 784N811E, and 789N801E). Note that these three vertically aggregated

samples span the entire thickness of the ring, and thus, each sample likely represents a compa-

rable record representing ~200 years of accumulation. Thus, samples are time averaged over

multi-centennial time-scales. Alternatively, samples can be pooled horizontally across the

three excavation units to generate a sequential time-series of samples representing shorter

time intervals. To ensure adequate sample size, we have grouped subsamples into three sam-

ples representing the same elevation ranges (bottom = elevation below 2.4 m, middle = 2.4–2.7

m elevation, and top = elevation above 2.7 m). Elevation at the site was determined using an

absolute depth system in which a laser level was used to measure actual elevation in relation to

an arbitrary 2-meter site datum. However, the horizontal samples are also likely to be substan-

tially time-averaged because the elevation alone does not guarantee precise temporal correla-

tion across different parts of the shell ring and age mixing may be substantial even within

individual (10cm thick) column samples. The horizontally pooled samples represent less time-

averaged samples than vertical samples, but are more extensively averaged spatially. These

three horizontal and three vertical samples were compared to each other to assess both lateral

and temporal differences in size-frequency distributions of archaeological samples of B.

impressa (S1 Appendix). The vertical samples are referred to as 281-W83S2, 784N811E, and

789N801E, where the horizontal samples are referred to as 2.1, 2.4, and 2.7.

Because the American Museum of Natural History’s archaeological program used 1.6 mm

screen as the finest mesh size for St. Catherines Shell Ring and the recent population samples

were recovered using 0.25 mm screen, the comparisons of size frequency distribution (SFD)

data may be invalidated by methodological discrepancies. The smallest specimens observed in

recent samples were 0.34 mm in size and although specimens below 0.5 mm were rare

(<0.5%), 33% of specimens were below 1.6 mm (mesh size used in archaeological sampling).

However, the size frequency distribution of archaeological specimens indicates that absence of

small specimens is not due to the application of coarser mesh size. The smallest specimen is

2.16 mm and specimens below 2.5 mm are exceedingly rare (<0.4%) and even those <3mm

represent only 3.3% of specimens. This indicates that specimens below 3mm are nearly absent

in the archaeological samples and thus the use of 1.6 mm mesh size was inconsequential. The

presence of small terrestrial gastropod species suggests that the absence of small odostome

specimens is not likely due to preservation bias. Generally, the shells of terrestrial gastropods

are thinner than those of marine gastropods [29] and are less likely to survive over time. Ter-

restrial gastropod species with average shell length measurements of 1.5 mm including the

minute gem (Hawaiia minscula), slim snaggletooth (Gastrocopta pellucida) and bottleneck
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Fig 3. Boonea impressa. A specimen of the odostome gastropod Boonea impressa. Arrows and reference lines indicate the

maximum shell dimension (shell height) measured to estimate snail body size.

https://doi.org/10.1371/journal.pone.0224666.g003
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snaggletooth (Gastrocopta contracta) in the sample indicate that conditions were amenable to

the preservation of small odostome specimens. Nevertheless, to further evaluate this methodo-

logical bias, all analyses presented below were also repeated with all recent specimens

<1.6 mm removed from the analysis. As documented below, these supplementary analyses

were consistent with those performed on untrimmed data.

Size-frequency distributions

The size-frequency distributions of recent (live-collected) populations of B. impressa (R-SFDs)

were initially analyzed by month (24 monthly live samples spanning from July 2006 through

June 2008). Because samples collected in the same month during successive years (e.g., June

2007 vs. June 2008) yielded consistent size-frequency distributions (see below), the data were

pooled across the years to increase the sample size. Consequently, the comparative analyses

were based on 12 monthly R-SFDs, with data pooled across multiple years.

Archaeological odostomes could have been collected over one month, multiple consecutive

months, multiple non-consecutive months, or continuously throughout the year. Conse-

quently, both specific harvest month(s) and harvest duration (number of months) need to be

considered. We do not suggest that this method alone can determine the specific months in

which oyster harvest took place (see interpretative caveats of Hypothesis 3 discussed above).

Rather, the estimates with a specific start and end month is viewed here as a first-order analyti-

cal outcome that should not be interpreted directly in terms of duration of harvest. Instead,

these estimates serve as a constraining tool when interpreting the seasonality of oyster harvest.

The monthly R-SFDs allow for deriving 144 R-SFDs (12 possible harvest start months and 12

possible durations from 1 month to 12 months). That is, there are 12 single month R-SFDs, 12

two-month R-SFDs (i.e., data pooled for two consecutive months starting with January + Feb-

ruary and ending with December + January), 12 three-month R-SFDs, and so on, up to 12

R-SFDs for twelve consecutive months. Because 12-month sets are identical regardless of the

start month (e.g., pooling data from June through May and from March through February

produces the same dataset), there are in fact only 133 unique R-SFDs. The R-SFDs were num-

bered consecutively from 1 to 133. For example, R-SFD #1 is (January), R-SFD #34 (October

+ November +December), R-SFD #59 (November + December + January + February

+ March), and so on (see S1 Appendix for details). These R-SFDs represent 133 size-frequency

distributions (133 R-SFDs) that provide empirical estimates of size-frequency distributions of

B. impressa expected for harvests that started in a given month and lasted a given number of

months. Note that the approach based solely on 133 R-SFDs disregards more complex scenar-

ios that include harvesting with gaps (e.g., January + April + May). Considering all possible

permutations is computationally expensive in simulations implemented here. However, a

small set of discontinuous models were included post hoc as supplementary analyses to evalu-

ate if a multi-month (but discontinuous) harvesting may explain the observed results.

Statistical modeling

All simulations and figures were generated using custom scripts (S1 Appendix; also available

at https://github.com/MJKowalewski/Boonea) written in R [21].

A simple approach to estimate harvest time of a given archaeological sample is to compare

that sample to each of the 133 reference R-SFDs and identify the best distribution match. To

evaluate the harvest time for archaeological samples, each archaeological SFD (A-SFD) can be

compared against R-SFDs in a series of pairwise comparisons. The pairwise difference between

a given A-SFD and a given R-SFD can be measured using Kolmogorov-Smirnov D (a maxi-

mum difference between two relative cumulative frequency distributions). D ranges from 0 to
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1, where 0 indicates identical distributions and 1 represents completely non-overlapping dis-

tributions. The pairwise match with the lowest D value identifies the R-SFD that is most con-

gruent with a given archaeological sample. However, this approach does not allow for robust

assessment of statistical uncertainty of the resulting outcome and assumes incorrectly that 133

R-SFDs are error-free reference standards. Consequently, we propose here a modeling

approach to provide a more rigorous assessment of harvest time (see S1 Appendix for details).

The analytical strategy proposed here is based on computer-intensive resampling that

represents a machine-learning strategy where known distributions (133 R-SFDs) are used

to develop predictive models (training sets) against which the evaluated datasets (archaeo-

logical samples in this case) are assessed numerically. Specifically, 133 R-SFDs represent

reference month sets (known harvest times) that can be used to develop 133 predictive null

models. Each of those null models is developed by iterative comparisons of bootstrap sam-

ples of a given R-SFD to all 133 R-SFDs using a sample size n (number of specimens) of the

archaeological sample. This simulation produces 133 null models, one for each R-SFD. The

analogous model derived for the evaluated archaeological sample is then compared against

each of the 133 null models. The null models most similar to the archaeological sample

model provide best estimates of the harvest time. The similarity can be measured using

either presence-absence (e.g., Jaccard, Sorensen) or abundance-based (e.g., Bray-Curtis)

similarity indices. While the proposed strategy is not a Maximum Likelihood Estimation

(MLE) (the method maximizes non-parametric similarity rather than the actual likeli-

hood), it is analogous to MLE in that it aims to select the most likely of many null models.

In addition, because all models have the same parameters and are based on the same sam-

ple size (n of the evaluated archaeological sample) the information criteria adjustments

[Akaike information criterion (AIC) or Bayesian information criterion (BIC)] are unneces-

sary [for more details about the resampling protocol see supplementary material, S1

Appendix, Methods].

All models are based on 2000 bootstrap replicate samples carried out separately for each

archaeological sample. Repeated runs indicate that estimates are reasonably stable when 2000

replicates are used. Because 133 models each involving 133 comparisons are developed for

each sample, an analysis of one archaeological sample requires (133�133�2000 iterations = ~35

million iterations) and for this reason generating more than 2000 bootstrap replicates was

deemed impractical. On a reasonably powerful personal laptop (1.9 GHz, 16GB RAM, 64-bit

system), and without employing parallel (multi-core) processing, a single simulation (2000

iterations) for the specific datasets used here requires approximately 1 hour.

The custom source codes, the raw datasets, and simulation outputs needed to replicate all

analyses and analytical figures presented in this paper are freely accessible on GitHub at

https://github.com/MJKowalewski/Boonea. The collection accession numbers (catalogue

numbers) and geographic and stratigraphic information for archaeological and modern speci-

men lots used in this study are provided in an appendix (Table B in S1 Appendix) and are per-

manently accessible online at https://github.com/MJKowalewski/Boonea.

Results

Size-frequency distributions of present-day populations of Boonea impressa [R-SFDs], har-

vested monthly for 24 consecutive months (July 2006 –June 2008), changed successively across

seasons (Fig 4). In both years of sampling, a new mode of small specimens appeared in late

spring/early summer (June 2007 and May 2008; Fig 5), and the month of May is the only

month characterized by a distinctly bimodal distribution, observed in 2008 (Fig 5) and pooled

data (Fig 4). The biomodality is not observed for the May 2007 sample, but this may reflect
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inadequate sampling (n = 6). In June, large specimens observed in May samples were nearly

completely absent, indicating mortality within ~12 months of spawning in both years of sam-

pling. From June through April, R-SFDs shifted progressively toward larger size classes and

remained strongly unimodal (Fig 4). The incremental month-to-month increases in median

body size were more notable in summer and early fall, but less pronounced in late fall, winter

and spring, as spawning cohorts aged and growth rates slowed (Fig 4). Conversely, the disper-

sion increased towards fall and winter likely reflecting ecophenotypic variation in growth rates

within populations. The increase in dispersion may reflect variability in such factors as the

quality of oyster hosts, stunted growth of B. impressa due to its own parasites, or other pro-

cesses differentially affecting individual members of the population. Whereas the late fall and

winter samples appear visually more similar to each other and medians do not differ notably

for consecutive months, the differences in dispersion and dominant age classes makes those

distributions subtly distinct. As shown below, these differences are sufficient to produce diag-

nostic training sets that can be applied to the archaeological samples.

Fig 4. Monthly size-frequency distributions of recent Boonea impressa. Size-frequency distributions [R-SFD] of

live-collected Boonea impressa harvested monthly with data pooled across multiple years (black histograms) compared

to size-frequency distributions of the three archaeological samples [A-SFD] (gray histograms). Blue reference line

indicates the overall median shell size for all recent data and orange line indicates the overall median of archaeological

samples, red triangles indicate median shell size for a given sample. Sample sizes [n] are indicated for each histogram.

https://doi.org/10.1371/journal.pone.0224666.g004
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The monthly pattern was highly consistent during the two consecutive years of sampling

with median shell height shifting concordantly across months during both sampling seasons,

except for rare cases when sample size was exceedingly small for a given month (Figs 5 and 6).

Whereas noticeable differences can be observed comparing monthly data across multiple years

of sampling (Fig 5), these inconsistencies can be at least partly attributed to sample size. The

most dramatic differences in median shell size and between shapes of distributions occur for

months in which at least one of the compared samples was represented by a small number of

specimens (Fig 6). In fact, a strong inverse rank correlation exists between the magnitude of

departure (whether measured by pairwise difference in median size or Kolmogorov-Smirnov

D statistic) and the sample size of the smaller of the two compared samples (S1 Fig). That is,

only when one of the compared months was severely under-sampled, major discrepancies

were observed. In addition to sampling effects, small differences in the timing of spawning

events and the minor offsets in the day of sampling in a given month may have induced addi-

tional discrepancies between SFDs, especially in months proximal to spawning events.

Fig 5. Yearly size-frequency distributions of recent Boonea impressa. Size-frequency distributions [R-SFD] of live-

collected Boonea impressa harvested consecutively for 24 months. Blue reference line indicates the overall median shell

size for all data; red triangles indicate median shell size for a given population. Sample sizes [n] are indicated for each

R-SFD.

https://doi.org/10.1371/journal.pone.0224666.g005

Seasonal oyster harvesting during the Archaic period

PLOS ONE | https://doi.org/10.1371/journal.pone.0224666 November 20, 2019 12 / 26

https://doi.org/10.1371/journal.pone.0224666.g005
https://doi.org/10.1371/journal.pone.0224666


The results indicate that B. impressa spawns once a year in late spring and has a maximum

lifespan of ~12 months. Due to these two biological characteristics, size-frequency distribu-

tions of B. impressa vary predictably across seasons offering a numerical diagnostic tool for

estimating harvest time.

The three size-frequency distributions A-SFDs derived by pooling archaeological subsam-

ples within each trench (samples 281-W83S2, 784N811E, and 789N801E) are also distinctly

unimodal and the maximum specimen size (maximum shell height = 6.20 mm) is comparable

to that observed for the present-day populations (maximum shell height = 6.19 mm). The sam-

ples derived by horizontal pooling of subsamples (samples 2.1, 2.4, 2.7) are visually comparable

to vertical samples (Fig 7). In most pairwise comparisons (15 comparisons total), the three hor-

izontal and three vertical samples cannot be distinguished statistically from one another in

terms of the median shell length (66.7% of comparisons) or overall shape of the size frequency

distribution (73.3%) (Table 1) and median values of individual samples closely approximate

the median value of the entire dataset (Fig 7). Consequently, only vertical samples 281-W83S2,

784N811E, and 789N801E are considered in all subsequent analyses presented below.

The unimodality of the archaeological samples and comparable maximum specimen size

are consistent with the assumption that the longevity and growth rate of archaeological popu-

lations of B. impressa were comparable to those observed for the present-day populations. The

high abundance of archaeological specimens in size classes that dominate late fall, winter, and

early spring samples of recent populations, suggest that archaeological SFDs appear most con-

sistent with the present-day SFDs of mature populations sampled through multiple late fall–

early spring months (Figs 4 and 8). The cumulative distribution curves (ogives) estimated

Fig 6. Monthly median body size estimates of Boonea impressa. Monthly estimates of median body size of live-

collected Boonea impressa. Each symbol represents a single month estimate and symbol size is arbitrarily scaled to

indicate sample size (number of specimens). Monthly estimates of median size are increasingly consistent when

sample sizes of compared monthly samples are reasonably large (see also S1 Fig). Highly discordant estimates involve

samples with exceedingly small sample size (May 2007, Aug 2006).

https://doi.org/10.1371/journal.pone.0224666.g006
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from the archaeological samples (Fig 8A) are flatter than those of the recent samples suggestive

of a more substantial spread in dominant shell size classes in archaeological samples, intui-

tively consistent with multiple months of harvesting. However, this visual qualitative assess-

ment of raw data can be further augmented by more rigorous, quantitative modeling of

harvest time using samples of recent populations to create single and multi-month reference

null models (training sets).

The series of 133 reference month sets SFDs ranged from SFDs representing a single-

month harvest to SFDs representing 12 months of harvest. The 133 models (Fig 9, see also S1

Movie 1) developed by matching each replicate reference month set to all 133 reference month

sets represent null predictions (training sets) when the harvest time is known (see S1 Appendix

for details). For each archaeological sample, the separate set of 133 models was developed for

the sample size n of the evaluated archaeological sample (only one of the three sets of models is

illustrated here; Fig 9). For most month sets, the most frequent match is not surprisingly that

month set itself. However, substantial numbers of matches to other month sets also occur for

Fig 7. Size-frequency distributions of archaeological specimens of Boonea impressa. Size-frequency distribution of

archaeological samples derived by two pooling strategies. In the first approach (the three top charts) samples were

merged horizontally into three successive stratigraphic slices. In the second approach (the bottom three charts)

samples were merged vertically by unit. All samples, whether merged laterally or vertically, yielded highly congruent

distributions (see also Table 1).

https://doi.org/10.1371/journal.pone.0224666.g007
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all month set models (Fig 10). Consequently, each of the 133 null models provides a unique

quantitative signature of month set matches (Figs 9 and 11) that can be than used as a compar-

ative training set for assessing each archaeological sample.

The archaeological sample 789N801E (n = 132) best matched the null model for a harvest

period of four months starting in December and ending in March (Fig 12). The sample

281-W83S2 (n = 218) best matched the null model for a collection period of five months start-

ing in November and ending in March (Fig 12). The sample from 784N811E (n = 228) best

matched the null model for a harvest duration of four months starting in January and ending

in April (Fig 12). Overall, null model matching indicates that all three archaeological samples

fit best models suggesting 4 to 8 months of harvesting starting in the late fall or early winter.

Other null models with high similarity (similarity index > 0.5) also consistently suggest onset

of harvest in late fall/early winter and multi-month harvesting season (Fig 13). The null models

that include summer months tend to yield similarity indices nearing 0, indicating that the

archaeological samples are unlikely to include oysters collected in summer (Fig 12). The results

Table 1. Pairwise comparisons of body size distributions of archaeological samples of Boonea impressa derived by either vertical or horizontal aggregation of

subsamples.

test significance (p) statistic first

sample

second sample significant significant with Bonferroni correction

Kolmogorov-Smirnov Test 0.0558 0.145 2.1 2.4 no no

0.0010 0.203 2.1 2.7 yes yes

0.0331 0.171 2.1 281-W83S2 yes no

0.0004 0.219 2.1 784N811E yes yes

0.9767 0.05 2.1 789N801E no no

0.0933 0.12 2.4 2.7 no no

0.8131 0.072 2.4 281-W83S2 no no

0.0665 0.129 2.4 784N811E no no

0.1423 0.112 2.4 789N801E no no

0.4292 0.095 2.7 281-W83S2 no no

0.9967 0.038 2.7 784N811E no no

0.0006 0.188 2.7 789N801E yes yes

0.2191 0.116 281-W83S2 784N811E no no

0.0201 0.166 281-W83S2 789N801E yes no

0.0002 0.203 784N811E 789N801E yes yes

Kruskal-Wallis Test 0.0302 4.698 2.1 2.4 yes no

0.0011 10.709 2.1 2.7 yes yes

0.0057 7.643 2.1 281-W83S2 yes no

0.0003 12.893 2.1 784N811E yes yes

0.9701 0.001 2.1 789N801E no no

0.2113 1.562 2.4 2.7 no no

0.4634 0.538 2.4 281-W83S2 no no

0.1021 2.672 2.4 784N811E no no

0.0174 5.658 2.4 789N801E yes no

0.5897 0.291 2.7 281-W83S2 no no

0.6701 0.181 2.7 784N811E no no

0.0004 12.735 2.7 789N801E yes yes

0.3553 0.854 281-W83S2 784N811E no no

0.0031 8.771 281-W83S2 789N801E yes yes

0.0001 15.204 784N811E 789N801E yes yes

https://doi.org/10.1371/journal.pone.0224666.t001
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can be replicated consistently for multiple similarity measures (Figs 11 and 13). Also, the

repeated set of simulations yielded highly congruent outcomes (Fig 14).

When specimens measuring <1.6 mm were removed from the recent dataset–to determine

whether season of harvest estimates are affected by disparities between sampling methods used

to process archaeological and live population samples–the results remained consistent (Fig 8B

and 14). Again, for all three samples the suggested harvest time started in late fall and winter

and lasted for multiple months (Fig 14).

All above results are limited to continuous multi-month models. Whereas exploring all pos-

sible discontinuous permutations is computationally prohibitive, it is instructive to consider

discontinuous variants of best continuous models. This supplementary analysis (S2 Fig) sug-

gests that the best continuous models outperform all its discontinuous variants for two out of

three samples: archaeological samples 789N801E and W83S2. However, for archaeological

sample 784N811E a discontinuous model (February and April harvest) outperforms the best

continuous model. In addition, for sample 789N801E the best discontinuous model

Fig 8. Comparison of recent and archaeological ogives of Boonea impressa shell length. Cumulative relative

frequency distributions (ogives) of monthly shell size measurements in recent populations of Boonea impressa (color-

coded by month) compared to the three archaeological samples (thick gray lines) populations. A. Ogives based on all

data; B. Ogives restricted to specimens with shell height of 1.6 mm or greater. A dashed vertical line indicates 1.6 mm

cutoff value.

https://doi.org/10.1371/journal.pone.0224666.g008
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(December-February-March) performs nearly as well as the best continuous model (Decem-

ber-March). This outcome should serve as a cautionary note suggesting that whereas multi-

month harvesting is consistently supported in nearly all analyses presented here, it is less cer-

tain whether oyster-gathering activities occurred continuously throughout the entire multi-

month interval of harvest and the actual duration of harvest is unknown.

Fig 9. Null models of recent Boonea impressa populations. A graphic summary of 133 null models derived from monthly samples of recent

populations (Figs 4 and 10, see also S1 Movie). All models exemplified here are based on resampling of a sample of n = 218 specimens (size of sample

W83S2). Each box represents a 2D kernel plot documenting distribution of matches (relative frequency of iterations in which the bootstrapped sample

of a given month set matched best a given month set) of recent samples of Boonea impressa. Those distributions of matches were compared to the

distribution of matches derived for the archaeological sample W83S2 and the agreements between the archaeological sample model and null models

was evaluated using various measures of similarity (Fig 11).

https://doi.org/10.1371/journal.pone.0224666.g009
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While the results are consistent with multi-month harvest, this may be also due to time-

averaging of short-term harvest events. For example, the apparent multi-monthly harvest

could easily be produced if short-term harvest events underwent time-averaging over multiple

decades or centuries. Slight differences in harvest time, spawning time, growth rate (induced

by year-to-year environmental fluctuations or other causes) could increase dispersion of the

time-averaged SFD and make samples more consistent with multi-monthly demographic

training sets. Thus, the results suggest that harvesting was strongly seasonal, but the time-aver-

aged data (and resulting model outcomes) may overestimate the harvest duration. Neverthe-

less, data consistently suggest that the harvest was not likely to start earlier than November or

continue past May. The modeling exercise also demonstrates that archaeological samples are

highly incongruent with any substantial harvest activities during summer and early fall.

Fig 10. Month set comparisons. Actual month sets (133 month and multi-month combinations) in recent data

compared against all possible month sets. The simulation based on the sample size of the archaeological sample W83S2

visually indicates most commonly matched month sets in resampling simulation. Black bars represent the correct

match (month set matches itself best). For example, for the second column from the left (1-month harvest in February)

~60% of matches in the simulations match the resampled data correctly as harvested in February. However, other

month combinations also occur and consequently the distribution of those specific matches provides a predictive

signature for samples collected in 1 month (February harvest). In few cases, (e.g., month set 40 [April-July, 4-month

harvest starting in April]), the most frequently matched month set is not itself, but month set 52 (March-July, 5-month

harvest starting in March), likely reflecting suppressed effect of outliers. The comparisons of predicted distributions of

matches for recent samples with known harvest time (known NULL models) to distributions of matches derived for a

given archaeological sample allows to find the best matching null model and the corresponding month set of harvest.

Note that for known recent month-sets, short month sets (models 1–36;<4 months of harvest) generally match short

month sets (red and orange bars), whereas long month sets (models 97–133,>8 months of harvest) match long month

sets (increasingly dark green bars). Mismatches (out of order black bars) become increasingly frequent for longer

month sets. Simulation based on 2000 iterations for each of the 133 examined month sets.

https://doi.org/10.1371/journal.pone.0224666.g010
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Discussion

Boonea impressa as a seasonal indicator

The use of Boonea impressa as a proxy for archaeological season of occupation has been criti-

cized [18] because the approach invokes multiple assumptions about the odostome life cycle

and behavior. Specifically, the method assumes that the odostome life cycle is spatially and tem-

porally invariant (implicitly positing that the spawning time does not vary notably from year to

year and from region to region), multiple spawning events do not occur annually, growth pat-

terns within populations are invariant, and endoparasitic feeding behavior is obligatory for both

juveniles and adults [13,18]. Our quantitative surveys of recent populations indicate (Figs 4, 5, 6

and 8A) that the contemporary odostome populations from St. Catherines Island meet the key

assumptions: local odostome populations live for only one year, show a mostly consistent

growth pattern (when sampled adequately) over the continuous two-year collection period, and

spawning occurs only once during the year. The use of B. impressa is further justified here

because recent samples came from oyster reefs located in close proximity to the shell ring (spa-

tial sympatry). Moreover, the Late Archaic time interval represented by the shell ring corre-

sponds to an earlier phase of the current interglacial when the climate regime is expected to

have been comparable to current conditions. In addition, the largest archaeological specimens

closely match the largest specimens from present-day populations, and archaeological size-fre-

quency distributions demonstrate excellent matching with some of the predictive models (excel-

lent model matching would be unlikely if recent and archaeological samples came from

populations that grew at notably different rates or varied in spawning and mortality patterns).

Fig 11. Similarity indices. Comparison of the resampling model for the three archaeological samples to the null models based on 133 recent month sets. Each comparison

based on separate 133 null models derived for a sample size of a given archaeological sample. Similarity between the null models (distribution of matches) predicted for

recent month sets (Fig 10) and the model matches for archaeological samples is measured using a presence-absence similarity measure (Jaccard, left) and an abundance-

based similarity measure (Bray-Curtis, right) See also (Figs 5 and 13). Note that peaks (high similarity) mostly cluster for harvest starting in late fall (November-December)

and occasionally early winter (January). Highest peaks (best model matches) suggest multi-month harvest. Gray numbers (tops of charts) represent month sets of given

duration and gray letters (chart bottoms) represent start months (only even months shown): F-February, A-April, J-June, A-August, O-October, D-December.

https://doi.org/10.1371/journal.pone.0224666.g011
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Implications of seasonal oyster harvest at St. Catherines Shell Ring

Previous research on St. Catherines Island has focused on seasonal settlement and mobility pat-

terns from the Late Archaic to the historic period [30]. However, the timing of oyster harvest

has not been investigated rigorously despite the fact that oysters are the most frequently identi-

fied invertebrate taxon from St. Catherines Shell Ring [19]. Oysters likely played a significant

role in the subsistence and social economy of the communities living at, or regularly visiting,

the ring (see [30]). Our results indicate that the oysters were harvested primarily during late fall,

winter and spring suggesting that ring formation occurred primarily during the cool-weather

months. These interpretations are congruent with sclerochronology of hard clams (Mercenaria
spp.) from St. Catherines Shell Ring, which points to predominant winter/spring harvest [31].

Similarly, botanical remains indicate most intensive use during the fall [32]. Our results suggest

that harvesting concentrated in non-summer months. However, the continuity and exact dura-

tion of these seasonal harvest events is more difficult to assess due to time-averaging. Also, the

results do not necessarily imply that the ring was not used during other times of the year. The

presence of vertebrate and archaeobotanical remains of organisms that were likely available

only during the summer and fall indicate that smaller populations may have remained at the

ring during this time [24,32]. However, it is likely that the primary ring building activities

occurred during winter and spring. The fact that this seasonal pattern of use is observed for all

three vertically aggregated archaeological samples that span the entire temporal record of the

shell ring suggests that the harvest patterns were already established at the inception of the ring

and maintained over multiple centuries. Since the samples are time-averaged, changes in har-

vesting patterns that may have occurred at shorter time scales are difficult to detect.

It is noteworthy here that because of limited sample sizes, the samples had to be pooled

(either vertically or laterally) limiting the interpretative power of these analyses. It is reassuring

that whether samples were pooled vertically (substantial analytical time-averaging) or horizon-

tally (in which spatial and analytical time-averaging both occur), the resulting pooled samples

Fig 12. 2D-kernel density distribution. The 2D-kernel density distribution of month set matches for the

archaeological sample (left panel) and the best-matched null model (right) selected based on Sorenson similarity. All

other closely matching null models also suggest (Fig 13) that sampling started in late fall (November or December).

https://doi.org/10.1371/journal.pone.0224666.g012

Seasonal oyster harvesting during the Archaic period

PLOS ONE | https://doi.org/10.1371/journal.pone.0224666 November 20, 2019 20 / 26

https://doi.org/10.1371/journal.pone.0224666.g012
https://doi.org/10.1371/journal.pone.0224666


produced consistent outcomes. Analyses based on more extensive sampling of single horizons

could further improve the interpretative power of the proposal approach, although it should

be noted that even if the data were constrained to one well controlled horizon, the within-hori-

zon time-averaging would still likely be substantial.

The seasonal pattern of oyster harvest, augmented by other lines of evidence reported in

previous studies [33] is congruent with the hypothesis that human activities at St. Catherines

Shell Ring fluctuated seasonally. Local and regional communities may have converged for sea-

sonal gatherings during the spring, winter and fall, while during summer months only a small

portion of the population remained at the rings [32]. Under this scenario, the mass deposition

of oysters during fall-spring intervals reflects a continuous or discontinuous period of use and

deposition throughout the cool weather months, repeated for centuries. Recent studies in the

seasonal collection of various vertebrate, invertebrate and plant species from St. Catherines

Fig 13. Sorensen similarity index. Comparison of the resampling model for the three archaeological samples to the

null models based on 133 recent month sets. Each comparison based on separate 133 null models derived for a sample

size of a given archaeological sample. Similarity between the null models (distribution of matches) predicted for recent

month sets (Fig 10) and the model matches for archaeological samples is measured using presence-absence similarity

measure (Sorensen). Similar results are obtained for Jaccard (Presence-Absence) and Bray-Curtis (abundance)

similarity measures (Fig 11). Note that peaks (high similarity) mostly cluster for harvest starting in late fall (November-

December) and occasionally early winter (January). Highest peaks (best model matches) suggest multi-month harvest.

Gray numbers (tops of charts) represent month sets of given duration and gray letters (chart bottoms) represent start

months (only even months shown): F-February, A-April, J-June, A-August, O-October, D-December.

https://doi.org/10.1371/journal.pone.0224666.g013
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Shell Ring also indicate multiple seasons of use with varying intensity of occupation through-

out the year [33]. We stress here that, on its own, the seasonal oyster harvest is not a conclusive

line evidence for a seasonal occupation of shell rings, as it may also reflect seasonal shifts in

preferred food sources (see below). However, the seasonal oyster gathering practices are con-

gruent with previously reported data that point to diminished human presence during sum-

mer months at this [32] and other [34] shell rings.

Due to the limited number of sites with oyster seasonality data, few comparisons can be

made with other shell ring sites and Archaic period midden sites. Nevertheless, a similar pat-

tern for oyster harvest is evident at the Sapelo Shell Ring complex (Sapelo Island, Georgia),

where stable isotope analysis of oyster shells suggests a seasonal harvesting pattern that was

primarily restricted to winter months [34]. However, oyster isotope data taken as a whole indi-

cate year-round harvest site-wide [34].

Fig 14. Comparison of resampling models for full data set versus trimmed data. Comparison of repeated runs of

resampling models for the three archaeological samples. The bars represent the most likely harvest timespan suggested

in a given simulation. Colors of bars differentiate estimates for three different samples. The outcomes of each

simulation was evaluated using three different measures of similarity (“B” = Bray-Curtis, “J”= Jaccard, and “S” =

Sorensen). Estimate sets “1” and “2” represent repeated runs of simulations based on all recent specimens, including

those smaller than 1.6 mm. The estimate set “3” represents simulations based on the recent dataset restricted to

specimens with minimum length of 1.6 mm. Multiple bars for the same sample (“3”, “J”, green and “3”, “S”, green)

represent two estimates of harvest time that both yielded highest similarity coefficients.

https://doi.org/10.1371/journal.pone.0224666.g014
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Seasonal consumption of oysters

The pattern of oyster harvest exhibited at St. Catherines Shell Ring supports the hypothesis

that oysters were harvested seasonally, during the cooler months of late fall, winter and spring

and this pattern persisted through time. That Archaic people did not consume oysters during

summer months aligns with the old adage that oysters should only be eaten in the months with

the letter “r”, but avoided during all other months [35]. Today, during the warm summer

months, oysters harbor increased levels of pathogenic bacteria that may result in serious illness

or, in some cases, death [36]. In addition, oysters in the southeast spawn from May through

October [37] during which time stored glycogen is used to produce gametes. Once released,

oysters become watery in texture and unpalatable [38] until late December or early January

when meat yield increases [30]. Archaic peoples could have avoided harvesting and eating oys-

ters during the warm, spawning months of summer because they were aware of potential

health risks and shared our dislike for watery, poor quality meat. It has also been suggested the

people of St. Catherines Island may have practiced some form of mariculture [39], so avoiding

oysters during the summer months may have served to manage and maintain the viability of

oyster populations. Allowing oysters to spawn during the summer without significant harvest-

ing pressure would have allowed beds to recover after big harvests in the winter and spring,

ensuring long-term sustainability of the resource. Finally, it may be possible that oyster harvest

ceased during summer months as people at the ring focused on other seasonal food sources.

Conclusion

The modeling approach developed here provides numerical support for the hypothesis that

shellfish were deposited seasonally, and this practice may have been the primary means by

which Archaic period people formed St. Catherines Shell Ring. When appropriately evaluated

and sampled, Boonea impressa may serve as a reliable proxy for the determination of oyster

harvest seasons. When determining seasonal site use or occupation, the proxy can be particu-

larly useful when correlated with other critical lines of evidence such as stable isotopic data,

use patterns for other animal and plant remains, and stratigraphy.

Archaic shell-ring dwellers at St. Catherines Island, harvested oysters primarily during the

late fall, winter and/or early spring. This gathering pattern matches seasonal harvesting postu-

lated for other mollusks (clams) at this and other Archaic shell rings where similar studies

have been conducted. Oyster consumption was avoided during summer months, possibly

reflecting poor palatability, pathogen avoidance, or perhaps one of the earliest records of sus-

tainable harvesting. Oysters, as ecological keystone species, are important indicators of estua-

rine health but their numbers are currently on the decline worldwide [40–42]. Archaeological

assessments of intensity, seasonality, and sustainability of oyster harvesting in the past provide

us with a unique perspective on the long-term history of human-oyster interactions. These

type of studies are increasingly used toward developing a more robust understanding of histor-

ical ecology of estuarine and coastal systems for various regions of the southeastern USA,

including the Chesapeake Bay [43] and the gulf coast of Florida [44,45]. How past human pop-

ulations may have mitigated problems associated with overharvesting or resource depletion

has important implications for contemporary issues regarding the sustainability of estuarine

environments in the face of environmental degradation and human harvesting pressures.
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S1 Movie. 133 null models. Animation showing a sequence of 133 null models depicted in Fig

9.

(GIF)

S1 Fig. Similarity indices for discontinuous models. Comparison of the performance of best

continuous models to their discontinuous variants. Comparisons performed separately for

each of the three archaeological samples. X-axis labels indicate the discontinuous month com-

binations. Red point marks the best continuous model for each sample and the dashed line

represent the similarity index value for that best continuous model. All models evaluated using

Bray-Curtis similarity index.

(TIF)

S2 Fig. Comparison of shell length and size frequency distributions. Difference between

monthly size-frequency distributions of live-collected specimens of Boonea impressa plotted as

a function of sample size (n) of the smaller of the two compared monthly samples. Each data

point represents a pairwise comparison for the same month from different years (e.g., March

2007 vs. March 2008). A. Pairwise differences in median shell length between the two com-

pared years for a given month. B. Kolmogorov-Smirnov D statistic measuring overall differ-

ence in the shape of the two compared size-frequency distributions.

(TIF)
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